文档库 最新最全的文档下载
当前位置:文档库 › 二等直流标准电阻器测量结果不确定度评定

二等直流标准电阻器测量结果不确定度评定

二等直流标准电阻器测量结果不确定度评定
二等直流标准电阻器测量结果不确定度评定

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

测量不确定度评定作业指导书(含表格)

测量不确定度评定作业指导书 (IATF16949/ISO9001-2015) 1.目的: 规定了测量不确定度的评定方法,保证实验室对测量结果进行不确定度评定和报告出具。 2.适用范围: 适用于各检测项目的不确定度评定与表示。 3.依据的技术文件: JJF1059.1Y2012 测量不确定度的评定与表示。 4. 不确定度的评定方法: 测量不确定度评定依据JJF 1059.1-2012《测量不确定度评定与表示》进行,应对由仪器设备、人员、试验环境、试验方法等各方面可能引入的不确定度分量进行全面分析,然后根据JJF 1059.1-2012的要求合成不确定度,作出正确的分析报告。不确定度愈小,分析测试结果与真值愈靠近,其质量愈高,数据愈可靠。因此,测量不确定度就是对测量结果质量和水平的定量表征。 5.测量不确定度评定的步骤: 5.1一般评定不确定度的流程如下:

5.2建立测量的数学模型 测量的数学模型是指测量结果与其直接测量的量、引用的量以及影响量等有关量之间的数学函数关系。当被测量Y由N个其他量X1、X2、…、XN的函数关系确定时,被测量的数学模型为: Y = f (X1、X2、…、XN) 5.3测量不确定度的来源 一般应从被测量、样本离散性、环境、人员、仪器设备、方法、试剂、用于数据计算的常量及其他参量、测量方法及测量重复性等方面考虑不确定度来源。详细介绍如下: 1、对被测量的定义不完整或不完善 若在定义要求的温度和压力下测量,就可避免由此引起的不确定度。 2、实现被测量定义的方法不理想 如上例,被测量的定义虽然完整,但由于测量时温度和压力实际上达不到定义的要求(包括由于温度和压力的测量本身存在不确定度),使测量结果中引入了不确定度。

接地电阻测量方法不确定度

接地电阻测量方法不确定度 1 测量方法 接地电阻为接地端子或接地触点与所需连接在一起的部件(即接地部件)之间的电阻。测量时,从空载电压不超过12V 的交流电源取器具额定电流的1.5 倍或25A 的电流(两者中选用较大的电流),让其依次在接地端子或接地接触点与各个接地部件之间通过。测量被测部件之间的电压降,即可计算出接地电阻值。R = u/i = Ku,令K=1,则R = u,即交流电压表读数可直接反映电阻值。 接地电阻测试台有四条测量线,其中两条为电压线,另两条为电流线,用线末端的夹子 夹紧被测部件,如图13 所示(电压线应在电流线之间)。 图13 接地电阻测量方法接通电源,按下电源开关, 仪器预热,再进行测量。选择合适的“工作电流选择”开关档(一般为25A),调节“工作电流微调”旋钮,使电流表指示为25A,此时“电阻表”的指示值即为试样接地电阻值。 2 数学模型 被测接地电阻可由接地电阻测试台表头直接读取。 r = R r ——被测接地电阻值 R——接地电阻测试台示值 3 方差与传播系数 由于所有的被测电阻可由表头直接读取,故接地电阻的不确定度即接地电阻测试台的

1 2 示值不确定度。 2 c = u 2 (R ) 本不确定度以 National 换气扇 15ASTIC (150 mm )为例 4 标准不确定度一览表 表 4-1 标准不确定度一览表 标准不确 定 度分量 u i 不确定度来源 标准不确 定 度值 c i = ?f / ?x i c i ? u (x i ) 自由度 u 1 表头示值误差 1.15% 1 1.15% 50 u 2 不同人、时间读数误差 1.15% 1 1.15% 2 u 3 电流波动引起的误差 0.58% 1 0.58% 50 u c = 1.73% v eff = 10 5 评定分量标准不确定度 根据本实验的的实际情况,采用 B 类评定方法 5.1 示值不确定度分量 u 1 根据检定证书,接地电阻测试台的最大允差为±2%,均匀分布,估计其相对不确定 度 10%。 u 1 = 2% / = 1.15% v = ( 1/ 2)(10 /100)-2 = 50 5.2 不同人员或不同时间读数引起的不确定度分量 u 2 由于每次测量时所用时间不同,通过试验,我们认为偏差不超过±2%,均匀分布, 估计其相对不确定度为 50%。 u 2 = 2% / = 1.15% v = (1/ 2)(50 /100)-2 = 2 5.3 电流波动引起不确定度分量 u 3 测量时是通过微调旋钮控制电流在 25A ,实际电流在 25A 上下波动,根据检定证书, u

回路电阻测试仪测量结果不确定度评定报告

测量不确定度 评定报告 户内高压真空断路器回路电阻 编制: 审核: 批准:

1、概述 1.1目的:高压真空断路器回路电阻测量不确定度评定 1.2测量依据:GB/T11022-1999《高压开关设备和控制设备标准的共用技术条件》 1.3评定依据:JJF 1059-1999《测量不确定度评定与表示》 1.4环境条件:室温(27℃);湿度≤80RH;标准大气压。 1.5测量仪器设备:TE3200(特试特科技)型回路电阻测试仪 技术条件:分辨率:Ω μ .0;测量范围:0-3000μΩ;最大允差:±(1%×读数+2 01 μΩ)。经机械工业第五(西安)计量检测中心站检定合格,证书号(),在有效检定周期内使用。 1.6被测样品及被测量: (1)被测物品是VS1-12/630-25高压真空断路器; (2)被测量是回路电阻。 1.7测量方法:用TE3200型回路电阻测试仪测量高压真空断路器主回路电阻,直接在 仪器上读数。 1.8评定结果的使用:只要符合上述条件,一般可直接使用本不确定度评定的方法,但对于不同的测量结果应有不同的不确定度的值。 2、数学模型 利用伏安法测量电阻数学模型为: R=U/I 式中R为主回路电阻 U为回路电压降 I为施加电流值 3、测量不确定度来源 被测量R的不确定度来源有: (1)回路电阻值R的测量重复性,采用A类评定方法。 (2)回路电阻仪最大允差引起的回路电阻值R的测量不确定度,采用B类评定方法。 4、回路电阻的测量重复性引入的标准不确定度分量评定 回路电阻的测量重复性引入的标准不确定度分量按A类评定 测VL11-12/630-25真空断路器一相回路电阻5次,得数据如下:(单位μΩ) 39.85 39.90 40.25 40.00 40.05 采用极差法进行计算,则

测量不确定度的评定方法.

测量不确定度的评定方法 鉴于测量不确定度在检测,校准和合格评定中的重要性和影响,考虑到试验机行业应用测量不确定度时间不长,现就有关测量不确定度概念、测量不确定度的评定和表示方法,谈谈学习体会。奉献给同行业人员。由于本人学识浅薄,力不从心,有不妥或错误处,期望批评指正。 (一)测量不确定度的概念 《测量不确定度表示指南》(GUM),即国际指南,给出的测量不确定度的定义是:与测量结果相关联的一个参数,用以表征合理地赋予被测量之值的分散性。 其中,测量结果实际上指的是被测量的最佳估计值。被测量之值,则是指被测量的真值,是为回避真值而采取的。我国计量技术规范JJF1059—1999《测量不确定度评定与表示》中,亦推荐这一用法(见该规范2.3注4)。 须知,真值对测量是一个理想的概念,如何去估计它的分散性?实际上,国际指南(GUM)所评定的并非被测量真值的分散性,也不是其约定真值的分散性,而是被测量最佳估计值的分散性。 关于测量不确定度的定义,过去曾用过: ① 由测量结果给出的被测量估计的可能误差的度量; ② 表征被测量的真值所处范围的评定。 第①种提法,概念清楚,只是其中有“误差”一词,后来才改为第②种提法。现行定义与第②种提法一致,只是用被测量之值取代了真值,评定方法相同、表达式也一样,并不矛盾。 至于参数,可以是标准差或其倍数,也可以是给定置信概率的置信区间的半宽度。用标准差表示测量不确定度称为测量标准不确定度。在实际应用中如不加以说明,一般皆称测量标准不确定度为测量不确定度,甚至简称不确定度。 用标准差值表示的测量不确定度,一般包括若干分量。其中,一些分量系用测量列结果的统计分布评定,并用标准差表示:而另外一些分量则是基于经验或其他信息而判定的(主观的或先验的)概率分布评定,也以标准差值表示。可见,后者有主观鉴别的成分,这也是在定义中使用“合理地赋予”的主要原因。 为了和传统的测量误差相区别,测量不确定度用u(不确定度英文uncertainty的字头)来表示,而不用s。 应当指出,用来表示测量不确定度的标准差,除随机效应的影响外,还包括已识别的系统效应不完善的影响,如标准值不准、修正量不完善等。 显然,测量结果中的不确定度,并未包括未识别的系统效应的影响。尽管未识别的系统效应会使测得值产生某种系统偏差。 所以,可以概括地说,测量不确定度是由于随机效应和已识别得系统效应不完善的影响,而对被测量的测得值不能确定(或可疑)的程度。(注:这里的测得值,系指对已识别的系统效应修正后的最佳估计值)。 (二)不确定度的来源 在国际指南(GUM)中,将测量不确定度的来源归纳为10个方面: ① 对被测量的定义不完善; ② 实现被测量的定义的方法不理想; ③ 抽样的代表性不够,即被测量的样本不能代表所定义的被测量; ④ 对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善; ⑤ 对模拟仪器的读数存在人为偏移; ⑥ 测量仪器的分辨力或鉴别力不够; ⑦ 赋予计量标准的值或标准物质的值不准; ⑧ 引用于数据计算的常量和其他参量不准; ⑨ 测量方法和测量程序的近似性和假定性; ⑩ 在表面上看来完全相同的条件下,被测量重复观测值的变化。 上述的来源,基本上概括了实践中所能遇到的情况。其中,第①项如再加上理论认识不足,即对被测量的理论认识不足或定义不完善似更充分些;第⑩项实际上是未预料因素的影响,或简称之为“其他”。 可见,测量不确定度一般来源于随机性和模糊性。前者归因于条件不充分,而后者则归因于事物本

测量不确定度评定举例

测量不确定度评定举例 A.3.1 量块的校准 通过这个例子说明如何建立数学模型及进行不确定度的评定;并通过此例说明如何将相关的输入量经过适当处理后使输入量间不相关,这样简化了合成标准不确定度的计算。最后说明对于非线性测量函数考虑高阶项后测量不确定度的评定结果。 1).校准方法 标称值为50mm 的被校量块,通过与相同长度的标准量块比较,由比较仪上读出两个量块的长度差d ,被校量块长度的校准值L 为标准量块长度 L s 与长度差d 之和。即: L=L s +d 实测时,d 取5次读数的平均值d ,d =0.000215mm ,标准量块长度L s 由校准证书给出,其校准值L s =50.000623mm 。 2)测量模型 长度差d 在考虑到影响量后为:d =L (1+?? )-L s (1+?s ?s ) 所以被校量的测量模型为: 此模型为非线性函数,可将此式按泰勒级数展开: L =ΛΛ+-++)(θαθαs s s s L d L 忽略高次项后得到近似的线性函数式: )(θαθα-++=s s s s L d L L () 式中:L —被校量块长度; L s —标准量块在20℃时的长度,由标准量块的校准证书给出; ? —被校量块的热膨胀系数; ?s —标准量块的热膨胀系数; ? —被校量块的温度与20℃参考温度的差值; ?s —标准量块的温度与20℃参考温度的差值。

在上述测量模型中,由于被校量块与标准量块处于同一温度环境中,所以?与?s 是相关的量;两个量块采用同样的材料,?与?s 也是相关的量。为避免相关,设被校量块与标准量块的温度差为??,??= ?-?s ;他们的热膨胀系数差为??,??= ?-?s ;将?s = ?-?? 和 ?=??+?s 代入式(),由此,数学模型可改写成: = ][θαδαθδs s s l d l +-+ () 测量模型中输入量??与?s 以及??与?不相关了。 特别要注意:在此式中的??和??是近似为零的,但他们的不确定度不为零,在不确定度评定中要考虑。由于??和??是近似为零,所以被测量的估计值可以由下式得到: L =L s +d () 3).测量不确定度分析 根据测量模型, 即: l = ][θαδαθδs s s l d l +-+ 由于各输入量间不相关,所以合成标准不确定度的计算公式为: )()()()()()()(222222222222θδαδθαδδθαθ αu c u c u c u c d u c l u c l u s d s s c s +++++= () 式中灵敏系数为: 1)(11=+-=??= =θαδαθδs s s l f c c , 由此可见,灵敏系数c 3和c 4为零,也就是说明?s 及? 的不确定度对测量结果的不确定度没有影响。合成标准不确定度公式可写成: )()()()()(22222222θαδαδθu l u l d u l u l u s s s s c +++= () 4).标准不确定度分量的评定 ○ 1标准量块的校准引入的标准不确定度u (l s ) 标准量块的校准证书给出:校准值为l s =50.000623mm ,U = 0.075?m (k =3),

导体电阻不确定度

20℃导体电阻测量结果的不确定度评定 1.概述 1.1测量对象:20℃时导体截面积为铜导线的导体电阻 1.2测量依据:GB/T 电缆的导体 1.3测量设备: a) pc36c 系列直流电阻测量仪(测量范围:1?10-8~2?102 Ω,误差:±%,分辨率: Ω); b)水银温度计(测量范围:0~100℃,准确度:±1%,分辨率:℃); c )钢直尺(测量范围:0~1000mm ,准确度:±1%,分辨率:1mm )。 1.4测量环境条件:温度℃,相对湿度:76%RH 1.5测量过程:根据标准的要求,对导体截面积为的铜导线进行导体电阻值的测量。在铜导线上重复10次,10次测量的算术平均值即为该铜导线导体电阻的测量结果。 2.数学模型 10005.2345.25420??+= L Rt t R 其中20R ——20℃时导体电阻(Ω/km ); Rt ——t 温度时导体的实测电阻(Ω); L ——铜质导体的长度(m ); t ——测量时的导体周围的温度(℃)。 扩展不确定度由 2 42 32 22 1u u u u k U +++?= 其中 1u ——由导体电阻值测量重复性引起的不确定度分量; 2u ——由测量导体周围环境温度用水银温度计自身因素引起的不确定度分量; 3u ——由pc36c 系列直流电阻测量仪自身因素引起的不确定度分量; 4u ——由测量铜导线长度时由钢直尺自身因素引起的不确定度分量。 3.评定方法的确定 1u 用A 类评定方法,2u 、3u 、4u 用B 类评定方法。 4.不确定度的评定 4.1由导体电阻值测量重复性引起的不确定度分量1u π

计算公式为:10005.2345.25420??+= L Rt t R ,Ω/km 其最佳估计值,即测量结果为:)km /(014.0)(1 2 202020Ω=-= ∑=n R R R n i i 注:n=1,2,3,…,10 又根据贝塞尔公式,计算得试验标准差S (R 20) ()() ()km n R R R S n i i /014.01 1 2 20 2020Ω=--= ∑= 得到不确定度分量: () ()()km n R S R S u /0044.020201Ω== = 其自由度为 911=-=n v 相对不确定度为: %039.038 .110044 .0200 11== = R u u rel 由测量导体周围环境温度用水银温度计自身因素引起的不确定度分量u 2 4.2.1 由水银温度计分辨率引起的不确定度u 21 水银温度计的分辨率为℃,均匀分布,3= k ,故其标准不确定度分量为: 14.05.0288.03 25.021=?== u (℃) 由于对此输入量和结果是准确可信的,取其自由度为: ∞→21v 相对不确定度为: %57.05 .2414 .021== rel u 4.2.2由水银温度计的准确度引起的不确定度分量u 22 水银温度计的准确度为±1%,均匀分布,3= k 。 其相对不确定度为: %58.03 %122== u

测量不确定度评定报告材料

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS—CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影 响量(输入量)X1,X2,…,X N间的函数关系f来确定,即: Y=f(X1,X2,…,X N) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i=c i称为灵敏系数。有时灵敏系数c i可由实验测定,即通过变化第i个输入量x i,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善;

e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为:x1,x2,…x n。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i)由贝塞尔公式计算: 1 n S(x i)= ∑( x i —x )2 n-1 i=1 式中x i为当次测量的实验结果 观测列的实验标准差的平均值s(x)按下式计算: s(x)=s(x i) / n 标准不确定度u(x)即为:

直流电阻测量结果的不确定度评定

直流电阻测量结果的不确定度评定 (QJ23直流电阻电桥) 1 概述 1.1 测量依据:QJ23直流电阻电桥使用说明书。 1.2 环境条件:温度24℃,相对湿度64%。 1.3 测量设备:QJ23直流电阻电桥,准确度等级指数为0.1,基准值1 kΩ,分辨率100 mΩ。 1.4 被测对象:电阻值为800 Ω的直流电阻。 1.5 测量方法:直接测量法。 1.6 评定结果的使用:符合上述条件的测量结果,一般可直接使用本不确定度的评定方法,其中测量800 Ω的直流电阻可直接使用本不确定度的评定结果。 2 数学模型 r x =n r 式中: r x ——被测直流阻值: n r ——QJ23电阻电桥测得的实际值。 3 输入量的标准不确定度评定 3.1 输入量x r 的标准不确定度()x r u 的评定 输入量x r 的不确定度()x r u 主要由被测直流电阻的测量不重复性引起的,可以通过连续测量得到测量列,采用A 类方法进行评定。 选用0.1级QJ23电阻电桥有效量程(0~1.1110)k Ω对被测直流电阻进行两组,每组连续测量10次测量。得到测量列如表1: 表1 重复测量结果

各个点的测量列的平均值∑== n i i r n r 1 1 ,以及单次实验标准差() 1 2 --=∑n r r s i 。得到各点的 测量平均值和单次实验标准差数据如表2: 表2 单次实验标准差 合并样本标准差 m s s i P ∑= 2=0.075 Ω )(X I u =P s =0.075 Ω 自由度 ()1-=n m ν=18 3.2 输入量n r 的标准不确定度()n r u 评定 输入量n r 的标准不确定度()n r u 主要由QJ23直流电阻电桥的误差引起的。可根据QJ23直流电阻电桥的技术参数来评定。故采用B 类方法进行评定。 QJ23直流电阻电桥最大允许误差为310 Rn 102)r (-??+±,在此区间内服从均匀分布,取包 含因子3=k 。 当被测直流电阻为800 Ω情况下,QJ23直流电阻电桥引起的标准不确定度()n r u 为: ())(.)(Ω=??+= -5203 1018001003 n r u 认为可靠,则自由度 ν=∞ 分辨率、噪音影响、灵敏度影响等引起的不确定度已包括在连续测量列的分散性中,故不再计算其影响。 4 合成标准不确定度的评定 4.1 灵敏系数

测量不确定度的评定.

第一章入门 1、测量 1.1 什么是测量? 测量告知我们关于某物的属性。物体有多重,或有多热,或有多长。测量赋予这种属性一个数。 测量总是用某种仪器来实现。 测量结果由部分组成:数,测量单位。 1.2什么不是测量 有些过程看起来像是测量,然而并不是。两根绳子作比较,不是测量。计数通常也不认为是测量。对于只回答“是或非”的答案,或者“合格或不合格”的结果的检测(test)往往不是测量。 2、测量不确定度 1.1 什么是测量不确定度? 测量不确定度是对任何测量的结果存有怀疑。对每一次测量,即使是最仔细的,总是会有怀疑的余量。可以表述为“出入”,例如一根绳子可能2米长,有1厘米“出入”。 2.2测量不确定度表述 回答“余量有多大?”和“怀疑有多差?”定量给出不确定度,需要两个数。余量(或称区间的宽度;置信概率,说明“真值”在该余量范围内有多大把握。 比如:棍子的长度测定为20厘米加或减1厘米,有95%置信概率。写成:20cm±1cm,置信概率为95%。表明棍子长度在19厘米到21厘米之间有95%的把握。

2.3 测量不确定度度重要性 考虑测量不确定度更特殊的理由; 校准——在证书上报告测量不确定度。 检测——不确定度来确定合格与否。 允差——不确定是否符合允差以前,你需要知道不确定度。 3、关于数字集合的基本统计学 3.1操作误差 “测量再而三,只为一剪子”,两、三次核对测量,减少出错的风险。任何测量至少进行三次,防止出操作误差。 3.2基本统计计算 两项最主要的统计计算,一组数值的平均值或算术平均值,以及它们的标准偏差。 3.3获得最佳估计值——取多次读数的平均值 重复测量出不同结果的原因: 进行的测量有自然变化; 测量的器具没有工作在完全稳定状态; 重复读数时读数有变化,最好多次读数并取平均值.平均值是“真值”的估计值。 3.4多少次读数求平均 10次是普遍选择的.根据经验通常取4至10次读数就够了。 3.5分散范围—标准偏差 重复测量给出不同结果时,要了解读数分散范围有多宽.量值的分散范围告诉测量不确定度的情况.对分散范围定量的常见形式是标准偏差。

电阻测量的设计实验报告

佛山科学技术学院 实 验 报 告 课程名称 实验项目 专业班级 姓 名 学 号 指导教师 成 绩 日 期 年 月 日 【实验目的】 1.掌握减小伏安法测量电阻的方法误差和仪表误差的方法; 精品文档,超值下载 2.根据测量不确定度的要求,合理选择电压表和电流表的参数; 3.根据给定实验仪器合理设计变形电桥电路(或电压补偿测量电路)测量电阻。 【实验仪器】 直流稳压电源、伏特表、毫安表、被测电阻、滑线变阻器(或电位器)2个、电阻箱2只、开关式保护电阻、开关。 【实验原理】 1.方法误差 根据欧姆定律,测出电阻R x 两端的电压U ,同时测出流过电阻R x 的电流I ,则待测电阻值为 I U R x = 测 (24-1) 通常伏安法测电阻有两种接线方式:电流表内接法和电流表外接法。由于电表内阻的存在,这两种方法都存在方法误差。 在内接法测量电路中(如图24-1所示),电流表的读数I 为通过电阻R x 的电流I x ,但电压表的读数U 并不是电阻R x 的两端电压U x ,而是U=U x +U A ,所以实验中测得的待测电阻阻值为 A x A x x R R I R R I I U R +=+== ) (内 式中R A 是电流表的内阻。它给测量带来的相对误差为 x A x x R R R R R E = -= 内内 (24-2) 内接法测量待测电阻阻值的修正公式 A x R I U R -= 。 (24-3) 在外接法测量电路中(如图24-2所示),电压表的读数U 等于电阻R x 的两端电压U x ,但电流表的读数I 并不是流过R x 的电流I x ,而是I=I x +I V ,所以实 验中测得的待测电阻阻值为 图24-1 内接法 图24-2 外接法

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

接地电阻测试仪测量不确定度评定

QTD-M041-2007 接地电阻测试仪测量不确定度评定 1.概述: 1.1测量依据:JJG336-2004《接地电阻表检定规程》 1.2环境条件:温度20±5℃,相对湿度不大于80% 1.3测量标准:接地电阻表检定装置 1.4被测对象:接地电阻测试仪 1.5测量过程:接地电阻测试仪的检定是使用直接比较法,模拟接地电阻表的检定步骤:a、连接好被检表与接地电阻表检定装置;b、轻敲调整机械零位; c、使手摇发电机摇柄转速达到规定值,调节标准电阻器,使接地电阻表上的指针指示在带有数字标记的分度线上,此时标准电阻箱示值即为被检表的实际值。 2.数学模型: ΔR=R X -R S 式中:ΔR——电阻示值误差; R X ——接地电阻示值; R S ——检定仪读数值。 3.输入量的标准不确定度的评定 3.1输入量RX的标准不确定度u(R X )主要是接地电阻测试仪的测量不重复性,可通过连续测量得到测量例,采用A类方法进行评定,检流计灵敏度,人员读数视差引起的不确定度已包含在重复性条件下测量例的分散性中。选择100Ω的电阻值,连续测10次,利用贝塞尔公式算出单次实验标准差, S=0.23Ω,再取2 台同类接地电阻测试仪,在同类条件下,连续测10次,共 得3组测量值,分别算出单次实验标准差,合并样本标准差位SP=0.24Ω,u(R X ) =SP=0.24Ω,自由度γ (R X )=9。 3.2输入量RS的标准不确定度u(R S )的评定,采用B类方法进行评定,覆 盖因子k(R S )为3。标准不确定度为u(R S)=0.1/3Ω=0.06Ω。(0.1Ω为 半宽),则自由度γ(R S )为50。

秒表测量误差测量不确定度的评估

6.6 秒表测量误差测量不确定度的评估 6.6.1 概述 6.6.1.1测量依据:JJG237-2010《秒表检定规程》 6.6.1.2 计量标准:主要计量标准为时间检定仪,时间间隔测量范围(1~99999)s 。 表1 实验室的计量标准器和配套设备 6.6.1.3被校对象: 表2 被校准的机械秒表和电子秒表的分类 6.6.1.4 测量方法: 6.6.1.4.1 机械秒表测量误差的测量方法:按被校机械秒表的秒度盘和分度盘的满刻度值两个校准点进行校准,对每一被校准测量点测量3次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 0T T T i i -=? (1) {}Max i T T ?=? (2) 式中: i T —— 每次的测量值; 0T —— 时间检定仪给出的标准值; i T ?—— 每次测量得到的测量误差; T ?—— 校准结果给出的测量误差。 6.6.1.4.2 电子秒表测量误差的测量方法:对电子秒表的测量误差选择10s 、10min 、1h 三个校准点进行校准,对10s 、10min 两个受校点测量3次,1h 受校点测量2次,按下式(1)计算每次的测量误差,按(2)式取其中误差最大的作为校准结果。 6.6.1.5环境条件 1) 环境温度:(20±5)℃,校准过程中温度变化不超过2℃;相对湿度(65±15)%; 2) 周围无影响仪器正常工作的电磁干扰和机械振动; 3) 电源电压在额定电压的±10%,50Hz 。 6.6.2数学模型

{}Max i T T T 0-=? (3) 式中: T ? —— 机械秒表、电子秒表走时示值测量误差; i T —— 被校机械秒表、电子秒表每次走时测量值; 0T —— 时间检定仪给出的标准时间间隔值。 i —— 测量次数, 一般为3次, 当电子秒表测量1h 点时, 为2次。 6.6.3不确定度传播率 )()()(02 222212T u c T u c T u i c +=? 式中,灵敏系数1/1=???=i T T c ,1/02=???=T T c 。 6.6.4机械秒表、电子秒表测量误差标准不确定度的评定 6.6.4.1 输入量T 0的标准不确定度 标准设备时间检定仪标准装置的扩展不确定度为U 0=1.55×10-6×T+0.0092s, k =2 则将校准点3s ,对应的标准时间T 0的扩展不确定度为 U 0=1.55×10-6×3s+0.0092s=0.0092s ,k=2 ;则该标准引起的标准不确定度 分量为:s s k U T u 0046.02 0092.0)(00== =。 6.6.4.2 输入量T i 的标准不确定度 以被校机械秒表、分辨力0.01s 、校准点3s 为例 1)示值重复性引起的不确定度:校准3s 测量点,共进行3次的重复测量,极差为0.005s, 则单次测量的重复性为: s s s d R T s n i 0030.000295.0693 .1005.0)(≈=== 。 因测量误差为取最大的单次测量误差, 则A 类标准不确定度分量为单次测量的重复性为:s T s T u i i 0030.0)()(1==。 2)读数误差引起的不确定度: 由被校准机械秒表的分辨力引起的,采用B 类标准不确定度评定。已知分辨力为0.01s ,则不确定度区间半宽度为0.005s ,按均分布计算, s s T u i 00289.03 005.0)(2== 由于重复性分量包含了人员读数引入的不确定度分量,为避免重复计算,只计算最大影响量)(1i T u ,舍弃)(2i T u 。 6.6.5合成标准不确定度 6.6.5.1主要标准不确定度汇总表3

测量不确定度评定实例(完整资料).doc

此文档下载后即可编辑 测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 2 4 D v π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定度21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。 ①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()m m 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量

高度h 的6次测量平均值的标准差: ()m m 0026.0=h s 高度h 的误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围0.005mm ±,按均匀分布,示值的标准不确定度 0.0029 q u == 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3 由示值误差引起的高度测量的不确定度 q h u h V u ??= 3 由示值误差引起的体积测量的不确定度分量 ()()323233mm 04.1=+=h D u u u 3. 合成不确定度评定 ()()()3232221mm 3.1=++=u u u u c 4. 扩展不确定度评定 当置信因子3=k 时,体积测量的扩展不确定度为 3mm 9.33.13=?==c ku U 5.体积测量结果报告 () m m .93.88063±=±=U V V 考虑到有效数字的概念,体积测量的结果应为 () m m 48073±=V

电阻测量不确定度.

W41 电阻器电阻测定 (数据自《测量不确定度评定与表示指南》,中国计量出版社) ● 被测件:1 M Ω电阻器 ● 目的:测量电阻器的电阻,并评估是否在标称值±0.1%之内 步骤1:技术规定 ● 测量程序 ● 用数字多用表直接测量 ● 数字多用表的技术指标 ● 5.5位 ● 最大允许差:±(0.005%?读数+3?最小分度) ● 满量程:1.999 9 k Ω ● 温度系数:环境温度为 (5~25)℃时可忽略 ● 在溯源有效期内 ● 计算 ● 直接测量 sz R R = 式中:R —电阻测量值,k Ω R SZ —数字多用表示值,k Ω

步骤2:识别和分析不确定度来源 ●被测量电阻的不确定度来源分析见图1 ●数字多用表引起的不确定度来源分析 ●校准 ●校准证书确认合格,引用多用表的最大允许差 ●测量在规定的温度范围进行,环境温度影响忽略 ●示值读数引起的不确定度来源分析 ●随机因素引起的不确定度 步骤3:不确定度分量量化/计算 ●示值读数引起的不确定度评估 ●相同条件下独立测量10次,获得的标准偏差可直接作为标准不确定度 R pjz=999.408 kΩ u(R pjz)=E pjz=0.082kΩ ●数字多用表不确定度分量评估

● 校准证书未提供不确定度,引用多用表的最大允许差,假设三角分布 3 3zxfd pjz szb d eR u += 式中 u szb —数字多用表标准不确定度分量,k Ω R pjz —示值读数平均值,k Ω d zxfd —数字多用表最小分度,0.01 k Ω 则 () Ω=?+?= k 046.03 01 .03408.999005.0szb u ● 电阻测量不确定度组合分量见表1 表1 电阻测量不确定度组合分量 步骤4:合成标准不确定度计算 ● 结果计算 直接测量得 R pjz =999.408 k Ω ● 合成不确定度计算 ()Ω=+=+=k 094.0082.0046.02 2 2szb 2zds c u u u s

相关文档
相关文档 最新文档