文档库 最新最全的文档下载
当前位置:文档库 › 散乱点云数据的可视化探究

散乱点云数据的可视化探究

散乱点云数据的可视化探究
散乱点云数据的可视化探究

散乱点云数据的可视化探究

摘要:三维激光扫描仪获取的散乱点云数据的可视化工作,是对点云数据进行分析应用的一个重要环节。该文从开发环境配置、点云数据输入、点云数据显示等方面详细讨论了可视化的实现细节,利用VC6 + OpenGL实现了点云显示、旋转、平移、缩放、渲染等功能,为点云数据的后续处理提供了直观的帮助。

关键词:三维激光扫描点云数据可视化OpenGL

Exploration of Scattered Point Cloud Data Visualization

Abstract:Visualization of scattered point cloud data obtained by the 3?d laser scanning system plays a crucial role in the point cloud data analysis and applications.In the experiment,from the development environment configuration,point cloud data input,point cloud data display,and other aspects are discussed in https://www.wendangku.net/doc/de2937200.html,ing VC6 and OpenGL,scattered point cloud display,rotate,transfer,zoom and other functions are finally realized.

Key words:3d laser scanning point cloud data visualization OpenGL

三维激光扫描技术是一种先进的全自动高精度立体扫描技术,可以深入到复杂现场环境中采集大量的点云数据,从而满足精确建模的

无序散乱点云的表面重建

摘要:我们描述并且说明一个算法,它需要输入一组无序的三维点云数据,这组点运数据在这个未知的流行M上或者附近,输出一个简单的近似于M的曲面。无论是存在边界的拓扑结构,还是M的几何形状都被认为是5提前已知的,所有这些信息都是从数据中自动推断出来的。这个问题自然出现在各种实际情况中,如从多个视角深度扫描一个对象,用二维切片恢复生物的形状,交互式曲面绘制。 附加关键:几何建模,曲面拟合,三维形状恢复,深度数据分析。 1 简介 一般来说,我们感兴趣的问题可以表示如下:基于未知的表面的部分信息,尽可能构造表面的完整表示。这类重建问题发生在不同的科学和工程应用领域中,包括:来自深度数据的曲面:由激光深度扫描系统采集的数据通常是从传感器到被扫描对象的距离矩形网格。如果传感器和目标对象是固定的,只要目标对象是“可视”的,那么可以全数字化采集。更复杂的系统,比如那些由控件实验室生产的产品,有能力通过旋转传感器或扫描对象来实现数字化圆柱形物体。然而,拓扑结构更复杂对象的扫描,包括那些简单的有把手的咖啡杯(1属表面),或者如图1a所示的物体(3属表面),不能通过这两种方法完成。为了适当的扫描这些对象,必须使用多个视图点进行扫描。合并来自多个视图点扫描生成的数据点重建一个多面体并非是一项简单的任务。 从轮廓的表面:在许多医学研究中很常见的用切片机将生物标本切成薄层。将感兴趣的结构的轮廓数字化。问题是用这些二维轮廓重建三维结构。虽然这个问题已经受到了大量关注,但是当前方法仍然存在着严重的局限性。也许其中最重要的是自动处理分支结构的困难。 交互式表面绘制:许多研究人员,包括施耐德和埃森曼,研究二维曲线的产物,通过跟踪笔尖或鼠标的路径作为用户绘制所需的形状。Sachs等人描述一个系统,称为3-Draw,这个系统允许创建三维自由曲线,通过记录笔尖的运动来模拟传感器。这个可以扩展到自由曲面的设计通过忽略这些被记录位置的顺序,允许用户在曲面上任意反复的移动笔尖。问题是重建的曲面要符合无序点的集合。 重建算法涉及的这些具有代表性的问题被精心的制作(具体情况具体分析),利用数据中的局部结构。例如,算法解决来自轮廓的曲面的问题大量利用了数据被组织成轮廓的事实(例如封闭多边形),并且这些轮廓位于平行平面上。同样的,专门的算法对于重建来自多个角

三维点云处理软件需求说明资料讲解

三维激光扫描仪点云数据处理软件需求说明 点云数据处理软件是专用扫描软件、数据处理软件、CAD软件接口及应用于检测监测、对比分析的软件。 基本描述 点云数据处理软件能够用于海量点云数据的处理(点云数量无限制,先进内存管理)及三维模型的制作。支持模型的对整、整合、编辑、测量、检测监测、压缩和纹理映射等点云数据全套处理流程。能够基于点云进行建模,拥有规则组建智能自动建模功能(一键自动建模)要求能够精细再现还原现场。具有真彩色配准模块,扫描物体点云的颜色即为物体真实的颜色。相机彩色图片可以配准贴图到三维模型。 1.可直接操作激光扫描仪进行数据采集、输入及输出。可接受多种数据格式,如AutoCAD dxf、obj、asc、dgn、pds、pdms等,可接受自定义格式的文本文件输入。 2.软件应具高精度和高可靠性,能够进行点云数据拼接、纹理贴图、特征线的提取、具有点云数据渲染、点云数据压缩、三角网模型生成、几何体建模等功能,软件快速、准确、易操作性。 3.可以智能地自动提取出特征线,同时也可提供人工方式进行特征线的提取。 4.能够提供多种断面生成方式,可以方便地生成一系列的断面线。生成的断面可以方便的导出到CAD及其它软件中做进一步加工处理和应用。应能够提供非常精确的量测物体尺寸的方法。 5.需要一体化软件且具备完整功能1). Registration模块:多种点云拼接模式、导线平差、引入地理参考、目标识别2). Office Survey模块:任意点云导入导出;点云的裁剪、取样、过滤;提取线形地物;在办公室任意量测数据;任意纵横断面;点云矢量化;3D等高线及标注;三角格网生成;任意形体建模;隧道及道路;任意体积面积计算;点云着色;纹理贴图;连续正射影像3).Modeling模块:

散乱点云的数据分割与特征提取技术研究

目录 目录 第1章绪论 (1) 1.1 课题来源 (1) 1.2 课题研究意义与背景 (1) 1.3 国内外研究现状 (3) 1.3.1 数据分割 (4) 1.3.2 特征提取 (6) 1.4 主要研究内容 (7) 1.5 论文结构安排 (8) 1.6 本章小结 (9) 第2章点云模型K邻域搜索 (10) 2.1 k邻域搜索概述 (10) 2.2 相关算法研究现状 (11) 2.2.1 索引树法 (12) 2.2.2 立体栅格法 (13) 2.3 本文的搜索算法 (16) 2.3.1 点云空间划分 (16) 2.3.2 K邻域搜索 (18) 2.4 实验分析 (20) 2.5 本章小结 (23) 第3章散乱点云的微分信息估算 (24) 3.1 微分信息概述 (24) 3.2 点云法向量估算 (25) 3.2.1 光滑曲面法向量估算 (25) 3.2.2 迭代修正特征曲面法向量 (26) 3.3 法向量方向调整 (29) V

目录 3.3.1 最小生成树改进方法 (30) 3.3.2 最小生成树调整法向量 (31) 3.4 点云曲率估算 (32) 3.4.1 移动最小二乘曲面 (32) 3.4.2 自适应最大核密度估计 (34) 3.4.3 曲率估算 (34) 3.5 实验分析 (35) 3.5.1 法向量估算实验 (35) 3.5.2 曲率估算实验 (38) 3.6 本章小结 (40) 第4章点云的特征提取 (41) 4.1 特征提取概述 (41) 4.2 相关算法研究现状 (42) 4.3 特征点提取 (43) 4.3.1 边界特征点提取 (44) 4.3.2 尖锐特征点提取 (45) 4.3.3 构建最小生成树 (47) 4.4 特征线拟合 (47) 4.4.1 B样条曲线的定义 (47) 4.4.2 求解节点向量 (48) 4.4.3 过控制点拟合特征线 (50) 4.5 应用实例及分析 (51) 4.5.1 简单模型的特征提取 (51) 4.5.2 复杂模型的特征提取 (54) 4.6 本章小结 (56) 第5章基于聚类的混合数据分割 (57) 5.1 数据分割概述 (57) 5.2 相关算法研究现状 (58) 5.3 聚类算法定义 (59) VI

点云数据处理

c++对txt文件的读取与写入/* 这是自己写程序时突然用到这方面的技术,在网上搜了一下,特存此以备后用~ */ #include #include #include using namespace std; i nt main(){ char buffer[256]; ifstream myfile ("c:\\a.txt"); ofstream outfile("c:\\b.txt"); if(!myfile){ cout << "Unable to open myfile"; exit(1); // terminate with error } if(!outfile){ cout << "Unable to open otfile"; exit(1); // terminate with error } int a,b; int i=0,j=0; int data[6][2]; while (! my() ) { my (buffer,10); sscanf(buffer,"%d %d",&a,&b); cout<头文件读:从外部文件中将数据读到程序中来处理对于程序来说,是从外部读入数据,因此定义输入流,即定义输入流对象:ifsteam in就是输入流对象。这个对象当中存放即将从文件读入的数据流。假设有名字为my的文件,存有两行数字数据,具体方法:int a,b; ifstream infile; in("my"); //注意文件的路径infile>>a>>b; //两行数据可以连续读出到变量里in() 如果是个很大的多行存储的文本型文件可以这么读:char buf[1024]; //临时保存读取出来的文件内容string message; ifstream infile; in("my"); if(in()) //文件打开成功,说明曾经写入过东西{ while(in() && !in()) { memset(buf,0,1024); in(buf,1204); message = buf; ...... //这里可能对message做一些操作cout< #i nclude #i nclude using namespace std; //////////////从键盘上读取字符的函数void read_save(){ char c[80]; ofstream outfile("f1.dat");//以输出方工打开文件if(!outfile){ cerr<<"open error!"<=65&&c[i]<=90||c[i]>=97&&c[i]<=122){//保证输入的字符是字符out(c[i]);//将字母字符存入磁盘文件

大数据中心运行可视化平台项目的技术方案设计的设计v0

数据中心运行可视化平台 技术方案 北京优锘科技有限公司 2015-08-13

目录 第1章项目背景 (3) 第2章建设内容 (4) 2.1地理位置可视化 (4) 2.2数据中心可视化 (4) 2.3IT架构可视化 (5) 第3章建设目标 (5) 第4章解决方案 (6) 4.1 地理位置可视化 (6) 4.1.1 位置分布可视化 (6) 4.1.2 分级浏览可视化 (7) 4.1.3 场景浏览可视化 (7) 4.1.4 网点配置可视化 (7) 4.2 数据中心可视化 (8) 4.2.1 环境可视化 (8) 4.2.2 资产可视化 (9) 4.2.3 配线可视化 (10) 4.2.4 容量可视化 (11) 4.2.5 监控可视化 (11) 4.2.6 演示可视化 (12) 4.3 IT架构可视化 (13) 4.3.1 业务交易可视化 (13) 4.3.2 应用关系可视化 (13) 4.3.3 系统架构可视化 (14) 4.3.4 应用组件可视化 (14) 4.3.5 基础设施可视化 (15) 4.3.6 监控数据可视化 (15) 4.4 第三方系统集成 (16)

第1章项目背景 随着业务的飞速发展,IT规模也越来越庞大而复杂,为保障IT 系统的正常运行,针对各类管理对象已完成了监控系统的基础建设,关注各类管理对象的数据采集、异常报警,并取得了良好的监控效果。在建设过程中,比较缺乏从统一可视化的角度,整合监控数据,构建整合的可视化操作平台。目前监控系统的操作方式和使用界面在易用性、友好性方面有待进一步提升,充分发挥监控平台对日常工作的支撑作用。存在如下问题: ●监控展示缺乏从业务到IT的端到端全景视图,各个技术团队只能看到管理 范围内的监控对象和内容,缺乏对关联业务和所依赖基础设施的关联分析和可视化管理能力,对系统整体的理解存在一定偏差。 ●应用系统监控缺乏全景视角,各个系统采用独立监控的方式,无法从应用 端到端管理的角度,实现跨系统的监控分析和可视化管理,在出现应用系统运行出现故障时,无法快速定位到发生故障的根源应用系统,同时,在一个应用系统监控报警时,无法判断其所影响的关联应用系统。 ●应用层监控与系统层监控整合程度较低,当应用系统出现故障时,无法快 速定位是应用本身问题,还是所支撑的IT组件问题。同时,在系统层面出现故障时,无法直观评估其所影响的应用系统范围。 ●系统层监控与物理层监控脱节,当系统层出现故障时,无法定位其所依赖 的基础设施和硬件设备。同时,当物理设备出现故障时,无法判断其所影响的系统平台范围。 因此,在统一可视化监控平台的建设过程中,会着力从“平台整合,组织结合,用户友好”的角度出发,借鉴先进数据中心可视化监

散乱点云三角剖分软件开发

【102】?第35卷?第11期?2013-11(下) 收稿日期:2013-06-30 作者简介:陈江明(1991 -),男,湖南湘潭人,硕士研究生,研究方向为CAD/CAM。散乱点云三角剖分软件开发 Software development for triangulation of scattered point cloud 陈江明,王亚平 CHEN Jiang-ming,WANG Ya-ping (北京航空航天大学 机械工程及自动化学院,北京 100191) 摘 要:三角剖分是曲面重构的重要方法,适合于复杂曲面以及大数据散乱点的情况,尤以波前法在工 程中应用广泛。介绍了在ACIS/HOOPS环境下,由采集到的物体表面散乱点云采用波前法构造三角网格模型进而生成无干涉刀具轨迹的方法,并探讨了该方法在3D打印方面的应用。 关键词:散乱点云;三角剖分;刀具轨迹;ACIS/HOOPS;3D打印中图分类号:TP391.72 文献标识码:A?文章编号:1009-0134(2013)11(下)-0102-03Doi:10.3969/j.issn.1009-0134.2013.11(下).31 0 引言 三角剖分广泛应用于插值、模型重构、图像处理和有限元分析等领域。通过三角剖分构建模型非常灵活,对于复杂表面表示效果非常好;随着数据采集技术的飞速发展,使得极短时间内便可获得大量、高精度的物体表面数据,而三角剖分在大数据的处理上效率较高,同时由高精度的大数据重构的模型更能逼近原物体。本文利用ACIS/HOOPS提供的几何造型及渲染平台,采用波前法[1] 对散乱点云进行三角剖分,效果很好。 图1 HOOPS显示的下颌点云模型 A C I S 几何造型平台提供了点云处理类SPApoint_cloud,其对于大数据点云的存储和增删操作非常高效;同时HOOPS应用程序框架对于大数据点云及曲面渲染给予了强大支持,且交互操作非常方便,这些大大提高了系统的效率和友好性。图1是经由HOOPS显示的下颌点云数据,点数13,980。 1 点云预处理 测量得到的原始散乱点云数据杂乱无章且往往存在噪声和冗余,要经过数据预处理才可进行曲面拟合及CAD建模,数据预处理的工作主要包 括:噪声点去除,精简。本文采用手动删除噪声点、重点删除、均匀精简和扫描线精简对散乱点云进行预处理。 2 三角剖分算法实现 本文采用波前法进行三角剖分,基本思想是由任意一点构造初始边,由初始边创建初始三角形作为剖分的起始,以初始三角形外环作为初始波前,寻找当前波前边的有效匹配点构造新的三角形并修改波前向周围推进,直至所有散乱点剖分完毕。现对关键概念说明如下: 波 前:即剖分中的外环,由一系列边组成,环内是已经剖分完的点,环外是待剖分的点,我们将其视作波浪前沿故而简称为波前。当前正在向外寻找匹配点的波前称为当前波前。 波前边:组成波前的边称为波前边,当前正在向外寻找匹配点的波前边称为当前波前边。 波前点:位于波前上的点称为波前点。 匹配点:匹配点与当前波前边相对应,它是与当前波前边两端点夹角最大的一个或几个点,构造三角形。最后被选用的匹配点称为有效匹配点。 2.1 初始边确定 任意选择一点,并寻找与之最近的一点确定初始边。 算法中所有的边都是有向边,即由SP(起始点)指向EP(终止点)。 2.2 三角形创建及波前扩展 由当前波前边寻找匹配点从而创建三角形,

三维点云数据处理的技术研究

三维点云数据处理的技术研究 中国供求网 【摘要】本文分析了大数据领域的现状、数据点云处理技术的方法,希望能够对数据的技术应用提供一些参考。 【关键词】大数据;云数据处理;应用 一、前言 随着计算机技术的发展,三维点云数据技术得到广泛的应用。但是,受到设备的影响,数据获得存在一些问题。 二、大数据领域现状 数据就像货币、黄金以及矿藏一样,已经成为一种新的资产类别,大数据战略也已上升为一种国家意志,大数据的运用与服务能力已成为国家综合国力的重要组成部分。当大数据纳入到很多国家的战略层面时,其对于业界发展的影响那是不言而喻的。国家层面上,发达国家已经启动了大数据布局。2012年3月,美国政府发布《大数据研究和发展倡议》,把应对大数据技术革命带来的机遇和挑战提高到国家战略层面,投资2亿美元发展大数据,用以强化国土安全、转变教育学习模式、加速科学和工程领域的创新速度和水平;2012年7月,日本提出以电子政府、电子医疗、防灾等为中心制定新ICT(信息通讯技术)战略,发布“新ICT计划”,重点关注大数据研究和应用;2013年1月,英国政府宣布将在对地观测、医疗卫生等大数据和节能计算技术方面投资1(89亿英镑。 同时,欧盟也启动“未来投资计划”,总投资3500亿欧元推动大数据等尖端技术领域创新。市场层面上,美通社发布的《大数据市场:2012至2018年全球形势、发展趋势、产业

分析、规模、份额和预测》报告指出,2012年全球大数据市场产值为63亿美元,预计2018年该产值将达483亿。国际企业巨头们纷纷嗅到了“大数据时代”的商机,传统数据分析企业天睿公司(Teradata)、赛仕软件(SAS)、海波龙(Hy-perion)、思爱普(SAP)等在大数据技术或市场方面都占有一席之地;谷歌(Google)、脸谱(Facebook)、亚马逊(Amazon)等大数据资源企业优势显现;IBM、甲骨文(Oracle)、微软(Microsoft)、英特尔(Intel)、EMC、SYBASE等企业陆续推出大数据产品和方案抢占市场,比如IBM公司就先后收购了SPSS、发布了IBMCognosExpress和InfoSphereBigInsights 数据分析平台,甲骨文公司的OracleNoSQL数据库,微软公司WindowsAzure 上的HDInsight大数据解决方案,EMC公司的 GreenplumUAP(UnifiedAnalyticsPlat-form)大数据引擎等等。 在中国,政府和科研机构均开始高度关注大数据。工信部发布的物联网“十二五”规划上,把信息处理技术作为四项关键技术创新工程之一提出,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分,而另外三项:信息感知技术、信息传输技术、信息安全技术,也都与大数据密切相 关;2012年12月,国家发改委把数据分析软件开发和服务列入专项指南;2013年科技部将大数据列入973基础研究计划;2013年度国家自然基金指南中,管理学部、信息学部和数理学部都将大数据列入其中。2012年12月,广东省启了《广东省实施大数据战略工作方案》;北京成立“中关村大数据产业联盟”;此外,中国科学院、清华大学、复旦大学、北京航空航天大学、华东师范大学等相继成立了近十个从事数据科学研究的专门机构。中国互联网数据中心(IDC)对中国大数据技术和服务市场2012,2016年的预测与分析指出:该市场规模将会从2011年的7760万美元增长到2016年的6。17亿美元,未来5年的复合增长率达51(4%,市场规模增长近7倍。数据价值链和产业链初显端倪,阿里巴巴、百度、腾

数据中心可视化管理平台解决方案

数据中心可视化管理平台解决方案 概述 随着科技信息化的建设的快速发展,信息设备的大量投入,在大型数据中心机房管理中分散着多种专业的管理系统,机房动力环境监控系统、能耗管理系统、运维管理系统、资产管理系统等,它们之机相互独立并存,形成监控数据孤岛现象,如何高效统一管理成为了众多企业面临的难题。随着生活节奏的加快,现代 人进入了这样一个时代:文字让人厌倦,让人不过瘾,需要图片不断刺激我们的眼球,激发我们的求知欲和触动我们麻木的神经。有人说,现在已经进入“读图时代”,对于枯燥严谨数据中心管理来说,我们已经开始进入了3D可视化时代。 解决方案 在这种背景下,推出了新一代基于3D技术的可视化仿真监控平台一一数据中心可视化管理平台。可视化技术将多种管理系统的复杂信息融汇在虚拟仿真环境之中,以符合人类直觉的方式自然呈现,从而大大提升了信息交互的效率,降低了信息损耗和时间损耗,确保信息传递的准确性和及时性,降低了信息查询和浏览的难度,使运维管理人员能够大幅提升操控效率,加快响应速度,缩短处理时间。运维管理人员可以更从容更精准地审视数据中心的全局图景,清晰掌握各 类设备的位置和资产信息,也为有效管理数据中心打下更坚实的基础。

数据可视化管理平台采用3D可视化技术对数据中心进行刻画,也被称为虚拟仿 真(Virtual Simulation),即通过技术手段把数据中心的一切物理存在的对象进行数据建模(从楼宇到设备,从地板到网线),以3D的方式在计算机中生成出来,供用户进行查看、交互、分析。机房不再需要现实中用脚走过去参观与查看,而是随时随地的以任意一个视角进行切入,比如我想知道核心业务系统的机器分别分布在哪一些机柜之中,或者哪一些机柜空间的空间剩余还是过半的,虚拟3D 机房就会直观的通过形象化图景呈现出查询结果。这只是可视化的简单应用,进而我们可以将各种监控设备的运行数据和状态信息与虚拟机房相结合,允许用户从任意时间、任意地点、任意视角查看任意对象的任意信息。它能同时支持B/S、 C/S架构,用户可以在电脑上客户端进行操作软件,还可以在任意一台连上互联网的电脑上访问web版可视化软件,在Wet浏览器中就可以操作三维场景,它使得网页超越二维平面,利用多媒体效果和三维可交互的对象,向用户提供更加主动有趣和有用的服务。实现多人同时在线对全三维场景的浏览和数据交互。并 提供开放式SDK允许把三维场景嵌入第三方平台,实现数据双向交互,充分满足用户不同需求,麦景数据可视化管理平台软件包括以下内容:监控可视化管理、环境可视化管理、资产可视化管理、容量可视化管理、管线可视化管理、演示可视化管理。 系统功能 1、监控可视化管理监控可视化让用户可以整合数据中心内分散的各种专业监控工具(如动环监控、安防监控、网络监控、主机监控、应用监控等),把多种监控数据融为一体,建立统一监控窗口,改变监控数据孤岛现象,实现监控工具、监控数据的价值有效益化。同时,基于3D图像引擎的可视化能力,提供丰富的可视化手段,扭转由于二维信息维度不足而导致的数据与报表泛滥状况,切实提升监控管理水平。门禁监控集成可视化,消防监控可视化,配电监控可视化,设备性能监控展示,视频监控集成可视化,环境监控集成可视化,制冷监控集成可视化,设备统一告警展示。 2、资产可视化管理数据中心内的设备资产数量庞大、种类众多,传统的表格式管理方式效率低下、实用性差,资产可视化管理功能采用了创新的3D互动技术手段,实现对数据中心资产配置信息的可视化管理,可以与各种IT资产配置管理数据库集

揭秘数据中心可视化管理 让IT可视

揭秘数据中心可视化管理让IT可视 可视化技术最早运用于计算机科学中,并形成了可视化技术的一个重要分支——科学计算可视化(VisualizationinScientificComputing)。科学计算可视化能够把科学数据,包括测量获得的数值、图像或是计算中涉及、产生的数字信息变为直观的、以图形图像信息表示的、随时间和空间变化的物理现象或物理量呈现在研究者面前,使他们能够观察、模拟和计算。 物联网、云计算、大数据等技术的发展和普及正把我们带入“万物均互联,一切皆数据”的新时代,人类传统的认知方式和管理手段面临变革,而在数据中心管理中运用数据可视化技术,让IT可视,已得到了成功应用,并被众多行业用户所认可。为什么数据中心需要可视化?怎样才是真正意义上的数据中心可视化管理?如何实现让IT可视?下面让笔者亲自体验并为大家揭秘。 为什么数据中心需要可视化? 数据中心是物联网、云计算和大数据技术的交汇点,它是物联网的高密区,云计算的核心,大数据的存储和处理器,也是今天世界上最为复杂的系统之一。数据中心里的设备数量众多,种类庞杂,过多的数据等于没有数据;复杂庞大的数据中心需要多个系统共同进行管理,分离的展示和操作界面破坏了掌控力;管理系统界面单调,互动性差,影响信息传递和操作效率,降低决策和响应速度。 数据中心可视化,可以让我们实现端到端的IT可视性,提高IT治理和管理水平,最终实现对数据中心卓越的运营,包括提高资源利用率,缩短响应时间,降低使用多种管理工具的复杂度,提升运营效率,加速排障过程,提高可用性等。 【编辑推荐】 Google数据中心探秘(多图) IBM Systems Director 6.1让数据中心更绿色

散乱点云近离群点识别算法

龙源期刊网 https://www.wendangku.net/doc/de2937200.html, 散乱点云近离群点识别算法 作者:赵京东杨凤华刘爱晶 来源:《计算机应用》2015年第04期 摘要:针对原始曲面变化度的局部离群系数(SVLOF)无法有效滤除三维实体的棱边或 棱角处的离群点问题,提出了一种散乱点云近离群点的滤除算法。该算法首先将SVLOF定义在类k邻域上,并将SVLOF的定义内容进行了扩展,使其既能滤除平滑曲面上的离群点,又能滤除三维实体的棱边或棱角点处的离群点,同时仍然保留SVLOF原有的足够宽泛的阈值选取空间。仿真数据和实际数据的实验结果均表明,在效率基本保持不变的情况下,所提算法能比原始SVLOF算法更有效地检测出距离主体点云近的离群点。 关键词:散乱点云;离群点;局部离群系数;基于曲面变化度的局部离群系数 中图分类号:TP391.72 文献标志码:A Abstract:Concerning that the original Surface Variation based Local Outlier Factor (SVLOF) cannot filter out the outliers on edges or corners of threedimensional solid, a new near outlier detection algorithm of scattered point cloud was proposed. This algorithm firstly defined SVLOF on the k neighborhoodlike region, and expanded the definition of SVLOF. The expanded SVLOF can not only filter outliers on smooth surface but also filter outliers on edges or corners of threedimensional solid. At the same time, it still retains the space of threshold value enough of original SVLOF. The experimental results of the simulation data and measured data show that the new algorithm can detect the near outliers of scattered point cloud effectively without changing the efficiency obviously. 英文关键词Key words:scattered point cloud; outlier; local outlier factor; Surface Variation based Local Outlier Factor (SVLOF) 0 引言 激光三维扫描仪因其具有非接触、速度快、精度高等特点,是逆向工程中应用最为广泛 的型面数字化仪器[1]。但是激光三维扫描仪获取的三维数据往往带有噪声和离群点,使测量 数据与实物存在一定的偏差,严重影响到点云分割、特征提取、曲面重建等一系列的后续处理过程,所以必须对其进行光顺去噪处理[2]。 现有处理散乱点云中的离群点的方法可分为基于分布、深度、聚类、距离、密度共5类[3]。主要存在以下不足:1)基于分布的方法[4]需要计算适合点云数据的分布模型,基于深度的方法[5]则需要计算不同层次点云的凸包体,这两种方法对于无拓扑关系的大规模点云数据

数据处理点云处理

非接触三维扫描测量数据的处理研究 1 点云数据的处理 1.1 噪声点的剔除和失真点的查找.在非接触三维扫描测量过程中,受测量方式、被测量物体材料性质、外界干扰等因素的影响,不可避免地会产生误差很大的点(噪声点)和失真点(跳点).因此在数据处理的第一步,就应利用相关专用软件所提供的去噪声点功能除去那些误差大的噪声点和找出可能存在的失真点[3].失真点的查找需要一定的技巧和经验,下面介绍3种方法供大家参考:①直观检查法.通过图形显示终端,用肉眼直接将与截面数据点集偏离较大的点或存在于屏幕上的孤点剔除.这种方法适合于数据的初步检查,可从数据点集中筛选出一些比较大的异常点.②曲线检查法.通过截面的首末数据点,用最小二乘法拟合得到一条样条曲线,曲线的阶次可根据曲面截面的形状决定,通常为3~4阶,然后分别计算中间数据点pi到样条曲线的距离‖e‖,如果‖e‖大于等于[ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除(见图1).③弦高差方法.连接检查点的前后2点,计算中间数据点pi到弦的距离‖e‖,如果‖e‖ [ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除.这种方法适合于测量点均匀且较密集的场合,特别是在曲率变化较大的位置(见图2). 图1 曲线检查法剔除坏点 图2 弦高差方法 1.2 数据精简.非接触三维扫描测量的突出特点是点云十分密集,数据量极其庞大(在1m2的范围内有数十万个点).若将如此庞大的数据量直接用于曲面构建不仅需要巨大的计算机资源(普通微机可能无法胜任)和很长的计算时间,而且整个处理过程也将变得难以控制,更何况并非所有的测试数据对曲面的构建都有用.因此,有必要在保证一定精度的前提下,对测试数据进行精简.数据精简的原则是在扫描曲率较大的地方保持较多的数据点,在曲率变化较小的地方保持较少的数据点.不同类型的点云采用不同的精简方式.散乱点云可通过随机采样的方法来精简,而对于扫描线点云和多边形点云可采用等间距、倍率、等量及弦偏差等方法进行精减.此外均匀网格法与非均匀网格法也可用来精减点云数据.其中均匀网格法只需选取其中的某些点,无需改变点的位置,可以很好地保留原始数据,特别适合简单零件表面瑕点的快速剔除.由于均匀网格法没有考虑被测物体的表面形状特征,因此它不适合对形状复杂的重要工程部件测试数据的处理.与之相反,非均匀网格法可以根据被测工程部件外部形状特征的实际需要来确定网格的疏密,因此它可在保证后继曲面构建精度的前提下减少数据量,这在处理尺寸变化较大的自由形体方面显得十分有效. 1.3 数据的平滑处理.点云数据中的随机误差将影响到后续曲面的构建及生成三维实体模

数据中心基础设施可视化运维管理

数据中心基础设施可视化运维管理 谁说高大上的机房不能炫!设备环境团队联合运营平台研发、网络、系统三、系统二等团队,历经一年的时间、7轮次需求细化讨论、11次版本更新,精雕细琢、倾尽洪荒之力打造了中国银行数据中心基础设施可视化平台!这是一个集才智美貌于一身,融合酷炫、可视等元素,高效、创新、高颜值的基础设施运维平台。平台包括两大功能模块: 一、基础设施运维数据模块 为了整合基础设施运维大数据资源,设备环境团队以严谨细致的态度,自主开发了基础设施运维数据模块,将分散的、手工维护的硬件设备、应用部署、机房资源和综合布线等各项基础环境资源的运维信息进行整合,累计整理各类数据10万多条,近50万字段,初步建成了IT设备生命周期管理体系。 二、基础设施可视化模块 在全面、准确的运维数据的基础上,基础设施可视化模块解决了以前需要多个系统、多张excel表格或者报表进行耗时耗力的分析和比对才能获取的信息,用三维的形式在一张视图内呈现,改变了传统运维信息展现的方式,其所带来的运维效率的大幅提升、故障的快速准确定位等,已经不是简单的炫所能表达的。(一)机房环境可视化 以黑山扈机房实际场景为原型,利用三维仿真技术,对机房内三百多种型号的设备设施逐一采集信息、模型建模,从细节入手,设备模型精确到端口级,实现了机房内三千多个机柜级设备和四千多个机架级设备的精确建模,构建了多视角、多维度分层呈现的虚拟现实环境。 (二)资产管理可视化 资产管理可视化可在机房三维场景中直接查询并精确定位设备设施,两万多条资产数据自动更新,点一下鼠标,位置、外观、型号、系统应用、容量、端口使用等设备信息即时呈现,精准、详细。 (三)容量管理可视化 机房资源的容量管理一直是个难题,往往需要兼顾空间、配电、硬件资源等多维度因素。现在可以在可视化场景中将环境、资源、配电、设备资源、PUE等信息多维度集中展现,两万五千余条实时采集数据,基础资源使用情况一目了然,再也不用只对着excel纸上谈兵了。 (四)运维管理可视化 联动一体化监控,硬件高等级事件自动定位至相关设备并显着提示,点击即可快速获取设备资产、运维(IP、系统、维护变更信息等)、配线连接等信息,有效提升故障定位、预判及处理效率。

三维可视化机房数据中心智能监控管理系统

三维可视化机房数据中心智能监控管理系统 随着计算机技术的迅速发展,数字交换技术的日新月异,计算机通信已经深入到社会生活并对社会经济的发展起着决定性的作用,而在这其中计算机机房数据中心作为载体更是整体生态链中的重中之重。尤其是近年来,云技术的突飞猛进,计算机机房数据中心所承受的压力越来越大:机房计算机系统的数量与日俱增,其环境设备也日益增多,机房环境设备(如供配电系统、UPS 电源、空调、消防系统、保安系统等),由于各类设备各自独立,如果没有统一的监控系统进行管理,主要是依靠值班人员的定时巡检来进行系统监控,由于值班人员知识面和安全管理的问题,值班人员不可能详细地检查每套系统,所以存在较大的安全生产隐患。 因此,为满足工作需要,提高机房维护和管理的安全性,北京金视和科技股份有限公司建立一套“可视化、智能化、远程化”的监控系统,为机房高效的管理和安全运营提供有力的保证。系统简介 三维可视化机房数据中心智能监控管理系统(3DDCIMMS)对机房实现远程集中监控管理,实时动态呈现设备告警信息及设备参数,快速定位出故障设备,使维护和管理从人工被动看守的方式向计算机集中控制和管理的模式转变。突破性的三维仿真技术是智能可视化数据中心建设的一个重要的组成部分,机房设备具有数量大、种类多、价值高、使用周期长、使用地点分散、缺少实时性管理、管理难度大等特点。全三维可视化监控平台,形象化的虚拟场景和真实数据相结合,增强机房设备、设施数据的直观可视性、提高其利用率。 系统特点 三维虚拟可视化平台 在现有资源管理系统数据库的基础上,以三维虚拟现实的形式展现数据中心的运行情况。实现可视化管理和服务器设备物理位置的精确定位。三维虚拟现实方式对机房楼层、设备区、设备安装部署情况及动力环境等附属设施的直观展示,实时展现监控和报警数据。可实现360度视角调整。 IT资产可视化管理 在三维环境中通过鼠标点击实现楼层、机房、机房子区域、机柜、设备的分级直接浏览。实现机房可用性动态统计,包括空间可用性、用电量分布、温湿度分布情况和机房承重分布情况统计。

数据中心基础设施管理系统-三维可视化监控方案

数据中心基础设施管理系统三维可视化监控方案 (DCIM)

目录 1.项目概述及需求理解 (4) 1.1.项目背景简介 (4) 1.2.项目管理范围 (4) 1.3.项目建设原则 (5) 1.4.项目建设目标 (6) 1.5.解决方案概述 (7) 2.系统架构及实现原理 (11) 3.1.系统架构 (11) 3.1.1.采集层 (11) 3.1.2.处理层 (12) 3.1.3.管理层 (12) 3.1.4.交互展现层 (13) 4.DCIM系统功能实现 (13) 5.1.三维可视化管理 (13) 5.1.1.IT类资产三维浏览 (15) 5.1.2.数据中心容量可视化管理 (20) 5.1.3.数据中心配线可视化管理 (23) 5.1.4.数据中心能耗可视化管理 (32) 5.1.5.数据中心运维可视化管理 (35)

5.1.6.集中监控展示 (40) 5.2.报表分析 (46) 5.2.1.监控报表 (46) 5.2.2.运维管理报表 (49) 6.系统部署方案及软硬件配置要求 (53) 6.1.分布式部署方案 (53) 6.2.服务器硬件 (55) 6.3.服务器软件 (57)

1.项目概述及需求理解 1.1.项目背景简介 伴随着数据中心规模的不断扩大,业务量的逐渐增大,对数据中心的运维管理也变的越来越重要。一旦基础设施系统出现问题,而没有及时地得到妥善解决,常常会给企、事业造成很大的损失。怎样能7x24小时保证设备系统的正常运行,避免各种故障的发生,优化和改进传统的运维模式,提高客户服务的及时性和满意度就显得非常重要。 因此,建设一套数据中心基础设施管理系统势在必行。一个完备的运维管理系统能够提供7x24小时检测基础设施运行状态、各种资源状态的信息。运维管理人员依靠流程管理系统可以及时排除故障避免造成重大损失,控制运维质量提高服务水平。1.2.项目管理范围 项目内容: 设施故障发现与警报; 记录日常运维日志信息; 设施故障统计; 设施软硬件信息统计; 服务进程管理; 将数据信息存储备份,并采用不同方式直观的展示出来; 服务人员绩效、考核管理;

点云数据处理

点云数据处理 ICP点云配准就是我们非常熟悉的点云处理算法之一。实际上点云数据在形状检测和分类、立体视觉、运动恢复结构、多视图重建中都有广泛的使用。点云的存储、压缩、渲染等问题也是研究的热点。随着点云采集设备的普及、双目立体视觉技术、VR和AR的发展,点云数据处理技术正成为最有前景的技术之一。PCL是三维点云数据处理领域必备的工具和基本技能,这篇博客也将粗略介绍。 三维点云数据处理方法 1. 点云滤波(数据预处理) 1. 点云滤波(数据预处理) 点云滤波,顾名思义,就是滤掉噪声。原始采集的点云数据往往包含大量散列点、孤立点,比如下图为滤波前后的点云效果对比。 点云滤波的主要方法有:双边滤波、高斯滤波、条件滤波、直通滤波、随机采样一致滤波、VoxelGrid滤波等,这些算法都被封装在了PCL点云库中。 2. 点云关键点 我们都知道在二维图像上,有Harris、SIFT、SURF、KAZE这样的关键点提取算法,这种特征点的思想可以推广到三维空间。从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子常用来形成原始数据的表示,而且不失代表性和描述性,从而加快了后续的识别,追踪等对数据的处理了速度,故而,关键点技术成为在2D和3D 信息处理中非常关键的技术。

常见的三维点云关键点提取算法有一下几种:ISS3D、Harris3D、NARF、SIFT3D 这些算法在PCL库中都有实现,其中NARF算法是博主见过用的比较多的。 3. 特征和特征描述 如果要对一个三维点云进行描述,光有点云的位置是不够的,常常需要计算一些额外的参数,比如法线方向、曲率、文理特征等等。如同图像的特征一样,我们需要使用类似的方式来描述三维点云的特征。 常用的特征描述算法有:法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image等。 PFH:点特征直方图描述子,FPFH:跨苏点特征直方图描述子,FPFH是PFH的简化形式。这里不提供具体描述了,具体细节去谷歌吧。 4. 点云配准 点云配准的概念也可以类比于二维图像中的配准,只不过二维图像配准获取得到的是x,y,alpha,beta等放射变化参数,二三维点云配准可以模拟三维点云的移动和对其,也就是会获得一个旋转矩阵和一个平移向量,通常表达为一个4×3的矩阵,其中3×3是旋转矩阵,1*3是平移向量。严格说来是6个参数,因为旋转矩阵也可以通过罗格里德斯变换转变成1*3的旋转向量。 常用的点云配准算法有两种:正太分布变换和著名的ICP点云配准,此外还有许多其它算法,列举如下: ICP:稳健ICP、point to plane ICP、point to line ICP、MBICP、GICP NDT 3D、Multil-Layer NDT

点云数据三维网格化

将雷射点云数据三维网格化以分面之研究 黄国彦R92521109 一﹒前言 激光技术(Light Amplification by Stimulated Emission of Radiation, Laser)发明于1960 年,顾名思义,雷射运作的原理即是以辐射激发光线的能量,因此也称为激光[赖志恒,2003]。雷射扫瞄到目标点反射后可由其时间差得知之间的距离,若是配合GPS等……定位仪器,便能更进一步自扫瞄时的位置推出目标点的坐标,故对于量测或重建物空间信息之应用越趋重要。 要以点的方式表现一件物体的外形需要数量繁多且密集的点群方能忠实呈现,因此要如何处理庞大的雷射点云数据即是一门重要的课题,除了大量的点数外,另一个要面对的即是点云数据为不规则散布的问题,此时最常见的方式即是以规则网格使点云数据结构化,其后再内插求得点云数据的范围与信息。然而内插后的规则网格皆会丧失空间信息,对三维分布的扫瞄点资料而言,以2.5D维度的表示法将扫瞄数据结构化,难以完整展现出扫瞄点精确描述地物的特性[赖志恒,2003]。因此本次研究的主题即着重在不破坏或是干扰原始数据的前提之下,以三维网格的结构找出点云所提供之面信息。 光达点云数据三维网格化的概念是,将每笔点云数据的集合看成是一张三维的影像,而为了利用影像处理的技术,则必须在点云所处的坐标系内进行规则的三维网格切割,且网格切割的坐标系三轴与物空间坐标系的三轴一样同为右旋坐标系统[陈英鸿,2004]。 此次研究中,每一个网格可提供的信息为: 1.网格之间的位相关系及其范围与编号 2.各网格所包含的点数及其坐标值、反射强度(Intensity) 在下一章的部份将说明要如何利用这些信息,有效的搜寻哪些光达点群为同一个平面并找出平面法向量。

相关文档