文档库 最新最全的文档下载
当前位置:文档库 › SPI协议及通信方式

SPI协议及通信方式

SPI協議及通信方式

SPI:高速同步串行口

SPI:高速同步串行口。是一种标准的四线同步双向串行总线。

SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器

之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用

四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于

这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM920 0.

SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行

方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直

接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接

口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个

或多个从设备,需要至少4根线,事实上3根也可以(用于单向传输时,也就是半双

工方式)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据

输出),SCK(时钟),CS(片选)。

(1)SDO –主设备数据输出,从设备数据输入

(2)SDI –主设备数据输入,从设备数据输出

(3)SCLK –时钟信号,由主设备产生

(4)CS –从设备使能信号,由主设备控制

其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信

号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。

接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI 是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。

完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿

和下沿为一次),就可以完成8位数据的传输。

要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在

一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有

一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,

当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟

线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入

和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不

尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。

在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单

高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统

要稍微复杂一些。

2.2、接口包括以下四种信号:

(1)MOSI –主器件数据输出,从器件数据输入

(2)MISO –主器件数据输入,从器件数据输出

(3)SCLK –时钟信号,由主器件产生

(4)/SS –从器件使能信号,由主器件控制

在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。

2.3、接口的硬件连接示意图

在多个从器件的系统中,每个从器件需要独立的使能信号,硬件上比I2C系统要稍

微复杂一些。

SPI接口在内部硬件实际上是两个简单的移位寄存器,传输的数据为8位,在主器

件产生的从器件使能信号和移位脉冲下,按位传输,高位在前,低位在后。如下图所示,

在SCLK的下降沿上数

据改变,同时一位数据被存入移位寄存器。

2.4、性能特点

AT91RM9200的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及/S S,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入

输出的标志,MOSI是主机的输出,从机的输入,MISO 是主机的输入,从机的输出。/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是

从机,相反/SS管脚的电平高的是主机。在一个SPI通信系统中,必须有主机。SPI

总线可以配置成单主单从,单主多从,互为主从。

SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于1 6个外设的选择。

SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。

2.5、SPI协议举例

SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。

假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。

那么第一个上升沿来的时候数据将会是sdo=1;寄存器中的10101010左移一位,后面补入送来的一位未知数x,成了0101010x。下降沿到来的时候,sdi上的电平将锁存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成了一个spi时序。

2.6、举例

假设主机和从机初始化就绪:并且主机的sbuff=0xaa,从机的sbuff=0x55,下面将分步对spi的8个时钟周期的数据情况演示一遍:假设上升沿发送数据脉冲主机sbuff 从机sbuff sdi sdo

0 10101010 01010101 0 0

1上0101010x 1010101x 0 1

1下01010100 10101011 0 1

2上1010100x 0101011x 1 0

2下10101001 01010110 1 0

3上0101001x 1010110x 0 1

3下01010010 10101101 0 1

4上1010010x 0101101x 1 0

4下10100101 01011010 1 0

5上0100101x 1011010x 0 1

5下01001010 10110101 0 1

6上1001010x 0110101x 1 0

6下10010101 01101010 1 0

7上0010101x 1101010x 0 1

7下00101010 11010101 0 1

8上0101010x 1010101x 1 0

8下01010101 10101010 1 0

这样就完成了两个寄存器8位的交换,上面的上表示上升沿、下表示下降沿,s di、sdo相对于主机而言的。其中ss引脚作为主机的时候,从机可以把它拉底被动选为从机,作为从机的是时候,可以作为片选脚用。根据以上分析,一个完整的传送周期是16位,即两个字节,因为,首先主机要发送命令过去,然后从机根据主机的命令准备数据,主机在下一个8位时钟周期才把数据读回来。SPI 总线是Motorola公司推出的三线同步接口,同步串行3线方式进行通信:一条时钟线SCK,一条数据输入线MOSI,一条数据输出线MISO;用于CPU与各种外围器件进行全双工、同步串行通讯。SPI主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。下图示出SPI 总线工作的四种方式,其中使用的最为广泛的是SPI0和SPI3方式(实线表示): SPI总线四种工作方式SPI 模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设备时钟相位和极性应该一致。

SPI总线包括1根串行同步时钟信号线以及2根数据线。

SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPO L=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设音时钟相位和极性应该一致。SPI接口时序如图3、图4所示。

2.7、性能补充

上文中最后一句话:SPI主模块和与之通信的外设备时钟相位和极性应该一致。个人理解这句话有2层意思:其一,主设备SPI时钟和极性的配置应该由外设来决定;

其二,二者的配置应该保持一致,即主设备的SDO同从设备的SDO配置一致,主设备的SDI同从设备的SDI配置一致。因为主从设备是在SCLK的控制下,同时发送和接收数据,并通过2个双向移位寄存器来交换数据。工作原理演示如下图:上升沿主机SDO发送数据1,同时从设备SDO发送数据0;紧接着在SCLK的下降沿的时候从设备的SDI接收到了主机发送过来的数据1,同时主机也接收到了从设备发送过来的数据0.

2.8、SPI协议心得

SPI接口时钟配置心得:

在主设备这边配置SPI接口时钟的时候一定要弄清楚从设备的时钟要求,因为主设备这边的时钟极性和相位都是以从设备为基准的。因此在时钟极性的配置上一定要搞清楚从设备是在时钟的上升沿还是下降沿接收数据,是在时钟的下降沿还是上升沿输出数据。但要注意的是,由于主设备的SDO连接从设备的SDI,从设备的SDO连接主设备的SDI,从设备SDI接收的数据是主设备的SDO发送过来的,主设备SDI 接收的数据是从设备SDO发送过来的,所以主设备这边SPI时钟极性的配置(即S DO的配置)跟从设备的SDI接收数据的极性是相反的,跟从设备SDO发送数据的极性是相同的。下面这段话是Sychip Wlan8100 Module Spec上说的,充分说明了时钟极性是如何配置的:

The 81xx module will always input data bits at the rising edge of the cl ock, and the host will always output data bits on the falling edge of the clo ck.

意思是:主设备在时钟的下降沿发送数据,从设备在时钟的上升沿接收数据。因此主设备这边SPI时钟极性应该配置为下降沿有效。

又如,下面这段话是摘自LCD Driver IC SSD1289:

SDI is shifted into 8-bit shift register on every rising edge of SCK in th e order of data bit 7, data bit 6 …… data bit 0.

意思是:从设备SSD1289在时钟的上升沿接收数据,而且是按照从高位到低位的顺序接收数据的。因此主设备的SPI时钟极性同样应该配置为下降沿有效。

时钟极性和相位配置正确后,数据才能够被准确的发送和接收。因此应该对照从设备的SPI接口时序或者Spec文档说明来正确配置主设备的时钟。

单片机串口通信协议程序

#include #include #define R55 101 #define RAA 202 #define RLEN 203 #define RDATA 104 #define RCH 105 //#define unsigned char gRecState=R55; unsigned char gRecLen; unsigned char gRecCount; unsigned char RecBuf[30]; unsigned char gValue; void isr_UART(void) interrupt 4 using 1 { unsigned char ch; unsigned char i; unsigned char temp; if (RI==1) { ch=SBUF; switch(gRecState) { case R55: // wait 0x55 if (ch==0x55) gRecState=RAA; break;

case RAA: if (ch==0xaa) gRecState=RLEN; else if (ch==0x55) gRecState=RAA; else gRecState=R55; break; case RLEN: gRecLen=ch; gRecCount=0; gRecState=RDATA; break; case RDATA: RecBuf[gRecCount]=ch; gRecCount++; if (gRecCount>=gRecLen) { gRecState=RCH; } break; case RCH: temp=0; for(i=0;i

利用51单片机实现SPI总线通信

利用51单片机实现SPI总线通信 一:题目及要求 1:基本内容 1.1:理解51单片机和SPI总线通信的特性和工作原理; 1.2:以51单片机为核心分别设计SPI总线通信发送及接收电路; 1.3:熟练应用C语言或汇编语言编写程序; 1.4:应用Protues软件完成仿真,仿真结果需包括示波器波形,通过一定的 方式(如LED灯、LED显示器等)显示发送和接受数据结果; 1.5:下载程序到开发板,实现串口通信功能(选做); 1.6:提交设计报告。 2:基本要求 本设计采用三线式SPI总线,一条时钟线SCK,一条数据输入线MOSI,一条数据输出线MISO。时钟极性CPOL=0,时钟相位CPHA=0。 二:设计思路 1:掌握51单片机和SPI总线通信的工作原理; 2:利用1中的原理设计SPI总线通信发送和接受电路; 3:编程模拟SPI时序,包括串行时钟、数据输入和输出; 4:利用Protues软件仿真,观察结果; 5:顺利仿真后,下载到开发板实现串行通信功能。 三:设计过程及内容 1:SPI总线简介 SPI ( Serial Peripheral Interface ——串行外设接口) 总线是Motorola公司推出的一种同步串行接口技术。SPI总线系统是一种同步串行外设接口,允许MCU(微控制器)与各种外围设备以串行方式进行通信、数据交换。外围设备包括FLASHRAM、A/ D 转换器、网络控制器、MCU 等。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现

51串口通信协议(新型篇)

51串口通信协议(新型篇) C51编程:这是网友牛毅编的一个C51串口通讯程序! //PC读MCU指令结构:(中断方式,ASCII码表示) //帧:帧头标志|帧类型|器件地址|启始地址|长度n|效验和|帧尾标志 //值: 'n' 'y'| 'r' | 0x01 | x | x | x |0x13 0x10 //字节数: 2 | 1 | 1 | 1 | 1 | 1 | 2 //求和: ///////////////////////////////////////////////////////////////////// //公司名称:*** //模块名:protocol.c //创建者:牛毅 //修改者: //功能描述:中断方式:本程序为mcu的串口通讯提供(贞结构)函数接口,包括具体协议部分 //其他说明:只提供对A T89c51具体硬件的可靠访问接口 //版本:1.0 //信息:QQ 75011221 ///////////////////////////////////////////////////////////////////// #include #include //预定义 //帧 #define F_ST1 0x6e //帧头标志n #define F_ST2 0x79 //帧头标志y #define F_R 0x72 //帧类型读r #define F_W 0x77 //帧类型写w #define F_D 0x64 //帧类型数据帧d #define F_B 0x62 //帧类型写回应帧b #define F_C 0x63 //帧类型重发命令帧c #define F_Q 0x71 //帧类型放弃帧q #define F_ADDR 0x31 //器件地址0-9 #define F_END 0x7a //帧尾标志z #define F_SPACE 0x30 //空标志0 #define F_ERR1 0x31 //错误标志1,flagerr 1 #define F_ERR2 0x32 //错误标志2 2 //常数 #define S_MAXBUF 16 //接收/发送数据的最大缓存量 #define FIELD_MAXBUF 48 //最小场缓存,可以大于48字节,因为协议是以20字节为

详解SPI总线应用

详解SPI总线规范 SPI是英文Serial Peripheral Interface的缩写,中文意思是串行外围设备接口,SPI是Motorola公司推出的一种同步串行通讯方式,是一种三线同步总线,因其硬件功能很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。 SPI概述 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行. SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCX X系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASH RAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。

spi通信规范

竭诚为您提供优质文档/双击可除 spi通信规范 篇一:spi通讯协议介绍 spi通讯协议介绍 spiinterface spi接口介绍 spi是由美国摩托罗拉公司推出的一种同步串行传输规范,常作为单片机外设芯片串行扩展接口。spi有4个引脚:ss(从器件选择线)、sdo(串行数据输出线)、sdi(串行数据 输入线)和sck(同步串行时钟线)。spi可以用全双工通信方式同时发送和接收8(16)位数据,过程如下:主机启动发送 过程,送出时钟脉冲信号,主移位寄存器的数据通过sdo移入到从移位寄存器,同时从移位寄存器中的数据通过sdi移人到主移位寄存器中。8(16)个时钟脉冲过后,时钟停顿, 主移位寄存器中的8(16)位数据全部移人到从移位寄存器中,随即又被自动装入从接收缓冲器中,从机接收缓冲器满标志位(bF)和中断标志位(sspiF)置“1”。同理,从移位寄存器 中的8位数据全部移入到主寄存器中,随即又被自动装入到主接收缓冲器中.主接收缓冲器满标志位(bF)和中断标志位

(sspiF)置“1”。主cpu检测到主接收缓冲器的满标志位或者中断标志位置1后,就可以读取接收缓冲器中的数据。同样,从cpu检测到从接收缓冲器满标志位或中断标志位置1后,就可以读取接收缓冲器中的数据,这样就完成了一次相互通信过程。这里设置dspic30F6014为主控制器,isd4002为从器件,通过spi口完成通信控制的过程。 spi总线协议 spi是一个环形总线结构,由ss(cs)、sck、sdi、sdo 构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。 假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。那么第一个上升沿来的时候数据将会是sdo=1;寄存器=0101010x。下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。 例子: 假设主机和从机初始化就绪:并且主机的sbuff=0xaa,从机的sbuff=0x55,下面将分步对spi的8个时钟周期的数据情况演示一遍:假设上升沿发送数据 第1页 程时钟;发送结束中断标志;写冲突保护;总线竞争保护

系统串口通讯协议

ZHET 系统串口通讯协议 通 讯 技 术 手 册 型号:SYRDS1-485 (SYRDSSS1) SYRDL1-485 (SYRLSSS1) 玺瑞国际企业有限公司 SYRIS International Corp.

通讯技术手册 通讯协议(Protocol) 卡片阅读机模块(Reader Module)的通讯协议(Protocol)皆出自于SYRIS 的一种标准通讯协议,这种协议格式如下表: 1.SOH 和 END 都是一个字节的控制字符: SOH 控制器端定义为 <0x09> 模块端定义为 <0x0A> END 控制器及模块端均固定为 <0x0D> 其中 <0x> 为十六进制表示法. 2.TYPE 为模块型式编号,固定为一个字节,本型式编号固定为“A”. 3.ID为模块端的识别代码,这一字节的 ASCII 字符必须是在 1 <0x31> 到 8 <0x38> 的范围内,假如控制器端传送之ID值与模块地址编号相同时, 则该模块将会接收控制器端所传送的数据,而模块响应时,也会传回相同的地址编号.

4.FC是通讯功能码(Function Code)和资料(DATA)有相关性,固定为一个 字节,这些资料请参考通讯协议表及相关说明. 5.错误讯息判断代码(Error Code)为两个字节,第一个字节为固定为 <0x0E> ,第二个字节为错误代码,请参考错误讯息代码表. 6.8 BITS BCC是所有字符的检查字段,为二个字节,有关 8 BITS BCC 的 信息和范例程序,请参考附录A. 7.RS485传输协议请设定为”E,8,1”,速率为”19200”. 错误讯息代码表(Error Code Table) ※ Error Code #1固定为 <0x0E>.

spi通信原理

SPI:高速同步串行口。3~4线接口,收发独立、可同步进行 SPI的通信原理: 主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。 在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。 最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。 SPI协议举例 SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。 假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。 那么第一个上升沿来的时候数据将会是sdo=1;寄存器中的10101010左移一位,后面补入送来的一位未知数x,成了0101010x。下降沿到来的时候,sdi上的电平将锁存到寄存器中去,那么这时寄存器=0101010sdi,这样在8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。

SPI的通信速率到底可以达到多少

S P I的通信速率到底可 以达到多少 Document number:PBGCG-0857-BTDO-0089-PTT1998

楼主提问:SPI的通信速率到底可以达到多少??? 按照手册上的说明,应该能到fosc/4,然而实际上由于SPI通信底层没有任何握手,不像I2C总线那样带ACK,所以SPI速率实际上根本不能达到fosc/4,除非发信端与收信端完全同步,然而事实上接收端往往要对接收到的数据进行一些判断和处理,所以在接收端往往会丢数,解决办法就是在发信端发完一个字节后人为加上延时等待接收端处理,但是如果这样的话,高速还有什么意义呢? 我做了一个试验,即使关掉所有其它中断,只作SPI通信处理,在fosc/4的通信速率下,接收端只能接收10个字节以内的数据,10个字节以上就会丢数,而在fosc/8的通信速率下,如果关闭所有其它中断,收发256个字节是没什么问题的,但是如果应用程序有1ms的时钟中断事件的话,spi通信成功率很低。 在前面很多帖子里,看到不少人说spi只是硬件底层,通信的可靠性要靠通信协议,诚然如此,但是我以为通信协议只是最后一道保障,如果底层不可靠,通信协议再完善也是惘然。 轮询和中断方式有本质区别吗?轮询就能保证不被其它中断干扰吗?主机自己掌握SPI节奏,它只知道自己发送出去了,并不知道从机是否处理完,如果从机还在处理上一个字节,这时候发下个字节显然会丢数据啊 解答者1回答: 是同步!不是异步! 也就是说MASTER提供时钟,所以完全由MASTER决定速率(当然大家都能达到的)

再有就是这个速率仅仅指一个BYTE的通讯速率,不是整个帧速率(2个BYTE以上)从机查询和中断无关,说白了就是移位寄存器! 楼主再问: 关键就在于这个速率要大家都能达到啊,如果都能达到就不用讲了,实测下来就是slave端达不到这个速率啊。如果这个速率是一个BYTE的指标那就没啥说的了,我认了,只能在字节之间加延时了。 解答者2: 我试过用fosc/2的时钟速率进行两机通讯(系统时钟16M),连续传了好多字节都没有问题。主机用查询方式发送;从机用中断接收,接收到的数据用液晶显示出来。 解答者1: 多字节是不可能达到fosc/2的!除非从机速率更快,有足够的时间去处理或保存(读取数据),要不然是吹牛的!影响速率达不到fosc/2就是从机提取数据!与系统时钟多少那无关!再有,?从机响应中断都要4个机器周期,更别说要存储,中断出来也要4个机器周期。 对于单字节来说是可以达到fosc/2,因为AVR可以使用倍率,本来是fosc/4的! 所以,数据手册里讲的可以达到fosc/4那是指单字节的速率! 楼主: 所以说手册给出来的指标很带有欺骗性,为了可靠起见(相信很多人的程序中都有个时钟在运行),建议放在fosc/16。

SPI通信

SPI通信程序 //這是主机C8051F005有硬件SPI的AT45DB041B的讀寫驅動 // SPI Configuration //SPI0CN = 0x02; // SPI Control Register //MSTEN = 1; // SPI 以主方式工作 //SPI0CFG = 0xC7; // SPI Configuration Register 第二邊沿采樣,SCK空閑高 //SPI0CKR = 0x00; // SPI Clock Rate Register SPIclk=24.5M/2 //SPIEN = 1; // SPI0CN |= 0x01; sbit FLASH_CS = P3^6; union long_union { //長整形聯合 unsigned long dat; unsigned int word[2]; unsigned char byte[4]; }opcode; //緩沖區1單字節寫cmd=0x84

void buff1_wr(unsigned int bfaddr,unsigned char dat) { unsigned char i; opcode.byte[0]=0x84; opcode.word[1]=bfaddr; FLASH_CS=0; SPI0CN&=0x03; for(i=0;i<4;i++) { SPI0DAT=opcode.byte[i]; while(!SPIF); SPIF=0;} //連續發送4個opcode SPI0DAT=dat; while(!SPIF); SPIF=0; //發送第5個字節(數据) FLASH_CS=1; } //緩沖區1單字節讀cmd=0xd4 unsigned char buff1_rd(unsigned int bfaddr)

SPI数据格式

497 Jz4755 Multimedia Application Processor Programming Manual, Revision 1.0 Copyright? 2005-2007 Ingenic Semiconductor Co., Ltd. All rights reserved. 23.5 Data Formats Four signals are used to transfer data between the processor and external peripheral. The SSI supports three formats: Motorola SPI, Texas Instruments SSP , and National Microwire. Although they have the same basic structure the three formats have significant differences, as described below. SSI_CE_/SSI_CE2_ varies for each protocol as follows: ? For SPI and Microwire formats, SSI_CE_/SSI_CE2_ functions as a chip select to enable the external device (target of the transfer), and is held active-low during the data transfer. ? For SSP format, this signal is pulsed high for one serial bit-clock period at the start of each frame. SSI_CLK varies for each protocol as follows: For Microwire, both transmit and receive data sources switch data on the falling edge of SSI_CLK, and sample incoming data on the rising edge. For SSP , transmit and receive data sources switch data on the rising edge of SSI_CLK, and sample incoming data on the falling edge. For SPI, the user has the choice of which edge of SSI_CLK to use for switching outgoing data, and for sampling incoming data. In addition, the user can move the phase of SSI_CLK, shifting its active state one-half period earlier or later at the start and end of a frame. While SSP and SPI are full-duplex protocols, Microwire uses a half-duplex master-slave messaging protocol. At the start of a frame, a 1 or 2-byte control message is transmitted from the controller to the peripheral. The peripheral does not send any data. The peripheral interprets the message and, if it is a READ request, responds with requested data, one clock after the last bit of the requesting message. The serial clock (SSI_CLK) only toggles during an active frame. At other times it is held in an inactive or idle state, as defined by its specified protocol. 23.5.1 Motorola’s SPI Format Details 23.5.1.1 General Single Transfer Formats The figures below show the timing of general single transfer format.

串口通讯—通信协议

串口通讯—通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。 目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1.串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。 2、串行通信接口电路的组成

SPI通信协议(SPI总线)学习

SPI通信协议(SPI总线)学习 各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟! SPI通信协议(SPI总线)学习1、什么是SPI?SPI是串行外设接口(Serial Peripheral Interface)的缩写。是Motorola 公司推出的一种同步串行接口技术,是一种高速的,全双工,同步的通信总线。2、SPI优点支持全双工通信通信简单数据传输速率块3、缺点没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据可靠性上有一定的缺陷。4、特点1):高速、同步、全双工、非差分、总线式2):主从机通信模式5、协议通信时序详解1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。(1)SDO/MOSI –主设备数据输出,从设备数据输入;(2)SDI/MISO –主设备数据输入,从设备数据输出;(3)SCLK –时钟信号,由主设备产生;(4)CS/SS –从设备使能信号,由主设备控制。当有多个从设备的时候,因为每个从设备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需要将从设备对应的片选引脚电平拉低或者是拉高。2):需要说明的是,我们SPI通信有4种不同的模式,不

同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下:Mode0:CPOL=0,CPHA=0Mode1:CPOL=0,CPHA=1Mode2:CPOL=1,CPHA=0Mode3:CPOL=1,CPHA=1时钟极性CPOL 是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA是用来配置数据采样是在第几个边沿:CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK处于高电平时CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK处于低电平时CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿例如:CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。CPOL=0,CPHA=1:此时空闲态时,SCLK 处于低电平,数据发送是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在下降沿,数据发送是在上升沿。CPOL=1,CPHA=0:此时空闲态时,SCLK处于高电平,数据采集是在第1个边沿,也就是SCLK由高电平到低电平的跳变,所以数据采集是在下降沿,数据发送是在上升沿。CPOL=1,CPHA=1:此时空闲态时,SCLK处于高电平,数据发送是在第

SPI通信

二、通信的SPI 概念 2.1、SPI:高速同步串行口 SPI:高速同步串行口。是一种标准的四线同步双向串行总线。 SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,比如AT91RM9200. SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。 SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(用于单向传输时,也就是半双工方式)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。 (1)SDO –主设备数据输出,从设备数据输入 (2)SDI –主设备数据输入,从设备数据输出 (3)SCLK –时钟信号,由主设备产生 (4)CS –从设备使能信号,由主设备控制 其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。 接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK 提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。 要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从

串口通信协议

串口通信协议 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。

的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。 什么是RS-232 RS-232(ANSI/EIA-232标准)是IBM-PC及其兼容机上的串行连接标准。可用于许多用途,比如连接鼠标、打印机或者Modem,同时也可以接工业仪器仪表。用于驱动和连线的改进,实际应用中RS-232的传输长度或者速度常常超过标准的值。RS-232只限于PC串口和设备间点对点的通信。RS-232串口通信最远距离是50英尺。 DB-9针连接头 9针串口连接口顺序图 从计算机连出的线的截面。 RS-232针脚的功能: 数据: TXD(pin 3):串口数据输出(Transmit Data) RXD(pin 2):串口数据输入(Receive Data) 握手: RTS(pin 7):发送数据请求(Request to Send) CTS(pin 8):清除发送(Clear to Send) DSR(pin 6):数据发送就绪(Data Send Ready) DCD(pin 1):数据载波检测(Data Carrier Detect) DTR(pin 4):数据终端就绪(Data Terminal Ready) 地线: GND(pin 5):地线 其他 RI(pin 9):铃声指示 什么是RS-422 RS-422(EIA RS-422-AStandard)是Apple的Macintosh计算机的串口连接标准。RS-422使用差分信号,RS-232使用非平衡参考地的信号。差分传输使用两根线

SPI串行通信协议

SPI串行通信协议 同步串行外设接口(S PI)是由摩托罗拉公司开发的全双工同步串行总线,该总线大量用在与EEPROM、ADC、FRAM和显示驱动器之类的慢速外设器件通信。 SPI(Serial Peripheral Interface)是一种串行串行同步通讯协议,由一个主设备和一个或多个从设备组成,主设备启动一个与从设备的同步通讯,从而完成数据的交换。SPI 接口由SDI(串行数据输入),SDO(串行数据输出),SCK(串行移位时钟),CS(从使能信号)四种信号构成,CS 决定了唯一的与主设备通信的从设备,如没有CS 信号,则只能存在一个从设备,主设备通过产生移位时钟来发起通讯。通讯时,数据由SDO 输出,SDI 输入,数据在时钟的上升或下降沿由SDO 输出,在紧接着的下降或上升沿由SDI 读入,这样经过8/16 次时钟的改变,完成8/16 位数据的传输。 总线协议 该总线通信基于主-从(所有的串行的总线均是这样,USB,IIC,SPI等)配置,而且下面提到的方向性的操作合指代全部从主设备的角度说得。它有以下4个信号: MOSI:主出/从入 MISO:主入/从出 SCK:串行时钟 SS:从属选择;芯片上“从属选择”(slave-select)的引脚数决定了可连到总线上的器件数量。 在SPI传输中,数据是同步进行发送和接收的。数据传输的时钟基于来自主处理器的时钟脉冲(好像也可以是IO上的电平的模拟时钟),摩托罗拉没有定义任何通用SPI的时钟规范。然而,最常用的时钟设置基于时钟极性(CPOL)和时钟相位(CPHA)两个参数,CPOL定义SPI串行时钟的活动状态,而CPHA定义相对于SO-数据位的时钟相位。CPOL和CPHA的设置决定了数据取样的时钟沿。 数据方向和通信速度 SPI传输串行数据时首先传输最高位。波特率可以高达5Mbps,具体速度大小取决于SPI硬件。例如,Xicor公司的SPI 串行器件传输速度能达到5MHz。 SPI总线接口及时序 SPI总线包括1根串行同步时钟信号线以及2根数据线。 SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设音时钟相位和极性应该一致。SPI接口时序如图3、图4所示。

串口通信协议程序

串口通信协议程序 主机程序: /* 主机主要处理 : 主—>从 1.给从机发送命令 2.给从机发送数据 3.命令从机向主机发送数据 从—>主由中断程序处理根据从机发送过来的请求类型 0.请求主机发送命令(包括主到从的1,2命令) 1.请求主机接收数据 2,3保留 */ #include #include #define uchar unsigned char #define uint unsigned int #define slav1_addr 0x01 #define slav2_addr 0x02 #define COMEND 0 #define REC_DATE 1 //主机向从机发送多数据命令高四位为1111,所以其他命令高四位不能为1111 #define cmd_X 0x12 #define cmd_rec_data 0x11 sbit signal=P3^2; uchar temp_addr,num,rec,style,re_addr; uchar buf[20]; uchar rec_data[10];

void delay(unsigned int i) { while(i--); } void init_uart(void) { TMOD=0x20; //定时器方式2--8位reload模式 TH1=0xfd; TL1=0xfd; PCON=0; //波特率不加倍 SCON=0xf0; //方式三 TB8=1; //发送地址时第九位为1 SM2=1; //接收到第九位为1时才能接收数据 TR1=1; //要在设置scon后开定时 ES=1; //开中断 EA=1; } //发送命令 void uart_send_cmd(uchar addr,uchar cmd)//uchar *date) { while(signal==0); //检查总线是否被占 signal=0; //占用总线 EA=0;//关中断 do {

SPI通信协议(SPI总线)学习

SPI通信协议(SPI总线)学习 1、什么是SPI? SPI是串行外设接口(Serial Peripheral Interface)的缩写。是Motorola 公司推出的一 种同步串行接口技术,是一种高速的,全双工,同步的通信总线。 2、SPI优点 支持全双工通信 通信简单 数据传输速率块 3、缺点 没有指定的流控制,没有应答机制确认是否接收到数据,所以跟IIC总线协议比较在数据可靠性上有一定的缺陷。 4、特点 1):高速、同步、全双工、非差分、总线式 2):主从机通信模式 5、协议通信时序详解 1):SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入)、SDO(数据输出)、SCLK(时钟)、CS(片选)。 (1)SDO/MOSI – 主设备数据输出,从设备数据输入; (2)SDI/MISO – 主设备数据输入,从设备数据输出; (3)SCLK – 时钟信号,由主设备产生; (4)CS/SS – 从设备使能信号,由主设备控制。当有多个从设备的时候,因为每个从设 备上都有一个片选引脚接入到主设备机中,当我们的主设备和某个从设备通信时将需 要将从设备对应的片选引脚电平拉低或者是拉高。 2):需要说明的是,我们SPI通信有4种不同的模式,不同的从设备可能在出厂是就是配置为某种模式,这是不能改变的;但我们的通信双方必须是工作在同一模式下,所以我们可以对我们的主设备的SPI模式进行配置,通过CPOL(时钟极性)和CPHA(时钟相位)来控制我们主设备的通信模式,具体如下: Mode0:CPOL=0,CPHA=0 Mode1:CPOL=0,CPHA=1 Mode2:CPOL=1,CPHA=0 Mode3:CPOL=1,CPHA=1 时钟极性CPOL是用来配置SCLK的电平出于哪种状态时是空闲态或者有效态,时钟相位CPHA 是用来配置数据采样是在第几个边沿: CPOL=0,表示当SCLK=0时处于空闲态,所以有效状态就是SCLK处于高电平时 CPOL=1,表示当SCLK=1时处于空闲态,所以有效状态就是SCLK处于低电平时 CPHA=0,表示数据采样是在第1个边沿,数据发送在第2个边沿 CPHA=1,表示数据采样是在第2个边沿,数据发送在第1个边沿 例如: CPOL=0,CPHA=0:此时空闲态时,SCLK处于低电平,数据采样是在第1个边沿,也就是SCLK由低电平到高电平的跳变,所以数据采样是在上升沿,数据发送是在下降沿。

相关文档