文档库 最新最全的文档下载
当前位置:文档库 › 氧化铝回转窑煅烧工艺解析,氧化铝回转窑支承装置受力分析,氧化铝回转窑筒体安装尺寸计算

氧化铝回转窑煅烧工艺解析,氧化铝回转窑支承装置受力分析,氧化铝回转窑筒体安装尺寸计算

氧化铝回转窑煅烧工艺解析,氧化铝回转窑支承装置受力分析,氧化铝回转窑筒体安装尺寸计算
氧化铝回转窑煅烧工艺解析,氧化铝回转窑支承装置受力分析,氧化铝回转窑筒体安装尺寸计算

氧化铝回转窑煅烧工艺解析,氧化铝回转窑支承装置受力分析,氧化铝回转窑筒体安装尺寸计算

一、氧化铝回转窑煅烧工艺解析

荥矿机械氧化铝生料从料浆槽由高压泵抽出,经喷枪雾化喷入氧化铝回转窑内,在烘干带被烟气烘干后,变成含水5-10%的生料。生料借回转窑的斜度与旋转,从窑尾向窑头移动。移动过程中不断受到烟气加热,物料温度逐渐升高,在烧成带达到最高,并在此发生烧结反应,变成熟料。熟料经冷却带、下料口进入单筒冷却机。

熟料在冷却机中,一主面受到吸入空气冷却;另一方面受到冷却机内的空气经预热,进入回转窑作为煤粉燃烧的二次空气。

贮存在煤粉仓中的煤粉经“双管”螺旋管给煤机和螺旋泵进入喷煤管,由煤风机送一次风把煤粉吹入回转窑内烧成带燃烧。烟气在窑尾排烟机的抽力作用下从回转窑窑头经过整个窑体到过窑尾,再由窑尾罩进排烟收尘系统,在此过程中,窑内气将本身的热传给物料。

回转窑采用喷入法喂料,窑内烟气带走大量灰尘。回转窑若强化生产,窑灰循环量由45%-60%提高到120%,故窑内烟气必须经过多级收尘。各级收尘器的窑灰经过一系列螺旋运输机,由反灰管返回窑内,大量的返回可使窑尾料浆不至于结泥浆圈、为了防止生料在烘干带结圈,设有刮料器。

二、氧化铝回转窑支承装置受力分析

荥矿机械氧化铝回转窑筒体的支座反力Rn,经过滚圈施加于支承装置上,下面用Q表示该力。作用于支承装置上的力有径向力和轴向力。下面进行氧化铝回转窑支承装置受力分析。

1.径向力

作用于每侧托轮上的径向力N'来自筒体载荷Q,滚圈自重Gt(估算时近倾取Gr=0.08Q)及托轮与轴的自重Gt(近似取Gt=O.05N)。

2.轴向力

窑的倾斜安装使它可以简化为物体在斜面上的运动。窑体相当于物体,托轮相当于斜面,托轮不平行安装产生的上窜力及液压挡轮的向上推力相当于外力PL,普通挡轮受力、液压挡轮和推力挡轮承受下滑力的情形,则相当于斜面上设置有附加的阻挡物。而与斜面的区别仅在于:由于滚圈以两个夹角2α2的托轮支承,使两侧正压力之和2N=(Q+Gr)/cosα2,为斜面情况的1/cosα2倍。

下面分别各种情况进行分析。

(l)窑运转过程中

由关于窑体窜动的分析可知,窑转动后,在下滑力G0sinβ作用下向下滑动。正确调整托轮应使获得的上窜力能略大于窑转动时的摩擦阻力或下滑力,使窑体有可能实现上窜。虽然窑转动时的当量摩擦系数是很小的,但由于计入不平行安装的调整量难于正确掌握等因素,计算时,取摩擦系数f= 0.05~0.10。

(2)停窑阶段

由于窑体冷却收缩使滚圈、托轮相对滑动,滑动摩擦系数f=O.l5~0.20,每侧托轮轴向力为f1N。

综合上述分析,在设计计算时,考虑到最不利情况的轴向力计算如下:

1)每侧托轮轴向力F’an=fN=(0.0312-0.624)Q(用液压挡轮时取F’an==Q/2*sinβ,但从统一托轮的设计考虑,仍按用普通挡轮时的较大值取F’An=fN)。

2)每挡支承装置上的总轴向力Fan,此力通常用于向土建专业提供基础设计载荷,应按停窑冷缩考虑,f1=0.15~0.20,Fan=2f1N =(0.19~0.25)Q或(0.175~0.23)(Q+Gr)。

对于带挡轮支承装置,在窑冷缩时挡轮不受力,总轴向力FAn同上。运转中,挡轮与托轮受轴向力之和一般小于冷缩时的Fan。必要时可对两者进行比较,取其较大值。

3)普通挡轮推力Fad,取G0(f/cosαx-sinβ)与Go sinβ之较大值。

4)推力挡轮推力Fay=Go sinβ。

5)液压挡轮推力Fay= (1.2~1.5)Go sinβ。

在计算挡轮部件的疲劳寿命时,应考虑整个运转寿命期内载荷的变化情况,不能一概按上述考虑最不利情况的值计算,而需进行具体分析。

3.调整托轮轴承座的力P

P= Fh/2+F2*Fv/2=0.24Q

式中 f2-钢对钢干摩擦系数,考虑到接触面往往生锈,此处取f2=0.3。

4.轴承庶不倾翻条件

由FH1.09H, 建议b2>2H, b3>0.65H

三、氧化铝回转窑筒体安装尺寸计算

荥矿机械氧化铝回转窑筒体制造、安装的图面技术要符合一定的要求,以下介绍筒体的热膨胀与总图基础水平的计算。

1.筒体热膨胀

筒体很长,工作时温度升高100~200℃以上,其轴向膨胀量很大。10 0米长的氧化铝回转窑窑的膨胀量达220毫米。筒体的热胀将影响到滚圈与托轮的相对位置及窑头、窑尾密封装置。确定支承装置的安装位置时必须计及热胀量,各支承装置的跨距应比相应跨的筒体跨距大ΔLn。

上图筒体热膨胀(注:以邻近齿圈的支承为基准)

式中α--热膨胀系数,对于钢α=0.000012米/米℃;

Ln--n跨的跨距(米);

t0--安装时的环境温度(℃);

tn--n跨筒体表面平均温度(℃)。

当缺乏氧化铝回转窑筒体表面温度测定资料时,对于氧化铝厂的冷却机,可取t1n- to =100~120℃。

2.总图基础水平距离及标高尺寸的计算

这些尺寸是土建施工及设备安装的依据。在计算时,必须考虑到筒体冷态安装与热态工作时长度的差别以及窑的倾斜安装。计算过程完全是几何关系。

例:φ4.5×100米氧化铝回转窑的总图尺寸计算标高基准点取在齿圈邻近挡的底座的中心。

水平距离,

0-1: (4500-125)×0.99939十4183×0.035

=4372.3+146.4=4518.7毫米

1-2:(22500+65)x 0.99939=22551.2毫米

2-3:(29500十60)x 0.99939 -29542.0毫米

3-4: (30000+60)x 0.99939=30041.7毫米

4-5: (13500-60)x 0.99939-4183 x 0.035

=13431.8 -146.4 =13285.4毫米

验算:Σ水平距离=4518.7+22551.2+29542.0+30041.7+13285.4=99939.0毫米。

传动部分的计算从略。

氧化铝生产流程

氧化铝生产流程控制概述(1) 铝是世界上第二大常用金属,其产量和消费量仅次于钢铁,是国民经济中具有支撑作用和战略地位的金属原材料。氧化铝是铝冶炼的主要原料,每生产1吨原铝需要消耗近2吨氧化铝。此外,各种特殊性能的氧化铝也广泛应用于电子、石油、化工、耐火材料、陶瓷、造纸、制药等行业,因此,氧化铝生产在我国经济建设中占有十分重要的地位。 我国具有较丰富的铝土矿资源(保有储量约26亿吨),居世界第四位,具备发展铝工业的资源条件。我国的氧化铝是在建国后伴随着电解铝的生产和发展建立起来的,八十年代以来得到了较快发展。近年来,氧化铝价格的暴涨,激励投资者和氧化铝厂持续加速生产和扩张。国内目前已有中铝公司所属的山东、山西、河南、中州、贵州、平果、重庆与遵义(拟建)八大铝厂,广西华银(160万吨)、阳煤集团(120万吨)、鲁能晋北、山东信发(100万吨)、三门峡开曼、东方希望(80万吨)铝业等数十个大小氧化铝厂建成或在建。据专家估计,2006年我国的氧化铝产量将年增29-33%,达到1200-1300万吨。 氧化铝生产工艺类型 氧化铝是用不同的生产方法是从铝土矿中提取出来的白色粉末。氧化铝是典型的大型复杂流程性工业,全世界90%以上的氧化铝直接采用的是经济的拜耳法生产流程,而我国氧化铝企业因矿质的不同,而分别选用不同的生产工艺。 烧结法:适于矿石品位含硅高、难溶的、中等资源品位的一水硬铝石,流程长、工艺复杂。我国绝大部分老的氧化铝企业多采用这一方法进行氧化铝冶炼。山东铝厂、中州铝厂Ⅰ期、山西铝厂Ⅰ期

烧结法氧化铝生产过程主要包括熟料烧成、熟料溶出、精液制备、分解和蒸发等主要的生产工序。 来自原料磨的生料浆通过回转窑烧制成易于溶出的铝酸钠熟料,再经碳分母液和一次洗液浸泡后进行溶出;此后通过赤泥分离洗涤、粗液脱硅、硅渣分离等工序生成的精液分别送至碳分和种分工序进行分解反应,析出氢氧化铝;种分母液经蒸发形成的种蒸母液送拜尔法碱液调配后给原矿浆配料;碳蒸母液则返回至原料磨配料。析出的氢氧化铝送焙烧工序进行焙烧。与拜耳法相比,烧结法主要在熟料烧成和碳分分解的控制部分是完全不同的两个过程 拜尔法:拜尔法是Karl Joseph Bayer于1887年发明,他发现加入精种的铝酸钠溶液中可以分解出AL(OH)3,分解母液蒸发后可以在高温高压下溶出铝土矿中的AL(OH)3。该发现后来在实验中得到证实并应用于工业实践,是国外氧化铝最广泛采用的生产工艺。适于生产易溶的三水铝石和一水软铝石,处理中等品位铝土矿碱耗高、矿耗大是常规拜耳法生产氧化铝的缺点。贵州铝厂Ⅰ期、平果铝厂 拜尔法氧化铝生产过程主要包括预脱硅、溶出过程,赤泥洗涤、过滤过程,种分分解过程和氢氧化铝过滤、焙烧等主要的生产工序。 选矿拜尔法:可将A/S为4以上的铝土矿通过浮选成A/S为11.2的矿浆,可提高单管溶出系统的溶出率,工艺管道和罐内不易结巴。中州铝厂Ⅱ期 串联法:处理中低晶位铝土矿的适宜方法。先以较简单的拜尔法处理矿石,最大限度地提取矿石中的氧化铝,然后再用烧结法回收拜尔法赤泥中的 Al2O3和 Na2O,可降低氧化铝生产的综合能耗,Al2O3的总回收率高,

氧化铝生产工艺流程

氧化铝生产工艺流程及在线设备描述 我厂氧化铝生产工艺流程采用拜耳法工艺。其用的矿石、石灰用汽车运入卸矿站,通过板式输送机,胶带输送机及卸料车进入矿仓和石灰仓。磨头仓底部出料设有电子皮带计量装置。按规定的配料比与经过计量的循环母液加入磨机。磨矿过程采用一段球磨与水力旋流器分级闭路的一段磨矿流程,磨制合格的原矿浆送往原矿浆槽,再用泵送至溶出工序的矿浆槽。 矿浆槽内矿浆送入溶出系统,管道化溶出采用Φ159Φ×8/2 ∣Φ480×10×1150000管道化溶出器,三套管四层间接加热连续溶出设备(Φ159管走料,Φ480管供汽),通过四段预热和三段加热,使物料出口温度达145℃,送入保温罐保温一小时以上,经过三级闪蒸和稀释,完成溶出过程。 稀释矿浆在Φ16M高效沉降槽内进行液固分离,底流进入洗涤沉降槽,进行5~6次赤泥反向洗涤,末次洗涤沉降槽底流经泵送往赤泥堆场进行堆存。 将合成絮凝剂制备成合格的溶液,按添加量加入赤泥分离沉降槽,将制备好的合成絮凝剂按添加量加入赤泥洗涤沉降槽,以强化赤泥沉降、分离和洗涤效果。 分离沉降槽溢流用泵送入粗液槽,再送226m2立式叶滤机进行控制过滤,过滤时加入助滤剂(石灰乳或苛化渣),滤饼送二次洗涤槽,精液送板式热交换器。 精液经板式热交换器与分解母液和冷却水进行热交换,冷却至设定温度后,再与种子过滤滤饼(晶种)混合,然后用晶种泵送至种分分解槽首槽(1#或2#槽),经连续种分分解后,从11#槽(或12#槽)顶用立式泵抽取分解浆液进行旋流分级。分级溢流进13#(或12#)分解槽,底流再用部分分解母液稀释后自压或用泵至产品过滤机,分解11#槽的分解浆液,从槽上部出料自流或下部用泵至120m2种子过滤机,滤饼用精液冲入晶种槽,滤液入锥形母液槽。 AH浆液经泵送入80 m2平盘过滤机,进行成品过滤、洗涤、氢氧化铝滤饼经皮带送至氢氧化铝储仓或直接送至焙烧炉前小仓。母液送种子过滤机的锥形母槽。氢氧化铝洗液(白泥洗液)送溶出稀释槽。锥形母液槽的溢流进母液槽,底流送立盘过滤机过滤,滤液进母液槽,滤饼混合后作种分种子。母液槽内母液部分送氢氧化铝旋流分级底流作稀释液,其余经板式热交换器与精液进行热交换提温送至蒸发原液槽。 蒸发原液除少部分不经蒸发直接送母液调配槽外,大部分送六效管式降膜蒸发器内进行浓缩,经三次闪蒸后的蒸发母液送调配槽。在流程中Na2CO3高于规定指标时,需排盐,此时,蒸发二级闪蒸出部分母液送强制循环蒸发器内进行结晶蒸发,并加入部分盐晶种,作为蒸发结晶的诱导结晶,然后在析盐沉降槽进行分离,底流用排盐过滤机进行过滤分离,滤饼用热水溶解后,送入苛化槽内,添加石灰乳进行苛化,苛化渣送赤泥洗涤系统。排盐过滤机滤液和盐分离沉降槽溢流进强碱液槽,其一部分送入蒸发出料第三次闪蒸槽与蒸发母液混合,还有一部分送各化学清洗用点和种分槽化学清洗槽。新蒸汽含碱冷凝水和二次蒸汽冷凝水用作氢氧化铝洗水或送沉降热水站。生产补碱用NaOH浓度大于30%的液体苛性碱,循环母液储槽区域设有补碱设施。 焙烧炉前小仓料位与仓下皮带计量给料机连锁,控制焙烧炉进料量。含水6~8%的氢氧化铝经皮带、螺旋喂料机送入文丘里干燥器内,干燥后的氢氧化铝被汽流带入一级旋风预热器中,一级旋风出来的氢氧化铝进入第二级旋风预热器,并与从热分离器来的温度约1000℃的烟气混合后进行热交换,氢氧化铝的温度达320~360℃,结晶水基本脱除,预焙烧过的氧化铝在第二级旋风预热器与烟气分离卸入焙烧炉的锥体内,焙烧炉所用的燃烧空气经预热至600~800℃从焙烧炉底部进入,燃料、预焙烧的氧化铝及热空气在炉底充分混合并燃烧,氧化铝的焙烧在炉内约1.4秒钟时间完成。

金属镁冶炼工艺比较

金属镁冶炼工艺比较 李晓波 (山西阳煤丰喜股份责任有限公司闻喜复肥分公司闻喜礼元镇PC043802) 摘要:阐述了皮江法炼镁的存在的问题,提出了解决措施,指明了冶炼金属镁的最佳工艺是渣炼镁。 关键词:电解镁皮江法炼镁回转窑无渣炼镁硅铁Magnesium metal smelting process is compared Li Xiao-bo (Shanxi YangMei FengXi wenxi compound branch shares responsibility co., LTD Wenxi li yuan town pc043802) Abstract: expounds the existing problems of smelting magnesium was numerically simulated, and the solution measures are put forward, pointed out the best technology of smelting magnesium metal magnesium smelting slag. Key words: Electrolytic magnesium Pidgeon magnesium smelting Rotary kiln No slag smelting magnesiumFerrosilicon 2000年到今天, 中国金属镁企业均向万吨级转向,其总生产能力已超过80万吨/年,而全世界金属镁的使用量在60万吨/年以上,也就是说供大于求已是不争之实事,如何解决此矛盾,使企业走出困境,重点分析硅热法(皮江法)炼镁及碳热法炼镁。

中国氧化铝产业发展分析

中国氧化铝产业发展分析 氧化铝工业概况 我国具有较丰富的铝土矿资源,迄今已探明保守储量23亿吨,位居世界第4,具备发展氧化铝工业的资源条件。据2004年以来的不完全统计,国内已公布的氧化铝投资项目达26个,测算总规模达1604.1万t。即使不考虑利用国外铝土矿资源和到海外投资办厂的项目,总规模也达到2814.1万t。2006年底,中铝公司氧化铝生产952万t,除目前已公布在建的氧化铝规模外,全国还有拟建氧化铝总规模1992万t接近国外所有拟建(扩建)氧化铝项目的总和。 氧化铝工业的迅速发展不同于以往的低水平重复建设,而是上规模、高水平,优化了结构,极大地提升了我国氧化铝工业整体水平和竞争力。但是,如果这种投资热继续无序膨胀,势必造成产品相对过剩。 投资氧化铝工业的风险性与电解铝等其他行业在以下方面又有所不同: 1)氧化铝工艺技术相对复杂。通常情况下,项目从设计,开工到形成产能需要2~3年时间左右的时间,投入高,风险较高。 2)现货市场的氧化铝价格跌宕起伏。而供求双方的信息不对称又进一步加剧了氧化铝价格起伏不定的局势,进而将影响氧化铝项目的投资收益。 3)在项目试车、投产和日后生产组织管理等方面,需要一大批精通氧化铝工艺技术和具有实践经验的老专家和技术工人。 4)对资源和能源的依赖度日趋增强。随着国内外资源竞争日趋激烈,适合氧化铝工业发展的优质资源日渐稀缺,投资氧化铝工业必须考虑项目的经济服务年限。 针对目前氧化铝工业发展迅速,避免电解铝行业所出现的无序膨胀问题,有以下5点建议: 1)根据资源保障程度控制氧化铝建设总规模 氧化铝工业是资源、资金、技术密集型原材料产业,因生产过程中要产生大量的尾矿和赤泥(至今未有较好的处理办法添加到水泥原料中,产品也只能用于工业),对环境的影响非常大,铝土矿作为不可再生资源, 其保障程度直接制约着一个地区氧化铝工业的总量与生存周期。因此,各级政府和有关部门,必须准确把握氧化铝工业的发展形势,资源与环境制约状况和基本规律,按照总量控制的要求,严格控制新建氧化铝项目,坚决制止盲目发展和低水平重复建设,努力实现氧化铝工业发展与资源充分利用,优化生态环境相统一。 2)优化氧化铝工业布局 矿产资源主管部门要对铝土矿存量资源进行全面核查,推进铝土矿资源勘查工作,在资源储量有较大幅度提高的情况下,发展计划部门视情况增加布点或同意扩大布点内企业的产能规模。对未经同意在规划布点外拟建氧化铝项目,省环境保护部门不予安排环保评价,擅自建设的必须停止。未经同意不在规划布局内建设的氧化铝项目以及自备电厂,将实行惩罚性电价。 3)严格氧化铝发展的技术政策和经济规模 新建氧化铝项目必须采用国内研究开发的选矿—拜耳法工艺并同步建设选矿厂。严禁采用烧结法、混联法等落后工艺的氧化铝项目上马。新建氧化铝项目的单线规模应达到30万吨以上,单线达不到30万吨合理经济规模的氧化铝项目一律不准建设。已建工艺落后,造成污染的小氧化铝厂要限期转产或关闭。

氧化铝工艺流程简介

氧化铝工艺流程简介 一、生产工艺简介 公司采用国际先进的拜耳法生产工艺,主要设备从德国、法国、荷兰、澳大利亚等国进口;生产指挥系统采用美国Rockwell公司的DCS控制系统。公司还建有庞大的生产ERP系统及信息管理系统,集生产调度、控制、信息采集、管理于一体。 二、生产工艺流程图

三、工艺流程简述 1、原料工序原料矿石堆场在建厂初期,为方便装卸矿石及避免大量杂质在倒运过程进入生产流程,堆场使用原矿石将地基提升50cm压实后用于储存铝土矿。原矿石由汽车运进厂的铝土矿经地磅站称重后和原矿堆场的铝土矿经破碎后一起倒入卸矿站,经胶带输送机送往均化堆场堆存,为避免斗轮取料机将杂质当做矿石取走,取料机斗轮离地面30cm,其间用矿石进行填充,再由胶带输送机将铝土矿送往原料磨的磨头仓。外购石灰由汽车运进厂,卸入石灰卸矿站,经胶带输送机送往石灰仓,一部分石灰通过胶带输送机送往原料磨磨头仓,另一部分石灰送往石灰消化工段。在石灰消化工段,石灰与热水一同加入化灰机中,制备的石灰乳流进石灰乳槽,石灰乳用泵送往蒸发车间苛化工序和沉降车间控制过滤工序。在原料磨工段,铝土矿、石灰及循环母液按比例加入原料磨中磨制原矿浆,原矿浆用水力漩流器进行分级,分级机溢流为合格的原矿浆,送入原矿浆槽,分级机底流返回原料磨。为应对磨机突发故障及流程稳定,矿浆槽必须保持一定液位。 2、溶出工序来自原料磨已研磨好的原矿浆首先进入溶出预脱硅槽,矿浆通过预脱硅槽的压差进行自溢流至末槽,同时为消除矿浆中的SiO2对溶出过程的影响,根据车间操作规程,矿浆在预脱硅槽首槽加热至100℃,且原矿浆在脱硅槽中停留8h以上,以达到预脱硅的目

北京机电院回转窑设计部分文献总结

北京机电院高技术股份有限公司回转窑焚烧危废文献总结

目录 第一部分回转窑处理危险废物的工程设计 (1) 一、回转窑运转形式的确定 (1) 二、回转窑处理危险废物的设计 (1) 三、回转窑处理危险废物工程中的问题 (4) 第二部分回转窑焚烧系统的控制参数及调节方法 (6) 一、回转窑焚烧系统流程图 (6) 二、焚烧过程的主要控制参数 (7) 三、焚烧系统的实际控制参数 (7) 四、回转窑焚烧系统的调节方法 (8) 第三部分二噁英的控制 (10) 一、危险废物处置中二恶英产生机理 (10) 二、危险废物处置中二恶英的控制 (11) 第四部分回转窑耐火砖的砌筑 (13) 一、回转窑砌筑 (13) 二、烘炉 (15)

第一部分回转窑处理危险废物的工程设计 一、回转窑运转形式的确定 1.1回转窑操作方式的选择 按气、固体在回转窑内流动方向的不同,回转窑可分为顺流式回转窑(co-currentflowkiln)和逆流式回转窑(counter-currentflowkiln)两种。 1.2回转窑燃烧模式的选择 依据回转窑内燃烧时灰渣状态和炉内温度的不同,回转窑可分为熔渣式回转窑和非熔渣式回转窑。其中,非熔渣式又称“灰渣式”。 二、回转窑处理危险废物的设计 2.1回转窑尺寸和运转方式的设计 用于危险废物处理的回转窑,其典型的长径比值为3.4~4.2,而回转窑的尺寸须根据容积热负荷参数来确定。回转窑容积热负荷参数关系到炉内燃烧状况的好坏,文献中给出回转窑容积热负荷的范围为(4.2~104.5)×104kJ/(m3·h)。 回转窑尺寸采用的方法是:首先,根据危险废物的成分计算出废物的热值,再根据废物的处理量确定出每小时废物在回转窑内燃烧所产生的热量,然后根据选定的容积热负荷确定出回转窑的容积,最后结合回转窑的长径比,确定回转窑的尺寸。 对于回转窑的运转方式,在工程实践中,回转窑的倾斜角度一般在1°~3°,转速为0.2~5r/min,回转窑的转动方向结合进料方式和助燃方式确定。处理难焚烧的危险废物可采用大长径比与低转速的回转窑;而热值较高、容易燃烧的危险废物,燃烧需要的时间稍短一些,可采用较大倾斜角与较高转速的回转窑来处理。 2.2回转窑耐火材料设计 根据《危险废物集中焚烧处置工程建设技术规范》(HJ/T176-2005)的要求,危险废物

回转窑设计方案手册

回转窑的设计 一、窑型和长径比 1.窑型 所谓窑型是指筒体各段直径的变化。按筒体形状有以下几种窑型: (1)直筒型:制造安装方便,物料在窑内移动速度较均匀一致,操作控制较易掌握,同时窑 体砌造及维护较方便; (2)热端扩大型:加大单位时间内燃烧的燃料量及传热量,在原窑直径偏小的情况下,扩大 热端将相应提高产量,适用于烧成温度高的物料; (3)冷端扩大型:便于安装热交换器,增大干燥受热面,加速料浆水分蒸发,降低热耗及细 尘飞损,适用于处理蒸发量大、烘干困难的物料; (4)两端扩大型(哑铃型):中间的填充系数提高,使物料流动的机会减少,还可以节约部分 钢材;还有单独扩大烧成带或分解带的“大肚窑”,这种窑型易挂窑皮,在干燥带及烧成带 能力足够时,可以显著提高产量。但这种窑型操作不便。 总之,不论扩大哪一带,必须保持预烧能力和烧结能力趋于平衡。只有在生产窑上,经过生产实践和充分调查研究(包括必要的热工测定和计算),发现某一带确为热工上的薄弱环节,在这种特定条件下将该带扩大,才会得出较明显的效果。 目前国内外发展趋势仍以直筒型窑为主,而且尺寸向大型方面发展。其他有色金属工业用回转窑(还原、挥发、硫化精矿焙烧、氯化焙烧、离析、烧结转化等)多采用较短的直筒窑。 2.长径比 要得长径比有两种表示方法:一是筒体长度L与筒体公称直径D之比;另一是筒体长 度L与窑的平均有效直径D均之比。L/D便于计算,L/D均反映要的热工特点更加确切, 为了区别起见,称L/D均为有效长径比。窑的长径比是根据窑的用途、喂料方式及加热方 法来确定的。根据我国生产实践的不完全统计,各类窑的长径比示于表1中。长径比太大,窑尾废气温度低,蒸发预热能力降低,对干燥不利;长径比太小,则窑尾温度高,热效率低。同类窑的长径比与窑的规格有关,小窑取下限,大窑取上限。 表1各类窑的长径比 窑的名称公称长径比有效长径比 氧化铝熟料窑(喷入法)20~2522~27 氧化铝焙烧窑20~2321.5~24 碳素煅烧窑13.5~1917~24 干法和半干法水泥窑11~15—— 湿法水泥窑30~42—— 单筒冷却机8~12—— 铅锌挥发窑14~1716.7~18.3 铜离析窑——15~16 氯化焙烧窑——12~17.7 二、回转窑的生产率 回转窑生产是一个综合热工过程,其生产率受多方面因素影响。分析其内在规律性, 可以建立以下几个方面的数量 关系。

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

氧化铝生产工艺

氧化铝生产工艺 在氧化铝生产行业,氧化铝的生产方法大约分四类:碱法、酸法、酸碱联合法、和热法,但目前用于工业生产的基本全部属于碱法。 用碱法生产氧化铝,是用碱(NaOH或Na2CO3)来处理铝矿石,使矿石中的氧化铝转变为铝酸钠溶液。矿石中的铁、钛等杂质和绝大部分的硅则成为不溶解的化合物,将不溶解的残渣(由于含氧化铁而成红色,故称赤泥)与溶液分离,经洗涤后弃去或综合利用,已回收利用其中的有用组分。纯净的铝酸钠溶液分解析出氢氧化铝,经与母液分离、洗涤后焙烧,得到氧化铝产品。 用碱法生产氧化铝又可分为:①拜尔法②烧结法③联合法,因我国的铝土矿资源的特殊性,主要为一水硬铝石,因此在早期建厂的生产氧化铝的方法均采用烧结法、混联法,后期建厂和扩建工程多采用拜尔法较多,拜尔法具有工艺流程简单,投入成本少,产品质量好等特点。 具体情况如下: 中国铝业山东分公司:1954年建厂,采用烧结法,后经四次扩建,主要采用拜尔法,2006年的总产量已达128万吨 中国铝业河南分公司:1965年建厂投产,主要采用混联法,1999年完成4次扩建,年产达80万吨,2005年新建年产70万吨的拜尔法生产线,2006年的年生产量已达到232万吨。 中国铝业贵州分公司:1978年完成一期拜尔法生产线,年产15万吨,后经扩建,采用混联法,2006年已达到年产120万吨。 中国铝业山西分公司:1987年一期烧结法投产,后经扩建,1992年完成二期混联法,年产达70万吨,2005年投产的拜尔法80万吨项目,到2006年已经达到年产219万吨目标。 中国铝业中州分公司:1992年一期投产烧结法,后经两次扩建选矿拜尔法生产线,2006年年产量达172万吨。 中国铝业广西分公司:1995年拜尔法投产使用,2006年总产量达94万吨。 中国铝业集团还有重庆、遵义准备建造氧化铝厂。 除中国铝业公司外,现已建或拟建的氧化铝项目29个,山东荏平氧化铝、山东魏桥氧化铝氧化铝、山西鲁能晋北氧化铝、山东龙口东海氧化铝、山东信发(100万吨)、河南开曼铝、东方希望铝业(三门峡)有限公司、广西华银(160万吨)、阳煤集团(120万吨)等众多氧化铝企业。据专家估计,2006年我国的氧化铝产量将年增29-33%,达到1200-1300万吨。

回转窑系统热平衡计算资料

回转窑系统热平衡计算 1 热平衡计算基准、范围及原始数据 1.1 热平衡计算基准 物料基准:一般以1kg 熟料为基准; 温度基准:一般以0℃为基准; 1.2 热平衡范围 热平衡范围必须根据回转窑系统的设计或热工测定的目的、要求来确定。在回转窑系统设计时,其平衡范围,可以回转窑、回转窑加窑尾预热分解系统、或再加冷却机和煤磨作平衡范围。范围选得大,则进出口物料、气体温度较低,数据易测定或取得,但往往需要的数据较多,计算也烦琐。因此一般选回转窑加窑尾预热分解系统作为平衡范围。 1.3 原始数据 根据确定的计算基准和平衡范围,取得必要的原始数据,这是一项非常重要的工作。计算结果是否符合实际情况,主要取决于所选用的数据是否合理。对新设计窑或改造窑来说,主要是根据同类型窑的生产资料,结合工厂具体条件和我国实际情况、合理地确定各种参数;对于生产窑来说,主要通过热工测定取得实际生产中各种参数。若以窑加窑尾预热系统为平衡范围,一般要取得如下原始数据:生料用量、化学组成、水分、入窑温度;燃料成分、工业分析和入窑温度;一、二次空气的比例和温度;空气过剩系数、漏风系数;废气温度;飞灰量、灰温度及烧失量;收尘器收尘效率;窑体散热损失;熟料形成热等等。熟料形成热可根据熟料形成过程中的各项物理化学热效应求得,也可用经验公式计算或直接选定。 2 物料平衡与热量平衡 计算方法与步骤说明于下: 窑型:预分解窑 基准:1kg 熟料;0℃ 平衡范围:窑+预热器系统 根据确定的平衡范围,绘制物料平衡图和热量平衡图,如图1和图2所示。 图1 物料平衡图 图2 热量平衡图

2.1 物料平衡计算 2.1.1 收入项目 (1)燃料消耗量 m r (kg/kg 熟料) 设计新窑或技术改造时,m r 是未知量,通过热平衡方程求得,已生产的窑,通过热工测定得到。 (2)入预热器物料量 ① 干生料理论消耗量 s ar r gsL 100100L a A m m --= 式中,m gsL —干生料理论消耗量,kg/kg 熟料;A ar —燃料收到基灰分含量,%;a —燃料灰分掺入熟料中的量,%;L s —生料的烧失量,%。 ② 入窑回灰量和飞损量 ηfh yh m m = )1(fh Fh η-=m m 式中,m yh —入窑回灰量,kg/kg 熟料;m fh —出预热器飞灰量,kg/kg 熟料;m Fh —出收尘器飞灰损失量,kg/kg 熟料;η—收尘器、增湿塔综合收尘效率,%。 ③ 考虑飞损后干生料实际消耗量 s fh Fh gsL gs 100100L L m m m --?+= 式中,m gs —考虑飞损后干生料实际消耗量,kg/kg 熟料;L fh —飞灰烧失量,%。 ④ 考虑飞损后生料实际消耗量 s gs s 100100W m m -?= 式中,m s —考虑飞损后生料实际消耗量,kg/kg 熟料;W s —生料中水分含量,%。 ⑤ 入预热器物料量 yh s m m +=入预热器物料量(kg/kg 熟料) (3)入窑系统空气量 ① 燃料燃烧理论空气量 )O 0.033(S 0.267H 0.089C ar ar ar ar LK -++='V LK LK 293.1V m '='

氧化铝生产工艺流程图

氧化铝生产工艺流程图 流程仿真技术原理 根据工艺过程所涉及到的基础物性数据,引用或创建特定的物性包,建立生产过程中的单元设备的数学模型和单元设备之间的模型,从而完成完整描述实际生产过程系统的数学模型[6,7]。通过一定的数学方法对过程中所涉及到的模型进行联列求解。通过装置的稳态和动态模型,进行不同方案和工艺条件的分析,为新工艺的规划、研究开发和技术可靠性进行分析,为生产实际提供优化操作指导。在动态模拟中,还可以通过不同控制策 略的比较,对生产过程进行优化控制[5]。 生产过程的数学模型通常为一大型非线性代数方程组,过程模拟实质就是通过求解该非线性方程组来预测在一定工艺条件下生产过程的性能。常用 的求解方法主要有序贯模块法、联立方程法和联立模块法[3]。 氧化铝生产工艺 氧化铝的生产方法有酸法、碱法和热法。目前氧化铝工业生产实际应用的是碱法。碱法又包括拜耳法、烧结法及各种形式的联合法。因拜耳法生产成本低,经济效益好,流程相对简单,应用最广,所以主要介绍一下拜耳法的生产工艺。 所谓拜耳法是因为它是由K.J.bayer在1889-1892年提出而得名的。拜耳法主要包括两个主要过程,一是Na2O与Al2O3摩尔比为1.8的铝酸钠在常温下,只要添加氢氧化铝作为晶种,不断搅拌,溶液种的Al2O3就可以呈氢氧化铝析出,直到其中Na2O:Al2O3的摩尔比提高到6为止,此即为铝酸钠溶液的晶种分解过程。另一过程是已经析出了大部分氢氧化铝的溶液。在加热时,又可以溶出铝土矿中的氧化铝水合物。此即利用种分母液溶出铝土矿的过程。交替使用这两个过程处理铝土矿,得到氢氧化铝产品,构成所谓拜耳法循环[8]。拜耳法的生产工艺流程图如图1 所示。

化工生产流程图

化工生产流程图 1.一工厂用软锰矿(含 MnO 2约70%及Al 2O 3)和闪锌矿(含ZnS 约80%及FeS )共同生产MnO 2和Zn (干电池原料): 已知① A 是MnSO 4、ZnSO 4、Fe 2(SO 4)3、Al 2(SO 4)3的混合液。 ② IV 中的电解反应式为MnSO 4+ZnSO 4+2H 2O ══通电 MnO 2+ Zn +2H 2SO 4。 (1)A 中属于还原产物的是___________。 (2)MnCO 3、Zn 2(OH )2CO 3的作用是_____________________________;II 需要加热的缘故是___________;C 的化学式是____________。 (3)该生产中除得到MnO 2和Zn 以外,还可得到的副产品是______________。 (4)假如不考虑生产中的损耗,除矿石外,需购买的化工原料是___________。 (5)要从Na 2SO 4溶液中得到芒硝(Na 2SO 4·10H 2O ),需进行的操作有蒸发浓缩、________、过滤、洗涤、干燥等。 (6)从生产MnO 2和Zn 的角度运算,软锰矿和闪锌矿的质量比大约是__________。 2、碘化钠是实验室中常见分析试剂,常用于医疗和照相业。工业上用铁屑还原法来制备,工艺流程如下: (1)碘元素属于第 周期第 族;反应②中的氧化剂是(写化学式) 。 (2)判定反应①中的碘是否已完全转化的具体操作方法是 。 (3)反应②的离子方程式为 ; 反应③的化学方程式为 。 (4)将滤液浓缩、冷却、分离、干燥和包装过程中,都需要注意的咨询题 碘 共热反应① NaIO 3溶液 反应② 混合物 过滤 Fe(OH)2滤液 灼烧 副产品 浓缩冷却结晶 分离 干燥包装 铁屑 反应③

氧化铝建设项目氧化铝部分初步设计提纲

氧化铝建设项目氧化铝部分初步设计 《安全专篇》编写提纲 1.设计依据 1.1 建设项目依据的批准文件或相关的合法证明。 1.2 国家、地方政府和行业的有关安全规定。 1.3 采用的国家和行业主要安全技术规范、规程、标准。 1.4 建设项目安全预评价报告及其审查意见、备案文书,简述本项目安全预评价报告及其审查意见、备案文书的主要结论、安全措施要求。 1.5 其他设计依据或参考资料,设计单位资质、可行性研究报告、其它有关说明文件等。 2.工程概述 2.1工程性质及设计内容 工程性质包括新建、扩建或改造;设计内容(子项),如生产系统、辅助生产系统、原料存贮、公用设施、运输、生活设施、赤泥(尾矿)堆场、水源地等。 2.2 建设项目周围环境状况 自然环境条件:地理位置、气象条件、工程地质、断裂带、水文(洪水)、滑坡、泥石流、地震、雷电等。

社会环境条件:周边居民、企业分布情况;是否存在可能对本项目造成重大危险、伤害的生产或使用易燃、易爆危险品的企业、设施,与本项目的相对位置等。 2.3 氧化铝项目基本概况 氧化铝项目设计规模,主要技术方案,生产工艺流程,铝矿、石灰石矿或石灰、碱、酸的来源,重油、燃气或其它危化品的来源及使用,厂内外运输方式、厂区总平面布置、工程概算、主要技术经济指标。改扩建项目应对现有规模、工艺、总平面、运输等情况进行简要概述。 2.4 工程设计中采用新技术和新设备可能涉及的安全问题 对利用科研成果的新工艺技术、设备、替代材料等可能对氧化铝生产过程中的安全性产生影响的,应进行其安全性说明,论述是否可改善传统工艺或设备安全条件;对存在的不安全因素采取的安全防范措施等。 简述初步设计的工程内容、技术方案、原材料等是否与项目安全预评价报告及其批复文件相一致,如有变化应分析说明变化内容及原因。 2.5 氧化铝项目目前安全状况 改扩建项目应说明与改扩建内容相关的生产系统和相同设施、设备目前的安全生产状况,因设计问题造成的重大事故或频发事故发生的原因,改进的方案及防范措施概述。

化学工艺流程图

3年高考化学之工艺合成 (2016全国1卷)2NaClO 是一种重要的杀菌消毒剂,也常用来漂白织物等,其一种生 产工艺如下: 回答下列问题: (1)2NaClO 中Cl 的化合价为__________。 (2)写出“反应”步骤中生成2ClO 的化学方程式 。 (3)“电解”所用食盐水由粗盐水精制而成,精制时,为除去2Mg +和2Ca +,要加入的试剂分别为__________、__________。“电解”中阴极反应的主要产物是 。 (4)“尾气吸收”是吸收“电解”过程排出的少量2ClO ,此吸收反应中,氧化剂与还 原剂的物质的量之比为__________,该反应中氧化产物是 。 (5)“有效氯含量”可用来衡量含氯消毒剂的消毒能力,其定义是:每克含氯消毒剂的氧化能力相当于多少克2Cl 的氧化能力。2NaClO 的有效氯含量为 。(计算结果保留两 位小数)。 (2016年全国2卷)双氧水是一种重要的氧化剂、漂白剂和消毒剂。生产双氧水常采用蒽醌法,其反应原理和生产流程如图所示: 生产过程中,把乙基蒽醌溶于有机溶剂配制成工作液,在一定温度、压力和催化剂作用下进行氢化,再经氧化、萃取、净化等工艺得到双氧水。回答下列问题: (1)蒽醌法制备H 2O 2理论上消耗的原料是 ,循环使用的原料是 ,配制工作液时采用有机溶剂而不采用水的原因是 (2)氢化釜A 中反应的化学方程式为 进入氧化塔C 的反应混合液中的主要溶质为

(3)萃取塔D中的萃取剂是,选择其作萃取剂的原因是 (4)工作液再生装置F中要除净残留的H2O2,原因是 (5)(5)双氧水浓度可在酸性条件下用KmnO4溶液测定,该反应的离子方程式为 一种双氧水的质量分数为27.5%(密度为1.10g·cm-3),其浓度为mol·L?1. (2015全国2卷)28.(15 分)二氧化氯(ClO2,黄绿色易溶于水的气体)是高效、低毒的消毒剂,回答下列问題: (1)工业上可用KC1O3与Na2SO3在H2SO4存在下制得ClO2,该反应氧化剂与还原剂物质的量之比为。 (2)实验室用NH4Cl、盐酸、NaClO2(亚氯酸钠)为原料,通过以下过程制备ClO2: ①电解时发生反应的化学方程式为。 ②溶液X中大量存在的阴离子有__________。 ③除去ClO2中的NH3可选用的试剂是(填标号)。 a.水b.碱石灰c.浓硫酸d.饱和食盐水 (3)用右图装置可以测定混合气中ClO2的含量: Ⅰ.在锥形瓶中加入足量的碘化钾,用50 mL水溶解后,再加入 3 mL 稀硫酸: Ⅱ.在玻璃液封装置中加入水,使液面没过玻璃液封管的管口; Ⅲ.将一定量的混合气体通入锥形瓶中吸收; Ⅳ.将玻璃液封装置中的水倒入锥形瓶中: Ⅴ.用0.1000 mol·L-1硫代硫酸钠标准溶液滴定锥形瓶中的溶液(I2+2S2O32-=2I- +S4O62-),指示剂显示终点时共用去20.00 mL硫代硫酸钠溶液。在此过程中: ①锥形瓶内ClO2与碘化钾反应的离子方程式为。 ②玻璃液封装置的作用是。 ③V中加入的指示剂通常为,滴定至终点的现象是。 ④测得混合气中ClO2的质量为g。 (4)用ClO2处理过的饮用水会含有一定最的亚氯酸盐。若要除去超标的亚氯酸盐,下列物质最适宜的是_______(填标号)。 a.明矾b.碘化钾c.盐酸d.硫酸亚铁 (2015全国1卷)27.硼及其化合物在工业上有许多用途。以铁硼矿(主要成分为Mg B2O5·H2O和Fe3O4, 2 还有少量Fe2O3、FeO、CaO、Al2O3和SiO2等)为原料制备硼酸(H3BO3)的工艺流程如图所示:

氧化铝建设项目氧化铝部分初步设计规范

国家安全监管总局关于印发氧化铝建设项目氧化铝部分初步设计《安全专篇》编写提纲的通知 安监总管一[2007]46号 各省、自治区、直辖市及新疆生产建设兵团安全生产监督管理局,有关中央企业: 为进一步做好非煤矿山建设项目安全设施"三同时"工作,规范氧化铝建设项目氧化铝部分安全设施设计审查工作,依据《非煤矿矿山建设项目安全设施设计审查与竣工验收办法》(原国家安全监管局令第18号)和安全监管总局《关于印发非煤矿矿山建设项目初步设计〈安全专篇〉编写提纲和安全设施设计审查与竣工验收有关表格格式的通知》(安监总管一字〔2005〕29号),国家安全监管总局组织制定了《氧化铝建设项目氧化铝部分初步设计〈安全专篇〉编写提纲》(以下简称《编写提纲》),现印发给你们,请遵照执行。 氧化铝建设项目氧化铝部分初步设计《安全专篇》,是氧化铝建设项目初步设计《安全专篇》的一部分,要与矿山开采、尾矿库等部分按流程分章节编写,有关内容要统筹考虑,作好彼此之间的衔接,不要单独成册。 请各地将《编写提纲》转发至本辖区内的氧化铝生产企业,也可请各氧化铝生产企业从国家安全监管总局政府网站上下载,并积极做好宣传贯彻工作。

二○○七年二月二十七日氧化铝建设项目氧化铝部分初步设计 《安全专篇》编写提纲 1.设计依据 建设项目依据的批准文件或相关的合法证明。 国家、地方政府和行业的有关安全规定。 采用的国家和行业主要安全技术规范、规程、标准。 建设项目安全预评价报告及其审查意见、备案文书,简述本项目安全预评价报告及其审查意见、备案文书的主要结论、安全措施要求。 其他设计依据或参考资料,设计单位资质、可行性研究报告、其它有关说明文件等。 2.工程概述 工程性质及设计内容 工程性质包括新建、扩建或改造;设计内容(子项),如生产系统、辅助生产系统、原料存贮、公用设施、运输、生活设施、赤泥(尾

φ3×55m煅烧回转窑的设计计算及制造

× 55m煅烧回转窑的设计计算及制造 赵恒涛(山东冶金机械厂有限公司,山东淄博255064) 摘要:文章针对回转窑内煅烧物料的运动特点,计算出工艺煅烧时间。通过对窑体回转力矩的分析,求得电机功率。并叙述了主 要部件窑体的制造工艺及质量控制。 关键词:回转窑;煅烧;回转力矩;制造工艺;质量控制 1设备简介 3 ×55m煅烧回转窑是万吨级钛白生产装置中的重要设备,是一种连续逆流式(热风流动方向与物料移动方向相反)直接加热回转于燥器。具有:大量连续处理(年产量20kt/a,按3个工作日计),适应被干燥物料性质的较大变化(人窑物料为偏钛酸,含湿量55、60%),能使用高温热风(窑头温度10開℃,窑尾温度450℃)的特戟、、0 采用:提高人窑偏钛酸的固含量,利用真空转鼓过滤机对偏钛酸进行脱水;控制因窑内微负压引人的冷空气量,在下料口处设置液压双翻板下料阀;高温物料余热回收,冷却转筒采用风冷间接换热,通过二次风机回收从冷却转筒来的热空气送燃烧室的节能技术。 2设计 计算 2」性能 参数 规格:3 ×55m(窑体内径R × 长度L) 转速:N=0.3r/min 安装 倾角:仪:2.292。 生产量:2.625t/h 2.2窑体临界转速:N,“:42÷ SC=35.5r/min 式中:Rc=1.4一窑体有 效半径显然,窑体转速小于临界转 速。 2.3物料平均轴向运动速度 煅烧物料从人窑时的泥糊状到出料时的粉末状,其运动轨迹复杂多变,文献[刂简化后分析认为:物料运动轨迹和速度主要受窑体内径、转速、倾角等影响,也与物料休止角和充满角有关。公式ü={8TNRctgaxSimIJX( 1+0)}/3SinO×巾产3.346 h 式中:巧。,物料充满角之半巾,:0· 95944,物料堆积所占弧度数(D:L25,物料与窑体壁相对运动影响因子 2.4工艺煅烧时间:t=l丿ü=巧·03h 2 · 5生产时窑体总重量 (1)窑体筒本体加上箍圈、大齿圈等:GF1.47x106N (2)窑体内所砌耐火砖重量:G2:翦(R2一Rc2)LYI:1.3 × 106N,式中:Yi =2.6t/m3,镁质 耐火砖密度 (3)生产时窑体内物料重量:G3= Rc2 LY:3 ·945 ×105N 式中:0·1457,物料充填系数;Y2:0.8t/m3,物 料密度故,生产时窑体总重量:G:G汁C2+G3: 3.17× 106N 2.6托轮接触强度校核 箍圈与托轮受力分析如图1所示。当窑体静止时:FFF2;当窑体回转时:F2>F № FFG/2Cos300 L78 × 106N ,: kC,/2C“30:: 2.1、10。N F 式中:k:L 18,物料偏移系数。 按F2校核托轮接触强度即可,托轮接触强度::VF2/3b?p = 108.8kg/mm2 式中:ZE=60 · 6,钢对钢弹性模量 b=550mm,托轮与箍圈接触宽度 p= 394,7mm,综合曲率半径 选取托轮材质为45钢,淬火处理45巧OH c,采用稀油润滑,其许用接触应力〖司H:135皿 仃<,故托轮接触强度符合要求。 2 · 7窑体回转力矩计算 窑体回转所需总力矩M为物料重量力矩M。落料惯性力矩 M落料摩擦力矩M摩及窑体支撑系统摩擦力矩M “之和(1)物料重量力矩M G3Re:4 ·4× 105Nm 式中:Re=k Re= 1.12m,k =0,8,物料重心分布影响系数。 (2)落料惯性力矩M惯=CJ3RcN2,/9開巾。= 80.5Nm (3)落料摩擦力矩M摩=0.5G3Rc甴Cose:8.836 ×104Nm 式中:甴=0.08,物料与窑体摩擦系 数。 (4)窑体支撑系统摩擦力矩M摩支=(Fl + F2 2= 3彐×105Nm 式中:勘=0 ·4,箍圈与托轮摩擦系数。 M Gt=M重+M M+M +M摩支= & 384× 105Nm。 2.8电机功率的计算: P=M总N/9550 = 33 · 3Kw,=0· 796。 据此,选取电机功率为45Kw,电机型号为YCT3巧-4Ba 2.9减速机型号及开式齿轮的确定 选取一次减速机为ZDH40-6.3-ll,高速轴允许输人功率为49 ·9Kw,速比I=6.5。 选取二次减速机为ZSH40一7 ]一I,高速轴允许输人功率为30.3Kw,速比I=70.63。 为适应窑体直径和速比的要求,确定廾式齿轮的参数如下:厶: 7,Z2=52,m= 30 3制造工艺 因窑体长度为55m,考虑运输、安装方便,采取分段供货,现场组焊的工艺方案。为保证窑体的制造质量,从材料制造组装T艺焊接工艺及无损探伤等方面进行质量控制 3 · 1材料控制 根据设计要求2],钢板、手工电焊用焊条、埋弧焊用焊丝、焊剂的化学成分及力学性能必须符合有关国家标准。对钢板外形及表面检查合格后进行喷砂除锈和涂漆防腐处理。 3.2制造组装工艺 (1)窑体筒.节下料精度控制与标记移植:窑体筒节下料精度是窑体全面质量控制的第一步,必须将长度偏差控制在±5mm,对角线长度偏差控制在±2mm。标记移植钢印全面、准确、清晰。(2)错边量控制:对窑体筒节等厚处焊接接头错边量按1/45控制,对不等厚处采取外侧单面削薄厚板

煤矸石提取氧化铝工艺设计

煤系固体废弃物(煤矸石)处理工艺设计 煤系固体废弃物主要成分为煤矸石、粉煤灰和锅炉渣。煤矸石的来源于煤的开采、加工过程。粉煤灰和锅炉渣来源于煤的利用过程(火力发电)。本工艺设计主要针对煤矸石的资源化处理。 一、煤矸石的来源 煤矸石是采煤过程和洗煤过程中排出的固体废物,是一种在成煤过程中与煤层伴生的一种含碳量较低、比煤坚硬的黑灰色岩石。它包括巷道掘进过程中的掘进矸石、采掘过程中从顶板、底板及夹层里采出的矸石以及洗煤过程中挑出的洗矸石。一般每采1t原煤排出矸石0.2t左右。 煤矸石是指煤矿在建井、开拓掘进、采煤和煤炭洗选过程中排出的含碳岩石及岩石,是指煤矿建设生产过程中所排放出的固体废弃物的总称。煤矸石的来源主要有以下三个方面 (1)岩石巷道掘进时产生的煤矸石,通常称为原矿石,占煤矸石的60%-70%。主要岩石有泥岩、页岩、粉砂岩、砂岩、砾岩、石灰岩等。 (2)采煤过程中从顶板、底板和夹在煤层中的岩石夹层里所产生的煤矸石,占煤矸石的 10%-30%。煤层顶板常见的岩石包括泥岩、粉砂岩、砂岩、砂砾岩;煤层底板的岩石多为泥岩、页岩、黏土岩、粉砂岩;煤层夹肝的岩石有黏土岩、碳质泥岩、粉砂岩、砂岩等。 (3)煤炭分选或洗选过程中产生的煤矸石,又被称为洗矸石,约占煤矸石的5%。其中主要由煤层中的各种夹石如高岭石、黏土岩、黄铁矿等组成。 二、煤矸石的特性 2.1 煤矸石的组成 煤矸石的组成有有机物(含碳物)和无机物(岩石物质)组成的混合物。一般,煤矸石的热值:837~418KJ/kg。 煤矸石的化学组成,% 主要矿物包括高岭土、石英、蒙脱石、长石、伊利石、石灰石、硫化铁、氧化铝等。 2.2 煤矸石的外观特征和显微结构 2.2.1 外观特征碳质页岩为黑色或黑灰色,层状结构,表面有油脂光泽,不完全理解,不规则块状,断面参差,易碎,滴入稀盐酸有小气泡缓慢放出。 泥质页岩为黄灰色或黑褐色,土状光泽,有松疏的黑色小粒,片状结构,不完全理解,质软性脆,不规则块状,易碎,滴入稀盐酸不起反应。 砂质页岩为深灰色或灰白色,腊状光泽,结构较泥质、碳质页岩粗糙坚硬,组成均一,沿层理有草叶状条痕,极不全完解理,滴入稀盐酸有气泡放出,还有铁锈斑点。 2.2.2显微结构 碳质页岩以不透明黑色矿物为主,有少量石英和粘土矿,泥质页岩以石英为主,有一定量的不透明黑色矿物和少量云母;砂质页岩主要是石英和云母,还有一定量的不透明矿与碳酸盐矿物,石英颗粒较粗。碳质页岩和泥质页岩在出煤井时含有较多的碳质,往往还含有胶质有机物、树脂,孢子以及其他植物残体,随着含量的增加岩石颜色加深,经长期堆积,内部发热自燃,大部分已起一定煅烧作用,使表面形成一层很厚的硫酸铝或其他复盐。砂质岩出井煤时,块度较其他页岩大,难粉碎,不自燃,难风化。 2.3 煤矸石的物理特性 1、可塑性 煤矸石必须经细碎后才有塑性,矸石中砂岩塑性较页岩差。混合矸石经粉碎至250目筛筛余>2%时,其可塑指标可达2.8~3相应含水率为23~25%,如果进一步细碎至300目筛筛余<2%,则塑性会更大.

相关文档