文档库 最新最全的文档下载
当前位置:文档库 › 浅谈C语言数据与内存分配空间和地址的联系

浅谈C语言数据与内存分配空间和地址的联系

浅谈C语言数据与内存分配空间和地址的联系
浅谈C语言数据与内存分配空间和地址的联系

操作系统内存动态分配模拟算法

实验四存分配算法 1.实验目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请主存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现是与主存储器的管理方式有关的,通过本实验帮助学生理解在动态分区管理方式下应怎样实现主存空间的分配和回收。 背景知识: 可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离、主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。 2.实验容 采用首次适应算法或循环首次算法或最佳适应算法分配主存空间。 由于本实验是模拟主存的分配,所以当把主存区分配给作业后并不实际启动装入程序装入作业,而用输出“分配情况”来代替。(即输出当时的空闲区说明表及其存分配表) 利用VC++6.0实现上述程序设计和调试操作。 3.实验代码 #include #include using namespace std; //定义存的大小 const int SIZE=64; //作业结构体,保存作业信息 struct Project{ int number; int length; }; //存块结构体,保存存块信息 struct Block{

动态内存分配

浅析动态内存分配及Malloc/free的实现2011-03-18 22:47一、概述: 动态内存分配,特别是开发者经常接触的Malloc/Free接口的实现,对许多开发者来说,是一个永远的话题,而且有时候也是一个比较迷惑的问题,本文根据自己的理解,尝试简单的探究一下在嵌入式系统中,两类典型系统中动态内存分配以及Malloc/Free的实现机制。 二、内存分配方式 Malloc/Free主要实现的是动态内存分配,要理解它们的工作机制,就必须先了解操作系统内存分配的基本原理。 在操作系统中,内存分配主要以下面三种方式存在: (1)静态存储区域分配。内存在程序编译的时候或者在操作系统初始化的时候就已经分配好,这块内存在程序的整个运行期间都存在,而且其大小不会改变,也不会被重新分配。例如全局变量,static变量等。 (2)栈上的内存分配。栈是系统数据结构,对于进程/线程是唯一的,它的分配与释放由操作系统来维护,不需要开发者来 [url=javascript:;]管理[/url] 。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时,这些存储单元会被自动释放。栈内存分配运算内置于处理器的指令集中,效率很高,不同的操作系统对栈都有一定的限制。 (3)堆上的内存分配,亦称动态内存分配。程序在运行的期间用malloc申请的内存,这部分内存由程序员自己负责管理,其生存期由开发者决定:在何时分配,分配多少,并在何时用free来释放该内存。这是唯一可以由开发者参与管理的内存。使用的好坏直接决定系统的性能和稳定。 三、动态内存分配概述 首先,对于支持虚拟内存的操作系统,动态内存分配(包括内核加载,用户进程加载,动态库加载等等)都是建立在操作系统的虚拟内存分配之上的,虚拟内存分配主要包括: 1、进程使用的内存地址是虚拟的(每个进程感觉自己拥有所有的内存资源),需要经过页表的映射才能最终指向系统实际的物理地址。 2、主内存和磁盘采用页交换的方式加载进程和相关数据,而且数据何时加载到主内存,何时缓存到磁盘是OS调度的,对应用程序是透明的。 3、虚拟存储器给用户程序提供了一个基于页面的内存大小,在32位系统中,用户可以页面大小为单位,分配到最大可以到4G(内核要使用1G或2G等内存地址)字节的虚拟内存。 4、对于虚拟内存的分配,操作系统一般先分配出应用要求大小的虚拟内存,只有当应用实际使用时,才会调用相应的操作系统接口,为此应用程序分配大小以页面为单位的实际物理内存。 5、不是所有计算机系统都有虚拟内存机制,一般在有MMU硬件支持的系统中才有虚拟内存的实现。许多嵌入式操作系统中是没有虚拟内存机制的,程序的动态分配实际是直接针对物理内存进行操作的。许多典型的实时嵌入式系统如Vxworks、Uc/OS 等就是这样。 四、动态内存分配的实现 由于频繁的进行动态内存分配会造成内存碎片的产生,影响系统性能,所以在不同的系统中,对于动态内存管理,开发了许多不同的算法(具体的算法实现不想在这里做详细的介绍,有兴趣的读者可以参考Glib C 的源代码和附录中的资料)。不同的操作系统有不同的实现方式,为了程序的可移植性,一般在开发语言的库中都提供了统一接口。对于C语言,在标准C库和Glib 中,都实现了以malloc/free为接口的动态内存分配功能。也就是说,malloc/free库函索包装了不同操作系统对动态内存管理的不同实现,为开发者提供了一个统一的开发环境。对于我们前面提到的一些嵌入式操作系统,因为实时系统的特殊要求(实

C语言的代码内存布局具体解释

一个程序本质上都是由BSS 段、data段、text段三个组成的。这种概念在当前的计算机程序设计中是非常重要的一个基本概念,并且在嵌入式系统的设计中也非常重要,牵涉到嵌入式系统执行时的内存大小分配,存储单元占用空间大小的问题。 ●BSS段:在採用段式内存管理的架构中。BSS段(bss segment)一般是指用 来存放程序中未初始化的全局变量的一块内存区域。 BSS是英文Block Started by Symbol的简称。 BSS段属于静态内存分配。 ●数据段:在採用段式内存管理的架构中,数据段(data segment)一般是指 用来存放程序中已初始化的全局变量的一块内存区域。数据段属于静态内存分配。 ●代码段:在採用段式内存管理的架构中,代码段(text segment)一般是指 用来存放程序执行代码的一块内存区域。这部分区域的大小在程序执行前就已经确定,而且内存区域属于仅仅读。 在代码段中。也有可能包括一些仅仅读的常数变量,比如字符串常量等。 程序编译后生成的目标文件至少含有这三个段。这三个段的大致结构图例如以下所看到的: 当中.text即为代码段,为仅仅读。.bss段包括程序中未初始化的全局变量和static变量。 data段包括三个部分:heap(堆)、stack(栈)和静态数据区。 ●堆(heap):堆是用于存放进程执行中被动态分配的内存段。它的大小并不 固定,可动态扩张或缩减。当进程调用malloc等函数分配内存时。新分配的内存就被动态加入到堆上(堆被扩张);当利用free等函数释放内存时,被释放的内存从堆中被剔除(堆被缩减)

栈(stack):栈又称堆栈,是用户存放程序暂时创建的局部变量,也就是说我们函数括弧“{}”中定义的变量(但不包含static声明的变量。static意味着在数据段中存放变量)。 除此以外,在函数被调用时。其參数也会被压入发起调用的进程栈中。而且待到调用结束后。函数的返回值也会被存放回栈中。 因为栈的先进先出特点,所以栈特别方便用来保存/恢复调用现场。从这个意义上讲,我们能够把堆栈看成一个寄存、交换暂时数据的内存区。 当程序在运行时动态分配空间(C中的malloc函数),所分配的空间就属于heap。其概念与数据结构中“堆”的概念不同。 stack段存放函数内部的变量、參数和返回地址,其在函数被调用时自己主动分配。訪问方式就是标准栈中的LIFO方式。 (由于函数的局部变量存放在此,因此其訪问方式应该是栈指针加偏移的方式,否则若通过push、pop操作来訪问相当麻烦) data段中的静态数据区存放的是程序中已初始化的全局变量、静态变量和常量。 在採用段式内存管理的架构中(比方intel的80x86系统),BSS 段(Block Started by Symbol segment)一般是指用来存放程序中未初始化的全局变量的一块内存区域,一般在初始化时BSS 段部分将会清零。BSS 段属于静态内存分配。即程序一開始就将其清零了。 比方,在C语言之类的程序编译完毕之后,已初始化的全局变量保存在.data 段中,未初始化的全局变量保存在.bss 段中。 text和data段都在可运行文件里(在嵌入式系统里通常是固化在镜像文件里)。由系统从可运行文件里载入;而BSS段不在可运行文件里,由系统初始化。

《动态分配内存与数据结构》课后习题

《动态分配内存与数据结构》习题 学号姓名 一、选择题 1、是一种限制存取位置的线性表,元素的存取必须服从先进先出的规则。 A.顺序表B.链表C.栈D.队列 2、是一种限制存取位置的线性表,元素的存取必须服从先进后出的规则。 A.顺序表B.链表C.栈D.队列 3、与顺序表相比,链表不具有的特点是。 A.能够分散存储数据,无需连续内存空间 B.插入和删除无需移动数据 C.能够根据下标随机访问 D.只要内存足够,没有最大长度的限制 4、如果通过new运算符动态分配失败,返回结果是。 A.-1 B.0 C.1D.不确定 5、实现深复制中,不是必须自定义的。 A.构造函数B.复制构造函数 C.析构函数D.复制赋值操作符函数 6、分析下列代码是否存在问题,选择合适的选项:。 int main(void) { int *p = new int [10]; p = new int [10]; delete [] p; p = NULL; return 0; } A.没有问题 B.有内存泄漏 C.存在空悬指针 D.存在重复释放同一空间 7、通过new运算符动态分配的对象,存储于内存中的。 A.全局变量与静态变量区 B.代码区 C.栈区 D.堆区 8、下列函数中,可以是虚函数。 A.构造函数 B.析构函数 C.静态成员函数 D.友元函数 9、关于通过new运算符动态创建的对象数组,下列判断中是错误的。 A. 动态创建的对象数组只能调用默认构造函数 B. 动态创建的对象数组必须调用delete []动态撤销 C. 动态创建的对象数组的大小必须是常数或常变量 D. 动态创建的对象数组没有数组名 10、顺序表不具有的特点是 A. 元素的存储地址连续 B. 存储空间根据需要动态开辟,不会溢出 C. 可以直接随机访问元素 D. 插入和删除元素的时间开销与位置有关 11、假设一个对象Ob1的数据成员是指向动态对象的指针,如果采用浅复制的方式复制该对象得到对象Ob2,那么在析构对象Ob1和对象Ob2时会的问题。 A. 有重复释放 B. 没有 C. 内存泄漏 D. 动态分配失败 12、假设对5个元素A、B、C、D、E进行压栈或出栈的操作,压栈的先后顺序是ABCDE,则出栈的先后顺序不可能是。 A. ABCDE B. EDCBA C. EDBCA D. BCADE 13、假设对4个元素A、B、C、D、E进行压栈或出栈的操作,压栈的先后顺序是ABCD,则出栈的先后顺序不可能是。 A. ABCD B. DCBA C. BCAD D. DCAB 14、通过new运算符动态创建的对象的存放在中。 A. 代码区 B. 栈区 C. 自由存储区 D. 全局数据区 15、链表不具有的特点是。 A. 元素的存储地址可以不连续 B. 存储空间根据需要动态开辟,不会溢出 C. 可以直接随机访问元素 D. 插入和删除元素的时间开销与位置无关 16、有关内存分配和释放的说法,下面当中错误的是 A.new运算符的结果只能赋值给指针变量 B.动态创建的对象数组必须调用delete []动态撤销 C.用new分配的空间位置是在内存的栈区 D.动态创建的对象数组没有数组名 17、关于栈,下列哪项不是基本操作 A.删除栈顶元素 B.删除栈底元素 C.判断栈是否为空 D.把栈置空 18、关于链表,说法错误的是

c语言中动态内存申请与释放的简单理解

c语言中动态内存申请与释放的简单理解 在C里,内存管理是通过专门的函数来实现的。与c++不同,在c++中是通过new、delete函数动态申请、释放内存的。 1、分配内存 malloc 函数 需要包含头文件: #include 或 #include 函数声明(函数原型): void *malloc(int size); 说明:malloc 向系统申请分配指定size个字节的内存空间。返回类型是 void* 类型。void* 表示未确定类型的指针。C,C++规定,void* 类型可以强制转换为任何其它类型的指针。 从函数声明上可以看出。malloc 和 new 至少有两个不同: new 返回指定类型的指针,并且可以自动计算所需要大小。比如: int *p; p = new int; //返回类型为int* 类型(整数型指针),分配大小为 sizeof(int); 或: int* parr; parr = new int [100]; //返回类型为 int* 类型(整数型指针),分配大小为sizeof(int) * 100; 而 malloc 则必须由我们计算需要的字节数,并且在返回后强行转换为实际类型的指针。 int* p; p = (int *) malloc (sizeof(int)); 第一、malloc 函数返回的是 void * 类型,如果你写成:p = malloc (sizeof(int)); 则程序无法通过编译,报错:“不能将 void* 赋值给 int * 类型变量”。所以必须通过 (int *) 来将强制转换。 第二、函数的实参为 sizeof(int) ,用于指明一个整型数据需要的大小。如果你写成:

动态内存分配(C语言)

实验报告 实验课程名称:动态内存分配算法 年12月1日

实验报告 一、实验内容与要求 动态分区分配又称为可变分区分配,它是根据进程的实际需要,动态地为之分配内存空间。在实验中运用了三种基于顺序搜索的动态分区分配算法,分别是1.首次适应算法2.循环首次适应算法3.最佳适应法3.最坏适应法分配主存空间。 二、需求分析 本次实验通过C语言进行编程并调试、运行,显示出动态分区的分配方式,直观的展示了首次适应算法循环首次适应算法、最佳适应算法和最坏适应算法对内存的释放和回收方式之间的区别。 首次适应算法 要求空闲分区链以地址递增的次序链接,在分配内存时,从链首开始顺序查找,直至找到一个大小能满足要求的空闲分区为止,然后在按照作业的大小,从该分区中划出一块内存空间,分配给请求者,余下的空余分区仍留在空链中。 优点:优先利用内存中低址部分的空闲分区,从而保留了高址部分的大空闲区,为以后到达的大作业分配大的内存空间创造了条件。 缺点:低址部分不断被划分,会留下许多难以利用的、很小的空闲分区即碎片。而每次查找又都是从低址部分开始的,这无疑又会增加查找可用空闲分区时的开销。

循环首次适应算法 在为进程分配内存空间时,不是每次都从链首开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直到找到一个能满足要求的空闲分区。 优点:该算法能使内存中的空闲分区分布得更均匀,从而减少了查找空闲分区时的开销。 最佳适应算法 该算法总是把能满足要求、又是最小的空闲分区分配给作业,避免大材小用,该算法要求将所有的空闲分区按其容量以从小到大的顺序形成一空闲分区链。 缺点:每次分配后所切割下来的剩余部分总是最小的,这样,在存储器中会留下许多难以利用的碎片。 最坏适应算法 最坏适应算法选择空闲分区的策略正好与最佳适应算法相反:它在扫描整个空闲分区或链表时,总会挑选一个最大的空闲区,从中切割一部分存储空间给作业使用。该算法要求,将所有的空闲分区,按其容量以大到小的顺序形成一空闲分区链。查找时,只要看第一个分区能否满足作业要求即可。 优点:可使剩下的空闲区不至于太小,产生碎片的可能性最小,对中小作业有利,同时,最坏适应算法查找效率很高。 缺点:导致存储器中缺乏大的空闲分区 三、数据结构 为了实现动态分区分配算法,系统中配置了相应的数据结构,用以描述空闲分区和已分配分区的情况,常用的数据结构有空闲分区表和空闲分区链 流程图

动态分配内存管理源代码及讲解

动态分配内存算法以及源程序讲解 整体思路: 动态分区管理方式将内存除操作系统占用区域外的空间看成一个大的空闲区。当作业要求装入内存时,根据作业需要内存空间的大小查询内存中的各个空闲区,当从内存空间中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装人该作业,作业执行完后,其所占的内存分区被收回,成为一个空闲区。如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。 设计所采用的算法: 采用最优适应算法,每次为作业分配内存时,总是把既能满足要求、又是最小的空闲分区分配给作业。但最优适应算法容易出现找到的一个分区可能只比作业所需求的长度略大一点的情行,这时,空闲区分割后剩下的空闲区就很小以致很难再使用,降低了内存的使用率。为解决此问题,设定一个限值minsize,如果空闲区的大小减去作业需求长度得到的值小于等于minsize,不再将空闲区分成己分分区和空闲区两部分,而是将整个空闲区都分配给作业。 内存分配与回收所使用的结构体: 为便于对内存的分配和回收,建立两张表记录内存的使用情况。一张为记录作业占用分区的“内存分配表”,内容包括分区起始地址、长度、作业名/标志(为0时作为标志位表示空栏目);一张为记录空闲区的“空闲分区表”,内容包括分区起始地址、长度、标志(0表空栏目,1表未分配)。两张表都采用顺序表形式。 关于分配留下的内存小碎片问题: 当要装入一个作业时,从“空闲分区表”中查找标志为“1”(未分配)且满足作业所需内存大小的最小空闲区,若空闲区的大小与作业所需大小的差值小于或等于minsize,把该分区全部分配给作业,并把该空闲区的标志改为“0”(空栏目)。同时,在已分配区表中找到一个标志为“0”的栏目登记新装人作业所占用分区的起始地址,长度和作业名。若空闲区的大小与作业所需大小的差值大于minsize。则把空闲区分成两部分,一部分用来装入作业,另外一部分仍为空闲区。这时只要修改原空闲区的长度,且把新装人的作业登记到已分配区表中。 内存的回收: 在动态分区方式下回收内存空间时,先检查是否有与归还区相邻的空闲区(上邻空闲区,

C语言程序的内存分配方式

1.内存分配方式 内存分配方式有三种: [1]从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。 [2]在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。 [3]从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由程序员决定,使用非常灵活,但如果在堆上分配了空间,就有责任回收它,否则运行的程序会出现内存泄漏,频繁地分配和释放不同大小的堆空间将会产生堆内碎块。 2.程序的内存空间 一个程序将操作系统分配给其运行的内存块分为4个区域,如下图所示。 一个由C/C++编译的程序占用的内存分为以下几个部分, 1、栈区(stack)— 由编译器自动分配释放,存放为运行函数而分配的局部变量、函数参数、返回数据、返回地址等。其操作方式类似于数据结构中的栈。 2、堆区(heap) — 一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分配方式类似于链表。 3、全局区(静态区)(static)—存放全局变量、静态数据、常量。程序结束后由系统释放。 4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放。 5、程序代码区—存放函数体(类成员函数和全局函数)的二进制代码。 下面给出例子程序, int a = 0; //全局初始化区 char *p1; //全局未初始化区 int main() { int b; //栈 char s[] = "abc"; //栈 char *p2; //栈 char *p3 = "123456"; //123456在常量区,p3在栈上。 static int c =0;//全局(静态)初始化区

操作系统课程设计--连续动态分区内存管理模拟实现

(操作系统课程设计) 连续动态分区内存 管理模拟实现

目录 《操作系统》课程设计 (1) 引言 (3) 课程设计目的和内容 (3) 需求分析 (3) 概要设计 (3) 开发环境 (4) 系统分析设计 (4) 有关了解内存管理的相关理论 (4) 内存管理概念 (4) 内存管理的必要性 (4) 内存的物理组织 (4) 什么是虚拟内存 (5) 连续动态分区内存管理方式 (5) 单一连续分配(单个分区) (5) 固定分区存储管理 (5) 可变分区存储管理(动态分区) (5) 可重定位分区存储管理 (5) 问题描述和分析 (6) 程序流程图 (6) 数据结构体分析 (8) 主要程序代码分析 (9) 分析并实现四种内存分配算法 (11) 最先适应算 (11) 下次适应分配算法 (13) 最优适应算法 (16) 最坏适应算法......................................................... (18) 回收内存算法 (20) 调试与操作说明 (22) 初始界面 (22) 模拟内存分配 (23) 已分配分区说明表面 (24) 空闲区说明表界面 (24) 回收内存界面 (25) 重新申请内存界面..........................................................26. 总结与体会 (28) 参考文献 (28)

引言 操作系统是最重要的系统软件,同时也是最活跃的学科之一。我们通过操作系统可以理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。 存储器是计算机系统的重要组成部分,近年来,存储器容量虽然一直在不断扩大,但仍不能满足现代软件发展的需要,因此,存储器仍然是一种宝贵而又紧俏的资源。如何对它加以有效的管理,不仅直接影响到存储器的利用率,而且还对系统性能有重大影响。而动态分区分配属于连续分配的一种方式,它至今仍在内存分配方式中占有一席之地。 课程设计目的和内容: 理解内存管理的相关理论,掌握连续动态分区内存管理的理论;通过对实际问题的编程实现,获得实际应用和编程能力。 编写程序实现连续动态分区内存管理方式,该程序管理一块虚拟内存,实现内存分配和回收功能。分析并实现四种内存分配算法,即最先适应算法,下次最先适应算法,最优适应算法,最坏适应算法。内存分配算法和回收算法的实现。 需求分析 动态分区分配是根据进程的实际需要,动态地为之分配内存空间。在实现动态分区分配时,将涉及到分区分配中所用的数据结构、分区分配算法和分区的分配和回收操作这样三个问题。常用的数据结构有动态分区表和动态分区链。在对数据结构有一定掌握程度的情况下设计合理的数据结构来描述存储空间,实现分区存储管理的内存分配功能,应该选择最合适的适应算法(首次适应算法,最佳适应算法,最后适应算法,最坏适应算法),在动态分区存储管理方式中主要实现内存分配和内存回收算法,在这些存储管理中间必然会有碎片的产生,当碎片产生时,进行碎片的拼接等相关的内容 概要设计 本程序采用机构化模块化的设计方法,共分为四大模块。 ⑴最先适应算法实现 从空闲分区表的第一个表目起查找该表,把最先能够满足要求的空闲区分配 给作业,这种方法目的在于减少查找时间。为适应这种算法,空闲分区表(空闲 区链)中的空闲分区要按地址由低到高进行排序。该算法优先使用低址部分空闲 区,在低址空间造成许多小的空闲区,在高地址空间保留大的空闲区。 ⑵下次适应分配算法实现 该算法是最先适应算法的变种。在分配内存空间时,不再每次从表头(链首) 开始查找,而是从上次找到空闲区的下一个空闲开始查找,直到找到第一个能满 足要求的的空闲区为止,并从中划出一块与请求大小相等的内存空间分配给作 业。该算法能使内存中的空闲区分布得较均匀。

C语言编程要点---指针和内存分配上-Read

C语言编程要点---指针和内存分配上-Read

C语言编程要点---第7章指针和内存分配(上) 指针和内存分配 指针为C语言编程提供了强大的支持——如果你能正确而灵活地利用指针,你就可以直接切入问题的核心,或者将程序分割成一个个片断。一个很好地利用了指针的程序会非常高效、简洁和精致。 利用指针你可以将数据写入内存中的任意位置,但是,一旦你的程序中有一个野指针("wild”pointer),即指向一个错误位置的指针,你的数据就危险了——存放在堆中的数据可能会被破坏,用来管理堆的数据结构也可能会被破坏,甚至操作系统的数据也可能会被修改,有时,上述三种破坏情况会同时发生。 此后可能发生的事情取决于这样两点:第一,内存中的数据被破坏的程度有多大;第二,内存中的被破坏的部分还要被使用多少次。在有些情况下,一些函数(可能是内存分配函数、自定义函数或标准库函数)将立即(也可能稍晚一点)无法正常工作。在另外一些情况下,程序可能会终止运行并报告一条出错消息;或者程序可能会挂起;或者程序可能会陷入死循环;或者程序可能会产生错误的结果;或者程序看上去仍在正常运行,因为程序没有遭到本质的破坏。 值得注意的是,即使程序中已经发生了根本性的错误,程序有可能还会运行很长一段时间,然后才有明显的失常表现;或者,在调试时,程序的运行完全正常,只有在用户使用时,它才会失常。 在C语言程序中,任何野指针或越界的数组下标(out-of-bounds array subscript)都可能使系统崩溃。两次释放内存的操作也会导致这种结果。你可能见过一些C程序员编写的程序中有严重的错误,现在你能知道其中的部分原因了。 有些内存分配工具能帮助你发现内存分配中存在的问题,例如漏洞(leak,见7.21),两次释放一个指针,野指针,越界下标,等等。但这些工具都是不通用的,它们只能在特定的操作系统中使用,甚至只能在特定版本的编译程序中使用。如果你找到了这样一种工具,最好试试看能不能用,因为它能为你节省许多时间,并能提高你的软件的质量。 指针的算术运算是C语言(以及它的衍生体,例如C++)独有的功能。汇编语言允许你对地址进行运算,但这种运算不涉及数据类型。大多数高级语言根本就不允许你对指针进行任何操作,你只能看一看指针指向哪里。 C指针的算术运算类似于街道地址的运算。假设你生活在一个城市中,那里的每一个街区的所有街道都有地址。街道的一侧用连续的偶数作为地址,另一侧用连续的奇数作为地址。如果你想知道River Rd.街道158号北边第5家的地址,你不会把158和5相加,去找163号;你会先将5(你要往前数5家)乘以2(每家之间的地址间距),再和158相加,去找River Rd.街道的168号。同样,如果一个指针指向地址158(十进制数)中的一个两字节短整型值,将该指针加3=5,结 果将是一个指向地址168(十进制数)中的短整型值的指针(见7.7和7.8中对指针加减运算的详细描述)。街道地址的运算只能在一个特定的街区中进行,同样,指针的算术运算也只能在一个特定的数组中进行。实际上,这并不是一种限制,因为指针的算术运算只有在一个特定的数组中进行才有意义。对指针的算术运算来说,一个数组并不必须是一个数组变量,例如函数malloc()或calloc()的返回值是一个指针,它指向一个在堆中申请到的数组。 指针的说明看起来有些使人感到费解,请看下例: char *p; 上例中的说明表示,p是一个字符。符号“*”是指针运算符,也称间接引用运算符。当程序间接引用一个指针时,实际上是引用指针所指向的数据。 在大多数计算机中,指针只有一种,但在有些计算机中,指向数据和指向函数的指针可以是不同的,或者指向字节(如char。指针和void *指针)和指向字的指针可以是不同的。这一点对sizeof运算符没有什么影响。但是,有些C程序或程序员认为任何指针都会被存为一个int型的值,或者至少会被存为一个long 型的值,这就无法保证了,尤其是在IBM PC兼容机上。

我讲解一下c语言中动态分配内存的函数 (2)

我讲解一下c语言中动态分配内存的函数,可能有些初学c语言的 人不免要问了:我们为什么要通过函数来实现动态分配内存呢?系统难道不是会自动分配内存吗?? 既然有人会问这样的问题,那么我在这里好好的讲解一下吧! 首先让我们熟悉一下计算机的内存吧!在计算机的系统中有四个内存区域:1)栈:在栈里面储存一些我们定义的局部变量以及形参(形式参数);2)字符常量区:主要是储存一些字符常量,比如:char *p_str=”cgat”;其中”cgat”就储存在字符常量区里面;3)全局区:在全局区里储存一些全局变量和静态变量;4)堆:堆主要是通过动态分配的储存空间,也就是我们接下需要讲的动态分配内存空间。 什么时候我们需要动态分配内存空间呢?举一个例子吧。int *p;我们定义了一个指向int类型的指针p;p是用来储存一个地址的值的,我们之所以要为p 这个变量分配空间是让它有一个明确的指向,打个比方吧!你现在做好了一个指向方向的路标,但是你并没有让这个路标指向一个确切的方位,也就是说现在的这个路标是瞎指向的,这样我们就不能够通过它来明确到底哪里是东,哪里是西,何为北,何为南了。虽然我们在计算机的内存里定义了一个指针变量,但是我们并没有让这个变量指示一个确切int类型变量的地址,所以我们就必须要让它有一个明确的指示方向。这样我们就要通过动态分配内存的方式来认为的规定它的方向! 我们在刚刚接触指针的时候遇到过这样的情况,int *p;p=&a;这种方法不是指针的动态分配内存,这个叫做指针变量的初始化!初始化同样也可以让指针变量有方向可指。 int *p;p=malloc(n*sizeof(类型名称));我们通过malloc()函数为一个指针变量p分配了地址,这样我们从键盘上键入的值就这样存储在p里面了,接下来我们就可以对这个p进行具体的操作了,比如scanf(“%s”,p)等等。当我们对p结束操作的时候还要释放p的内存空间。为什么要释放内存空间呢?在上面我已经讲过动态分配的变量时储存在堆里面,但是这个堆的空间并不是无限大的,也许当我们编一个小的程序的时候可能我们并不能够发现什么,但是对于那些大的程序,如果我们比及时释放堆的空间的时候会放生内存泄露。所谓内存泄露是因为堆的空间北我们动态分配用完了,这样当我们再去使用动态分配堆的空间的时候就没有足够的空间让我们使用了,这样就需要占有原来的空间,也就是会把其他的空间来储存我们键入的值,这样会导致原来储存的数据被破坏掉,导致了内存的泄露了。 同时当我们使用malloc()函数的时候还应该注意当我们释放完空间的时候还要将原先的指针变量赋予一个NULL,也就是赋予一个空指针,留着下次的时候使用它!如果我们不赋予|NULL行不行呢??答案是:不行的!如果我们不赋予一个空指针这样会导致原先的指针变量成为了一个野指针!何谓野指针?野指针就是一个没有明确指向的指针,系统不知道它会指向什么地方,野指针是很危险的,因此当我们每次使用完malloc()函数的时候都必须将指针赋予一个空指针!相对于malloc()函数,calloc()函数就不需要我们赋予NULL了,这是因为在每次调用完calloc()函数的时候系统会自动将原先的指针赋予一个空指

不看后悔——详解动态分配内存的函数

动态内存分配函数解析 引言:对于指针,正确的分配动态内存是十分重要的,本文将着重阐述动态内存分配函数malloc,calloc,realloc 以及memset的用法。 i.对于malloc,在linux终端输入 #:man malloc可以知道函数原型是 Void *malloc(size_t size) ,包含在库函数 stdlib.h中,作用是在内存的堆区分配一个大小为size 的连续空间,如果分配内存成功,函数返回新分配内存的首地址,否则,返回NULL,注意:鉴于上述这点,一般在写程序需要判断分配内存是否成功,如下程序语句: int *p; p=(int *)malloc(sizeof(int)); if(p!=NULL) .................................//需要执行的语句 else .........................//打印分配内存不成功出错信息 通常造成内存分配失败的原因如下: 1、内存访问越界 2、所需连续的内存空间不足 ii.对于函数calloc用法大致与malloc相同,函数原型为: void *callo(size_t num,size_t size),作用是在内存中分配连续大小为num*size的空间,这一点在动态数组内存分配有所体现,返回值以及判断返回是否成功与上面相同,下面重点来讨论 malloc与calloc区别: 1、后者在返回指向内存的指针之前把它初始化为0。 2、请求内存数量的方式不同。malloc的参数仅仅是需要分配的内存字节数;calloc的参数包括元素的数量和每个元素的字节数。 为了说明第一点,请看如下程序:程序

C语言中动态分配二维数组

在C中动态分配内存的,对于单个变量,字符串,一维数组等,都是很容易的。C中动态分配二维数组的方法,很少有C语言书中描述,我查找了有的C语言书中提到了一个方法: 假定二维数组的维数为[M][N] 分配是可以这样: int **ptr=new int*[M]; //////这是先动态分配一个包含有M个指针的数组,即指先分配一个针数组 ///////////指针数组的首地址保存在ptr中 for(int i=0;i

{ pMatrix[i] = new int[column]; for(int j = 0; j < column; j++) { pMatrix[i][j] = (i+j); ///////简单的初始化 } } 这样创建一个数组有个严重的问题,就是它的内存不连续,行与行之间的内存不连续,虽然可以用[i][j]下标访问,无法满足用指向二维数组元素型别的指针变量来访问整个数组的要求. 例如不能如下访问每个二维数组元素: int * p = NULL; for(p = pMatrix[0]; p < pMatrix[0]+column * row; p++) { int fff = *(pme); }

而这种访问方式对于真正的二维数组是完全可以的。出现这种原因就是因为行与行之间的内存不连续造成的。 所以,这中方式创建的动态二维数组,不是真正意义上的二维数组。 那么什么是真正的二维数组呢?C语言中的二维数组在内存组织形式是按行存储的连续的内存区域。所以,必须保证数组元素是按行存储的,而且也是最重要的是内存要连续。 所以,我写出了如下的一个方法: 假定二维数组的元素变量类型是MyType;可以是C语言接受的除void之外的任何类型,因为编译器不晓得void类型的大小;例如int,float,double等等类型; int row = 2; /////暂假定行数是2,这个可以在运行时刻决定; int column = 3;/////暂假定列数是2,这个可以在运行时刻决定; void **ptdhead = NULL; //////////在后面说明为什么要用void**类型

操作系统内存动态分配模拟算法

实验四内存分配算法 1.实验目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请主存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现是与主存储器的管理方式有关的,通过本实验帮助学生理解在动态分区管理方式下应怎样实现主存空间的分配和回收。 背景知识: 可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离、主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。 2.实验内容 采用首次适应算法或循环首次算法或最佳适应算法分配主存空间。 由于本实验是模拟主存的分配,所以当把主存区分配给作业后并不实际启动装入程序装入作业,而用输出“分配情况”来代替。(即输出当时的空闲区说明表及其内存分配表) 利用VC++6.0实现上述程序设计和调试操作。 3.实验代码 #include #include usingnamespace std; //定义内存的大小 constint SIZE=64; //作业结构体,保存作业信息 struct Project{ int number; int length; }; //内存块结构体,保存内存块信息 struct Block{

C语言内存分配

C语言变量声明及内存分配 一个由c/C++编译的程序占用的内存分为以下几个部分 1、栈区(stack)—程序运行时由编译器自动分配,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。程序结束时由编译器自动释放。 2、堆区(heap)—在内存开辟另一块存储区域。一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 3、全局区(静态区)(static)—编译器编译时即分配内存。全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域(BSS)。- 程序结束后由系统释放 4、文字常量区—常量字符串就是放在这里的,程序结束后由系统释放。 5、程序代码区—存放函数体的二进制代码。 例子程序 这是一个前辈写的,非常详细 #include #include

//main.cpp int a = 0; //全局初始化区 char *p1; //全局未初始化区 void main() { int b=1; // 栈 char s[] = "abc"; //栈 char *p2; //栈 char *p3 = "123456"; //"123456\0"在常量区,p3在栈上。static int c =0; //全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); //分配得来得10和20字节的区域就在堆区。 strcpy(p1, "123456"); //123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方 system("pause");

动态分区分配存储管理系统

操作系统原理 课程设计报告 题目:动态分区分配存储管理系统 所在学院: 班级: 学号: 姓名: 指导教师: 2014年3月18

目录 1 引言 (1) 2 需求分析 (1) 3 概要设计 (1) 4 详细设计 (1) 4.1问题描述和分析 (1) 4.2程序流程图 (2) 4.3数据结构体分析 (3) 4.4主要程序代码分析 (4) 5 调试与操作说明 (14) 5.1初始界面 (14) 5.2模拟内存分配 (14) 5.3回收内存界面 (15) 5.4最佳适应算法的实现 (15) 5.5最坏适应算法的实现 (16) 6总结与体会 (16)

1 引言 操作系统是最重要的系统软件,同时也是最活跃的学科之一。我们通过操作系统可以理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。 存储器是计算机系统的重要组成部分,近年来,存储器容量虽然一直在不断扩大,但仍不能满足现代软件发展的需要,因此,存储器仍然是一种宝贵而又紧俏的资源。如何对它加以有效的管理,不仅直接影响到存储器的利用率,而且还对系统性能有重大影响。而动态分区分配属于连续分配的一种方式,它至今仍在内存分配方式中占有一席之地。 2 需求分析 动态分区分配是根据进程的实际需要,动态地为之分配内存空间。在实现动态分区分配时,将涉及到分区分配中所用的数据结构、分区分配算法和分区的分配和回收操作这样三个问题。常用的数据结构有动态分区表和动态分区链。在对数据结构有一定掌握程度的情况下设计合理的数据结构来描述存储空间,实现分区存储管理的内存分配功能,应该选择最合适的适应算法(最佳适应算法,最坏适应算法),在动态分区存储管理方式中主要实现内存分配和内存回收算法,在这些存储管理中间必然会有碎片的产生,当碎片产生时,进行碎片的拼接等相关的内容。 3 概要设计 本程序采用机构化模块化的设计方法,共分为两大模块。 1.最佳适应算法实现 它从全部空闲区中找出能满足作业要求的、且大小最小的空闲分区,这种方法能使碎片尽量小。为适应此算法,空闲分区表(空闲区链)中的空闲分区要按从小到大进行排序,自表头开始查找到第一个满足要求的自由分区分配。 2.最坏算法实现 最坏适应分配算法要扫描整个空闲分区或链表,总是挑选一个最大的空闲分区分割给作业使用。该算法要求将所有的空闲分区按其容量从大到小的顺序形成一空闲分区链,查找时只要看第一个分区能否满足作业要求。 4 详细设计 4.1 问题描述和分析 系统应利用某种分配算法,从空闲分区链表中找到所需大小的分区,如果空闲分区大小

C语言变量声明内存分配

C语言变量声明内存分配(转) 一个由c/C++编译的程序占用的内存分为以下几个部分 1、栈区(stack)—程序运行时由编译器自动分配,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。程序结束时由编译器自动释放。 2、堆区(heap)—在内存开辟另一块存储区域。一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。 3、全局区(静态区)(static)—编译器编译时即分配内存。全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束后由系统释放 4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放 5、程序代码区—存放函数体的二进制代码。 例子程序 这是一个前辈写的,非常详细 //main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main() { int b;// 栈 char s[] = "abc"; //栈 char *p2; //栈 char *p3 = "123456"; //"123456\0"在常量区,p3在栈上。 static int c =0;//全局(静态)初始化区 p1 = (char *)malloc(10); p2 = (char *)malloc(20); //分配得来得10和20字节的区域就在堆区。

strcpy(p1, "123456"); //123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。 } =============== C语言程序的内存分配方式 1.内存分配方式 内存分配方式有三种: [1]从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。 [2]在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。 [3]从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由程序员决定,使用非常灵活,但如果在堆上分配了空间,就有责任回收它,否则运行的程序会出现内存泄漏,频繁地分配和释放不同大小的堆空间将会产生堆内碎块。 2.程序的内存空间 一个程序将操作系统分配给其运行的内存块分为4个区域,如下图所示。 一个由C/C++编译的程序占用的内存分为以下几个部分, 1、栈区(stack)—由编译器自动分配释放,存放为运行函数而分配的局部变量、函数参数、返回数据、返回地址等。其操作方式类似于数据结构中的栈。 2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分配方式类似于链表。 3、全局区(静态区)(static)—存放全局变量、静态数据、常量。程序结束后由系统释放。 4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放。 5、程序代码区—存放函数体(类成员函数和全局函数)的二进制代码。 下面给出例子程序, int a = 0; //全局初始化区 char *p1; //全局未初始化区 int main() { int b; //栈 char s[] = "abc"; //栈 char *p2; //栈 char *p3 = "123456"; //123456在常量区,p3在栈上。 static int c =0;//全局(静态)初始化区 p1 = new char[10]; p2 = new char[20]; //分配得来得和字节的区域就在堆区。 strcpy(p1, "123456"); //123456放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。

相关文档
相关文档 最新文档