文档库 最新最全的文档下载
当前位置:文档库 › 柴油机过量空气系数的防熄火要求

柴油机过量空气系数的防熄火要求

柴油机过量空气系数的防熄火要求
柴油机过量空气系数的防熄火要求

F6L913柴油机功率输出不足的原因分析示范文本

文件编号:RHD-QB-K9560 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX F6L913柴油机功率输出不足的原因分析示范 文本

F6L913柴油机功率输出不足的原因 分析示范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1、空气滤清器堵塞 空气滤清器堵塞造成进气阻力增加、进入汽缸的空气量减少,致使柴油燃烧不完全、发动机动力不足。 故障排除:不论空气滤清器采用湿式还是干式,都应经常清洗空气滤清器芯子或清除纸质滤芯上的灰尘,必要时更换滤芯,保证空气滤清器清洁。 2、废气涡轮增压器故障 废气涡轮增压器的压气机和涡轮机的进气管路被

污物阻塞或漏气、轴承损坏,都能导致进入汽缸的空气量减少,致使柴油燃烧不完全,造成使柴油机的功率下降。 故障排除:当增压器出现上述情况时,应分别清洗进气管路、外壳,擦净叶轮表面的污物,拧紧接合面螺母和卡箍,检修或更换轴承等。 3、排气管或消音器阻塞 排气管或消音器阻塞会造成排气不畅通,排气阻力增大,充气效率下降,造成柴油机动力输出不是。 故障排除:经常检查排气管和消音器内积炭情况,若积炭太多,可采取机械疏通或化学清洗的办法进行清理,保证排气管和消音器排气畅通 4、供油提前角失准及柴油供给故障

1)供油提前角失准。供油提前角过大或过小会造成喷油时间过早或过晚,使柴油燃烧不充分、柴油机输出功率降低。 故障排除:松开高压泵传动轴上的联轴器紧固螺钉,按照要求重新调整供油提前角,并拧紧螺钉。 2)柴油滤清器阻塞,造成柴油流动阻力增大,进入高压泵的油量减少,喷入汽缸的柴油数量也相应减少,造成柴油机输出动力不足。 故障排除:经常检查、清洗柴油滤芯,必要时予以更换,保证柴油滤清器清洁。 3)低压油路阻塞或柴油管路打死弯,造成油路不畅通,柴油流动阻力增大。 故障排除:检查并重新安装低压柴油管路,必要时予以更换,以保证柴油管路畅通。 4)油路中有空气,造成喷油压力波动太大。

CEMS数据折算计算公式

Cems环保数据折算公式 流速 Vs = Kv * Vp 其中 Vs 为折算流速 Kv为速度场系数 Vp 为测量流速 粉尘 1 粉尘干基值 DustG = Dust / ( 1 – Xsw / 100 ) 其中 DustG 为粉尘干基值 Dust 为实测的粉尘浓度值 Xsw 为湿度 2 粉尘折算 DustZ = DustG * Coef 其中 DustZ 为折算的粉尘浓度值 DustG 为粉尘干基值 Coef 为折算系数,它的计算方式如下: Coef = 21 / ( 21 - O2 ) / Alphas 其中 O2 为实测的氧气体积百分比。 Alphas 为过量空气系数(燃煤锅炉小于等于折算系数为; 燃煤锅炉大于折算系数为; 燃气、燃油锅炉折算系数为 3粉尘排放率 DustP = DustG * Qs / 1000000 其中 DustP 为粉尘排放率 Dust 为粉尘干基值 Qs 为湿烟气流量,它的计算方式如下: Qs = 3600 * F * Vs 其中 Qs 为湿烟气流量 F 为测量断面面积 Vs 为折算流速 SO2 1 SO2干基值 SO2G = SO2 / ( 1 – Xsw / 100 ) 其中

SO2 为实测SO2浓度值 Xsw 为湿度 2 SO2折算 SO2Z = SO2G * Coef 其中 SO2Z 为 SO2折算率 SO2G 为SO2干基值 Coef 为折算系数,具体见粉尘折算 3 SO2排放率 SO2P = SO2G * Qsn / 1000000 其中 SO2P 为SO2排放率 SO2G 为SO2干基值 Qsn 为干烟气流量,它的计算方式如下: Qsn = Qs * 273 / ( 273 + Ts ) * ( Ba + Ps ) / 101325 * ( 1 – Xsw / 100 )其中 Qs 为湿烟气流量 Ts 为实测温度 Ba 为大气压力 Ps 为烟气压力 Xsw 为湿度 NO 1 NO干基值 NOG = NO / ( 1 – Xsw / 100 ) 其中 NOG 为NO干基值 NO 为实测NO浓度值 Xsw 为湿度 2 NO折算 NOZ = NOG * Coef 其中 NOZ 为 NO折算率 NOG 为NO干基值 Coef 为折算系数,具体见粉尘折算 3 NO排放率 NOP = NOG * Qsn / 1000000 其中 NOP 为NO排放率

柴油机功率不足的原因

柴油机功率不足的原因 1、空气滤清器不清洁 空气滤清器不清洁会造成阻力增加,空气流量减少,充气效率下降,致使发动机动力不足。应根据要求清洗柴油空气滤清器芯子或清除纸质滤芯上的灰尘,必要时更换滤芯。 2、排气管阻塞 排气管阻塞会造成排气不畅通,燃油效率下降。动力下降。应检查是否由于排气管内积炭太多而造成排气导阻力增加。一般排气背压不宜超过 3.3Kpa,平时应经常清降排气管内的积炭。 3、供油提前角过大或过小 供油提前角过大或过小会造成油泵喷油时间过早或过晚(喷油时间过早则燃油燃烧不充分,过晚则会冒白烟,燃油也会燃烧不充分),使燃烧过程不是处于最佳状态。此时应检查喷油传动轴接合器螺钉是否松动,如果松动,则应重新按照要求调整供油提前角,并拧紧螺钉。 4、活塞与缸套拉伤 由于活塞与缸套拉伤严重或磨损过,以及活塞环结胶造成摩擦损失增大,造成发动机自身的机械损失增大,压缩比减小,着火困难或燃烧不充分,下充气增大,漏气严重。此时,应更换缸套、活塞和活塞环。 5、燃油系统有故障 (1)燃油滤清器或管路内进入空气或阻塞,造成油路不畅通,动力不足,甚至着火困难。应清除进入管路的空气,清洗柴油滤芯,必要时更换。 (2)喷油偶件损坏造成漏油、咬死或雾化不良,此时容易导致缺缸,发动机动力不足。应及时清洗、研磨或换新。 (3)喷油泵供油不足也会造成动力不足,应及时检查、修理或更换偶件,并重新调整喷油泵供油量。 6、冷却和润滑系统有故障 柴油机过热,是由于冷却或润滑系统有故障所致,此种情况下会导致水温和油温过高,易出现拉缸或活塞环卡死现象。当柴油机排气温度增加时,应检查冷却器和散热器,清除水垢。 7、缸盖组有故障 (1)由于排气漏气引起进气量不足或进气中混有废气,继而导致燃油燃烧不充分,功率下降。应修磨气门与气门座的配合面,以提高其密封性,必要时换新。 (2)气缸盖与机体的接合面漏气会使缸体内的气进入水道或油道,造成冷却液进入发动机体内,若发现不及时会导致“滑瓦”或冒黑烟,从而使发动机动力不足。由于气缸垫损坏,变速时会有一股气流从缸垫冲出,发动机运转时垫片处会有水泡

烟气监测系统计算公式

烟气监测系统计算公式: 1. 流量 1.1原烟气流量(湿态) 【未用】 1.2净烟气流量 1.2.1工况下的湿烟气流量s Q : s s V F Q ??=3600 s Q ――工况下的湿烟气流量,h m 3; F ――监测孔处烟道截面积,2m ; s V ――监测孔处湿烟气平均流速,s m /。 1.2.2监测孔处湿烟气平均流速s V : s V = 流速仪输出值 1.2.3标准状态下干烟气流量sn Q : )1(273273101325sw s s a s sn X t P B Q Q -+?+?= sn Q ――标准状态下干烟气流量,m 3; sw X ――烟气湿度。 1.2.4烟气排放量 ∑=?=n i sni h Q n Q 1)1( ∑==24 1i hi d Q Q ∑==31 1i di m Q Q ∑==121i mi y Q Q 式中, Q h ——标准状况下干烟气小时排放量,m 3;

Q d ——标准状况下干烟气天排放量,m 3; Q m ——标准状况下干烟气月排放量,m 3; Q y ——标准状况下干烟气年排放量,m 3; Q sni ——标准状况下,第i 次采样测得的干烟气流量,m 3/h ; Q hi ——标准状况下,第i 个小时的干烟气小时排放量,m 3/h ; Q di ——标准状况下,第i 天的干烟气天排放量,m 3/h ; Q mi ——标准状况下,第i 个月的干烟气月排放量,m 3/h ; n ——每小时内的采样次数。 2.烟气湿度sw X : 222O O O sw X X X X '-'= 2O X ――湿烟气氧量,%; 2O X '――干烟气氧量,%。 3.过量空气系数α': 2 2121O X -='α 4.烟尘 4.1.1标准状态下干烟气的烟尘排放浓度 程截距烟尘方程斜率+烟尘方.dust dust C C ''=' 式中, dust C ''——实测的烟尘排放浓度,mg/m 3; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3。 4.1.2折算的烟尘排放浓度 α α'?'=dust dust C C 式中, dust C ——折算成过量空气系数为α时的烟尘排放浓度; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3; α' ——实测的过量空气系数;

空气流量计故障分析检测

空气流量计故障分析检测 空气流量计是用来计量发动机进气量的传感器,在汽车电控燃油喷射系统中,把空气流量信号和发动机转速信号一起作为喷油时间的基准信号。空气流量计的发展大体上经历了4代:L 型、D型、热线式、热模式。发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要,下面通过两个例子加以说明。 一、故障一 凌志LS400轿车高速闯车。发动机在原地加速时运转正常。当汽车行驶速度在120~14 0公里左右时,汽车会出现闯动的现象,有时闯动频繁,有时只是偶尔闯动,感觉好像是发动机 间歇断火。故障分析:发动机空载运转时正常,而故障只在120km/h车速以上时发生,或者说是有较大负荷时故障才出现,因此故障原因可能是发动机高速断火、断油、喷油量突然减少,或者是废气再循环、汽油蒸气回收系统、进气控制系统、氧传感器闭环控制系统等在高速时工作不正常造成的。检修:读取故障代码,无码检查点火系统,将示波器接到一个点火线圈的中央高压线,试车、闯车时点火高压为8KV~10KV,正常,点火波形良好;将示波器接到另一个点火线圈的中央高压线,再试车出现故障时点火波形也良好。后来将示波器逐个接到各缸的高压线,再试车,结果发现闯车时各缸的高压都正常,波形都止常,可见闯车的原因不是点火系统造成的,应查找其他方面的原因。将示波器接到第一缸喷油器控制端,试车,观察喷油时间的变化情况,闯车该气缸的喷油时间正常,为3.5ms左右。然后将示波器逐个接到其余气缸的喷油器控制端,再试车,观察喷油时间的变化情况,闯车时每个气缸的喷油时间都无异常。也不能说明故障是喷油量造成的。接上电脑检测故障诊断仪,读取数据流,从获得的数据来看,当系统由闭环控制进入开环控制时,车速在120km/h左右,是容易出现闯车的时候。断开氧传感器接线, 强迫发动机常处于开环控制,接着试车,故障依旧。其他数据都正常。最后怀疑可能是某个传感器的信号不稳定,影响了发动机的动态工作,而且这个信号在诊断仪上又看不出问题。关键的传感器有曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器、空气流量计、车速传感器等。将示波器逐个接到曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器,试车出现故障时这些信号都正常。将示波器接到空气流量计(涡流式)信号端,试车,出现故障时发

在线监测折算值和过量空气系数

关于CEMS中折算值和过量空气系数的说明 1什么是折算值 按照GB13271《锅炉大气污染物排放标准》的规定,实测 的锅炉烟尘、二氧化硫、氮氧化物的排放浓度,必须执行国标 GB/T16157规定,按下式进行折算: C 二 C — :-s 式中:C—折算成过量空气系数为a时的颗粒物或气态污染 物排放浓度,mg/m3; C'—标准状态下干烟气中颗粒物或气态污染物浓度, mg/m3; a —在测点实测的过量空气系数; a s—有关排放标准中规定的过量空气系数。 实测过量空气系数按下式计算: 21 -X O2 式中:X O2 —烟气中氧的体积百分数。 比如对于某锅炉,CEMS仪表测得的SO2浓度为500mg/m3 (C '500), 02浓度为8% ( X O2 =8),则实测的过量空气系数a =21/ (21-8) =1.6, 如果排放标准中规定了该锅炉的理论过量空气系数 =1.4,则S02折算后的排放浓度(折算值)为:500*1.6/1.4=571.4 mg/m3。

2、为什么要采用折算值 同样的锅炉,如果人为控制的进风量不同或烟道存在漏风 口,则测得的污染物排放浓度将不同,同时氧气含量也是不同的。 为避免因进风不同造成的测量值差异,对同种锅炉执行统一的标 准,做到客观、公平地评判排污状况,排放浓度使用了折算值,通过过量空气系数对测量浓度进行修正。 比如上面举的例子,虽然仪表测得的S02浓度为500mg/m3, 但该锅炉的氧气超标了,存在漏风或空气过量的问题,浓度不能真实反映锅炉的状况,采用折算后,修正为571.4 mg/m3,漏风或空气过量的影响被消除了。 3、排放标准中规定的过量空气系数 所谓过量空气系数,即燃料燃烧时,实际空气供给量与理论空气需求量的比值。锅炉排放标准中规定的过量空气系数与锅炉类型和功率相关,具体规定为:对于燃煤锅炉,功率小于等于45.5MW 的,过量空气系数采用1.8,功率大于45.5MW 的,过量空气系数采用1.4,对于燃气或燃油锅炉,过量空气系数采用1.2。 在实际描述中,有些锅炉的功率以t/h计,它与MW的换算关系为:0.7MW=1t/h,比如45.5MW 的锅炉相当于65t/h的锅炉。 锅炉的过量空气系数越高,表明该锅炉的燃烧效率越低,因 此燃煤锅炉的系数比燃油燃气锅炉要高,而小的燃煤锅炉的系数 比大的燃煤锅炉要高 过量空气系数越高,也就意味着氧可以越高,对于65t/h以 上的锅炉,其烟气理论氧含量为6%,而65t/h以下的锅炉,理 论氧含量为9.3%。对于某一锅炉,如果其烟气实测氧含量大于理论氧含量,则意味

柴油发电机功率要点

柴油发电机功率 柴油发电机功率 1. 、持续功率(COP ):在商定的运行条件下并按照制造商的规定进行维护保养,发电机组以恒定负荷持续运行且每年运行时数不受限制的最大功率。 2、基本功率(PRP ):在商定的运行条件下并按照制造商的规定进行维护保养,发电机组以可变负荷持续运行且每年运行时数不受限制的最大功率。24h 运行周期内运行的平均功率输出(Ppp )应不超过PRP 的70%,除非与RIC 发动机制造商另有商定。在要求允许的平均功率输出Ppp 较规定值高的应用场合,应使用持续功率COP 。 3、限时运行功率(LTP ):在商定的运行条件下并按照制造商的规定进行维护保养,发电机组每年运行时间可达500h 的最大功率。按100%限时运行功率,每年运行的最长时间为500h 。 4、应急备用功率(ESP ):在商定的运行条件下并制造商的规定进行维护保养,在市电一旦中断或在实验条件下,发电机组以可变负荷运行且每年运行时间可达200h 的最大功率。24h 运行周期内允许的平均功率输出应该不超过70%ESP,除非与制造商另有商定。 柴油发电机组与其负载匹配 数据中新柴油发电机组负载特性概述 要正确地选型备用柴油发电机组,了解负载的特性是非常重要的。负载类型一般分为电阻性(如电阻、电炉、白炽灯等)、电感性(如感应电动机、变压器等)、电容性(如电容器等)等线性负载和采用整流技术和SCR (晶闸管)技术的非线性负载(又称整流性负载)。 UPS 负荷 UPS 作为整流性设备,在采用单相或三相不控或相控整流时,因为整流器的输出端一般会配置直流母线滤波电容,所以输入电流呈瞬间脉动大电流特征,内部

空气流量计故障分析

空气流量计故障分析 近年来国产车中,电子控制燃油喷射系统应用越来越多,相应的维修技术问题不断出现,空气流量计就是典型的例子,故障诊断仪经常显示空气流量计故障。 空气流量计是用来度量发动机吸人空气量的传感器。在汽车电子控制燃油喷射系统中,把空气流量信号和发动机转速信号一起作为喷油时间的基准信号。 电子控制燃油喷射系统中,空气流量计按发展史分类如下: 第一代简称L型在节气门轴上设置一个连动的滑变电阻来测量节气门开度,进而通过转速信号及进气温度信号换算成进气量。目前已很少应用,多用于老车型,现有些车型用于辅助信号。 第二代简称D型在进气歧管中引出真空,该真空作用到电压感应片上,感应出电压值,在ECU 中计算出相应的进气压力,再参照进气截面积计算出进气量。主要应用于奥迪V6等车型。 第三代简称热线式其原理是ECU通过给热线通不同电流来保持热线恒温。当不同流量的空气流经热线时将带走不同的热量,这时的电流变化就成为进气量的度量。热线又通过内部的电桥,平衡掉进气温度对该电流的影响,故流经热线的电流就成为空气流量的精确度量,主要应用于都市高尔夫等 车型。 第四代简称热模式其工作原理与热线式基本相同,是热线式的改进型,目前应用最广,主要 应用于捷达2OV、奥迪1.8T等。 空气流量计故障诊断与维修 电子控制燃油喷射系统的ECU有故障存储功能,它将各传感器及执行元件的工作情况汇总起来,并与电脑内存储的固定程序进行比较,如其误差超出规定范围即作为故障存储,维修人员通过故障阅读器V.A.G1551能读到具体故障情况,这里存在一个相似故障的分辨问题,如空气流量信号与氧传感器信号发生矛盾,电脑将怎样输出?下面举例说明。 故障一: 故障现象捷达2OV怠速不稳,部分负荷冒黑烟,且有时换挡熄火。 检测过程电脑内故障存储为空气流量计故障,但具体检测空气流量计电路时情况正常,更换空气流量计,故障依旧,更换电脑后冷车正常,热车后故障依旧。这时再检测全车数据块,发现08数据组中第7组第2区氧传感器电压变化频率慢,正常变化每分钟2O-30次,此车平均只有5-6次, 说明氧传感器有故障。 维修结果更换氧传感器,故障排除。 故障分析此故障在于电脑内出现空气流量计信号与氧传感器信号矛盾,实际上是由于氧传感器失准,造成误调节,但从结果上看和空气流量计信号严重超差,造成氧传感无法调整是一样的。这

空气流量计波形分析

空气流量计(MAF)按结构原理可分为翼板式、热丝式、卡门涡旋式及电压位计式等几种,按信号输出类型又分为数字式和模拟式两种。 1)翼板式空气流量计,参见图1。 BOSCH翼板式空气流量计主要有两种:一种是随着空气流量的增加输出信号的电压升高,另一种是当空气流量加大时输出信号电压降低,这两种类型属于模拟电压量输出。 翼板式空气流量计的核心是一个可变电阻(电位计),它与空气翼板同轴连接,当空气流动的翼板也随之开启,随着翼板的开启角度变化,可变电阻(电位计)也随之转动。 翼板式空气流量计是一个三线传感器,其中两条是参考电压的正负端,另一条是可变电阻器的滑动触点臂,它向电脑提供与翼板转动角度成正比的输出电压信号。急加速时,翼板在空气流动动压作用下,超过正常摆动角度的过量信号,这就为控制电脑提供混合气加浓的控制信号。 这是一个非常重要的传感器,因为控制电脑依据这个信号来计算发动机负荷、点火正时、排气再循环控制及发动机怠速控制和其他参数,不良的空气流量计会造成喘振和怠速不良,以及发动机性能和排放问题。 试验方法一: 关闭所有附属电气设备,起动发动机,并使其怠速运转,当怠速稳定后,检查怠速时输出信号电压(图1中左侧波形)。做加速和减速试验,应有类似图中的波形出现。 ·将发动机转速从怠速加至油门全开,(加速时不宜太急)油门全开后持续2秒钟,但不要使发动机超速运转; ·再将发动机降至怠速运转,并保持2秒钟; ·再从怠速急加速发动机至油门全开,然后再收油门使发动机回至怠速; ·定住波形去察看机器。 波形结果(方法一) 测量出的电压值波形可以参照维修资料进行对比分析,正常翼板式空气流量计怠速时输出电压约为1V,油门全开的应超过4V,全减速(急抬油门)的输出电压并不是非常快地从全加速电压回到怠速电压,通常(除TOYOTA汽车外)翼板

柴油发电机组功率定义

柴油发电机组功率 1. 持续功率(COP):在商定的运行条件下并按照制造商的规定进行维护保养,发电机组以恒定负荷持续运行且每年运行时数不受限制的最大功率。 2. 基本功率(PRP):在商定的运行条件下并按照制造商的规定进行维护保养,发电机组以可变负荷持续运行且每年运行时数不受限制的最大功率。24h运行周期内运行的平均功率输出(Ppp)应不超过PRP的70%,除非与RIC发动机制造商另有商定。在要求允许的平均功率输出Ppp较规定值高的应用场合,应使用持续功率COP。 3. 限时运行功率(LTP):在商定的运行条件下并按照制造商的规定进行维护保养,发电机组每年运行时间可达500h的最大功率。按100%限时运行功率,每年运行的最长时间为500h。 4. 应急备用功率(ESP):在商定的运行条件下并制造商的规定进行维护保养,在市电一旦中断或在实验条件下,发电机组以可变负荷运行且每年运行时间可达200h的最大功率。24h运行周期内允许的平均功率输出应该不超过70%ESP,除非与制造商另有商定。 该标准同时也对发电机组运行的现场条件作出规定:现场条件由用户确定,在现场条件未知且未另做规定的情况下,应采取下列额定现场条件。 1) 绝对大气压力:89.9kPa(或海拔高度为1000m)。 2) 环境温度:40℃。 3) 相对湿度:60%。 通常柴油发电机组铭牌标称的输出功率分为备用功率(Standly Power)、常用功率(Prime Power)和连续功率(Consecution Power)。 1) 备用功率定义为发电机组在规定的维修周期之间和规定的环境条件下能够连续运行300h,每年最多500工作小时的最大功率。等同于国标和ISO标准中的限时运行功率(LTP)。一般适用于通信、楼宇等负载变化较多的偶然应急工况。 2) 常用功率定义为在规定的维修周期之间和规定的环境条件下,每年可能运行的时数不受限制的某一可变功率序列内存在的最大功率,等同于国标和ISO 标准中的基本功率(PRP)。一般适用于厂矿、军队等负荷变化较少的经常运行工

废气产生量计算方法

烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。 烧一吨柴油,排放2000×S%千克SO2,万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克; 砖瓦生产,每万块产品排放40-80 千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。 物料衡算公式: 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般。若燃煤的含硫率为1%,则烧1吨煤排放16公斤SO2 。 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油%,柴油。若含硫率为2%,燃烧1吨油排放40公斤SO2 。 ¬排污系数:燃烧一吨煤,排放万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放-万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】 ~,即用水量的70-90%。 【生活污水排放系数】采用本地区的实测系数。。 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】 按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘 原煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法 当废气排放量有实测值时,采用下式计算:

空气流量计的检测方法

空气流量计的检测方法 空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU 根据空气计量传 感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传 感器一一空气流量计。②间接测量方法传感器一一进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1) 机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO 调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2) 卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3) 热线式空气流量计。热线式空气流量计按其热线形又分为 3 种。 ①热丝式一一将加热丝均匀分布在计量通道内。热丝式空气流量计(图1) 精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由 于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导 较差,影响计量精度。

关于CEMS折算值和过量空气系数

关于CEMS 中折算值和过量空气系数的说明 1、什么是折算值 按照GB13271 《锅炉大气污染物排放标准》的规定,实测的锅炉烟尘、二氧化硫、氮氧化物的排放浓度,必须执行国标GB/T16157规定,按下式进行折算: s C C αα?=' 式中: C —折算成过量空气系数为α时的颗粒物或气态污染物排放浓度,mg/m 3; C ’ —标准状态下干烟气中颗粒物或气态污染物浓度,mg/m 3; α—在测点实测的过量空气系数; αs —有关排放标准中规定的过量空气系数。 实测过量空气系数按下式计算: 2 2121O X -=α 式中:2O X —烟气中氧的体积百分数。 比如对于某锅炉,CEMS 仪表测得的SO2浓度为500mg/m3(C ’=500),O2浓度为8%(2O X =8),则实测的过量空气系数α=21/(21-8)=1.6, 如果排放标准中规定了该锅炉的理论过量空气系数αs =1.4,则SO2折算后的排放浓度(折算值)为:500*1.6/1.4=571.4 mg/m3。 2、为什么要采用折算值 同样的锅炉,如果人为控制的进风量不同或烟道存在漏风口,则测得的污染物排放浓度将不同,同时氧气含量也是不同的。为避免因进风不同造成的测量值差异,对同种锅炉执行统一的标准,做到客观、公平地评判排污状况,排放浓度使用了折算值,通过过量空气系数对测量浓度进行修正。 比如上面举的例子,虽然仪表测得的SO2浓度为500mg/m3,但该锅炉的氧气超标了,存在漏风或空气过量的问题,浓度不能真实反映锅炉的状况,采用折算后,修正为571.4 mg/m3,漏风或空气过量的影响被消除了。

3、排放标准中规定的过量空气系数 所谓过量空气系数,即燃料燃烧时,实际空气供给量与理论空气需求量的比值。锅炉排放标准中规定的过量空气系数与锅炉类型和功率相关,具体规定为:对于燃煤锅炉,功率小于等于45.5MW的,过量空气系数采用1.8,功率大于45.5MW的,过量空气系数采用1.4,对于燃气或燃油锅炉,过量空气系数采用1.2。 在实际描述中,有些锅炉的功率以t/h计,它与MW的换算关系为:0.7MW=1t/h,比如45.5MW的锅炉相当于65t/h的锅炉。 锅炉的过量空气系数越高,表明该锅炉的燃烧效率越低,因此燃煤锅炉的系数比燃油燃气锅炉要高,而小的燃煤锅炉的系数比大的燃煤锅炉要高。 过量空气系数越高,意味着氧含量越高,对于65T以上的锅炉,其烟气理论含氧量为6%,而65T以下的锅炉,其烟气理论含氧量为9.3%,如果其烟气实测含氧量大于理论含氧量,意味着折算值要大于仪表的测量值。 由于采用了折算值进行排污评估,CEMS测得的氧浓度越小越好,过量空气系数选的越大越好。实际情况并不以客户一直为转移。 实测氧含量与过剩空气系数对比

什么是柴油机的标定功率

什么是柴油机的标定功率? 发布者:发布时间:2007-10-双击自动滚屏 2 阅读:438次 柴油机的标定功率:根据柴油机的特性、用途和使用特点而确定的有效功率的最大使用界限,叫做柴油机的标定功率。目前我国试行的国家标准中将标定功率分为下述四种,在给定标定功率的同时,必须给出其相应的转速。 一、15分钟功率柴油机允许运转15分钟的最大有效功率。适用于需要有短时良好的超负荷和加速性能的汽车、摩托车等。 二、1小时功率柴油机允许连续运转1小时的最大有效功率。适用于需要一定功率贮备以克服突增负荷的拖拉机、机车、船舶等。 三、12小时功率柴油机允许连续运转12小时的最大有效功率。适用于仅需要在12小时内连续运转并充分发柴油机功率的拖拉机、工程机械、排灌机械等。 四、持续功率柴油机允许长时间运转的最大有效功率。适用于需要长期持续运转的排灌机械、电站、船舶等。 根据使用特点,生产厂在柴油机铭牌一般标明上述四种功率中的1至2种功率。这些标定功率是在柴油机的不同调整状态下得到的,实际使用时,每台柴油机只能根据主要用途进行调整,即只有一种标定功率。拖拉机柴油机的标定功率通常按12小时连续工作来调整,即标定为12小时功率。

柴油机功率 | [<<][>>]

1h功率内燃机允许连续运转1h的最大有效功率。适用于工业用拖拉机、工程机械、内燃机车、船舶等用途的内燃机功率标定。 12h功率内燃机允许连续运转12 h的最大有效功率。适用于农用拖拉机,农业排灌,内燃机车,内河船舶等用途的内燃机功率标定。 持续功率内燃机允许长期连续运转的最大有效功率。适用于农业排灌,远洋轮船及电站等用途的内燃机功率标定。 按照中国国家标准标定的柴油机功率称为标定功率。但是标准中并未规定标定功率与极限功率的关系,因此,标定功率只能通过生产实践合理确定。 功率修正柴油机运行时,外界的大气压力、大气温度和相对湿度对柴油机充气量有很大影响。大气状态的变化引起柴油机充气量的变化,进而影响到柴油机的性能。因此,柴油机的功率标定和其他性能测定必须有一个基准,中国国家标准规定,测定标定功率时的标准大气条件是:①陆用柴油机:大气压力101.3k Pa,环境温度25℃,相对湿度60%;③船用柴油机∶大气压力101.3kP a,环境温度35℃,相对湿度60%。 由于地区间气候、地理条件的差异,要求所有柴油机制造厂模拟标准大气条件进行柴油机试验非常困难。因此,需要一种将试验大气条件下测得的功率换算到标准大气条件下柴油机所应发出功率的办法,这就是柴油机

过量空气系数及脱硫工艺图PH值

一、实测大气污染物浓度有时为什么要折算? 在实际生产中,锅炉或窑炉使用燃料燃烧时,一般都会加入过量空气(使用鼓风机),一方面,可使燃料充分燃烧,但也出现了另一个问题,排气筒排放的污染物浓度产生了“稀释”作用,大大降低了排放浓度,会造成污染物排放浓度“虚假”达标,这是不允许的。 为了防止排污单位在排放大气污染物时,加大鼓引风机的风量,人为减少污染物的浓度,达到稀释排放从而达标(浓度标准)的目的,从而得到真实的污染物排放浓度,就必有一个统一的换算标准,于是引入“过量空气系数”的概念。 当然,判断排气筒是否达标不是用“排放浓度”一个指标。在《大气污染物综合排放标准》中规定了“最高允许排放浓度”和“最高允许排放速率”需同时达标才算达标。“最高允许排放速率”的单位是kg/h,计算公式为:污染物排放浓度(mg/ m3)×烟气流量(m3 /h),此式可说明,无论如何“稀释”,计算出来的排放量都是正确的。 从上式可知,计算排放速率时,无需使用折算后的排放浓度。 二、过量空气系数概念及意义 1、过量空气系数:燃料燃烧时实际空气需要量与理论空气需要量之比值。用“α”表示。 2、过量空气系数的意义:炉子在操作过程中,过量空气系数太大,说明在燃烧时实际鼓风量较大,氧气充 足,对完全燃烧有利,但过大的鼓风量必然产生过大的烟气,使烟气带走的热量增加,炉膛温度下降,传热不好,浪费燃料。过量空气系数太小,说明实际鼓风量小,氧气不充足,造成燃烧不完全,浪费燃料,炉内传热也不好。 因此,合理的过量空气系数应该既能保证燃料完全燃烧,又能使各项热损失降至最小。 3、过量空气系数的确定。过量空气系数可用仪器实测,实测的过量系数不一定是最佳的,只是反映炉子的 真实情况。为此,国家针对不同的炉窑或锅炉也规定了相应的过量空气系数。两者经过对比,则可折算真实的污染物排放浓度。 4、折算公式:折算排放浓度=实测浓度×(实测过量空气系数/国家规定的过量空气系数)。 三、国家规定的空气过剩系数 1、《工业炉窑大气污染物排放标准》(GB9078-1996) 除冲天炉(用掺风系数)、熔炼炉、铁矿烧结炉(用实测浓度)外。其它工业炉窑过量空气系数规定为1.7。 2、《火电厂大气污染物排放标准》(GB13223-2003) 过量空气系数(α): 燃煤锅炉 α=1.4 燃油锅炉 α=1.2 燃气锅炉 α=3.5 垃圾焚烧标准GWKB 3-2000有空气系数。 下表基准氧3.5是65吨以下,如果是3%则锅炉65吨以上; 燃煤锅炉65吨以下基准氧是9%

废气产生量计算方法

废气产生量计算方法-CAL-FENGHAI.-(YICAI)-Company One1

烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。 烧一吨柴油,排放2000×S%千克SO2,万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克; 砖瓦生产,每万块产品排放40-80千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。 物料衡算公式: 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般。若燃煤的含硫率为1%,则烧1吨煤排放16公斤SO2 。 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油%,柴油。若含硫率为2%,燃烧1吨油排放40公斤SO2 。 ¬排污系数:燃烧一吨煤,排放万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放-万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】 ~,即用水量的70-90%。 【生活污水排放系数】采用本地区的实测系数。。 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。【生活及其他烟尘排放量】 按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘 原煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法 当废气排放量有实测值时,采用下式计算: Q年= Q时× B年/B时/10000 式中: Q年——全年废气排放量,万标m3/y; Q时——废气小时排放量,标m3/h; B年——全年燃料耗量(或熟料产量),kg/y; B时——在正常工况下每小时的燃料耗量(或熟料产量),kg/h。 2.系数推算法 1)锅炉燃烧废气排放量的计算 ①理论空气需要量(V0)的计算a. 对于固体燃料,当燃料应用基挥发分Vy>15%(烟煤),计算公式为:V0= ×QL/1000+[m3(标)/kg] 当Vy<15%(贫煤或无烟煤), V0=QL/4140+[m3(标)/kg] 当QL<12546kJ/kg(劣质煤), V0=QL对于液体燃料,计算公式为:V0= ×QL/1000+2[m3(标)/kg] c. 对于气体燃料,QL<10455 kJ/(标)m3时,计算公式为: V0= × QL/1000[m3/ m3]

【知识】柴油机与螺旋桨特性(一)

【知识】柴油机与螺旋桨特性(一) 重点:柴油机特性的分类,速度特性和负荷特性。难点:推进特性和限制特性。 单元一概述 一、柴油机的工况1.发电机工况转速恒定2.螺旋桨工况N=Cn3 3.其它工况转速和扭矩之间没有一定的关系。 二、柴油机特性的分类1.柴油机特性柴油机的主要性能指 标和工作参数(如排气温度Tr、最高爆发压力pz、增压压力pk等)随运转工况变化的规律称为柴油机的特性。把这 种变化规律在坐标上用曲线的形式表示出来,这种曲线称为 柴油机的特性曲线。2.目的(1)评价柴油机的性能(2)确定柴油机工况(3)分析影响特性的因素(4)检测柴油机的状态 三、柴油机特性的分类Ne=Cpeni 1)速度特性pe不变,n改变2)负荷特性n不变,pe改3)推进特性n和pe均改变化 单元二速度特性 1.概念:将喷油泵油量调节杆固定在某一位置,改变柴油 机外负荷以改变其转速,测量各转速下的功率Ne、扭矩Me (或平均有效压力pe)、有效耗油率ge和排气温度Tr等随

转速的变化规律。根据喷油泵油量调节机构固定的位置不同, 有全负荷速度特性(亦称外特性)。部分负荷速度特性和超 负荷速度特性。2.全负荷速度特性(1)概念:将喷油泵油量调节杆固定在标定供油量位置,改变柴油机外负荷以改变 其转速,测量各转速下的功率Ne、扭矩Me(或平均有效压力pe)、有效耗油率ge和排气温度Tr等随转速的变化规律。(2)标准环境状况:(3)柴油机功率的标定:我国国家标 准规定了内燃机标定功率分为15分钟功率、1小时功率、12小时功率、持续功率四级。15分钟功率:柴油机允许连续运行15分钟的最大有效功率。商船不允许使用这么大的 功率。可作为军用车辆和舰艇的追击功率。1小时功率:柴油机允许连续运行1小时的最大有效功率。可作为商船的超 负荷功率。是最大持续功率的110%。1小时功率还可作为拖拉机、工程机械的最大使用功率。12小时功率:柴油机允许连续运行12小时的最大有效功率。可以作为拖拉机、工 程机械的正常使用功率。持续功率:柴油机允许长期连期运 行的最大有效功率。船舶柴油机就用它来标定功率,并同时 标定其相应转速。我们通常所说的标定功率就是指这种功率, 标定工况就是指这种功率及其相应转速。国外船用柴油机常 用的几种功率(工况)名称MCR:最大持续功率,同时标 有相应的转速。原含义相当于国家标准的持续功率标定工况, 是设计选配螺旋桨的依据。OR:超负荷功率工况。其功率

两例空气流量计故障的深入探讨

两例空气流量计故障的深入探讨 发表时间:2013-01-21T09:46:24.297Z 来源:《新校园》学习版2012年第9期供稿作者:张秀华 [导读] 发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要。周丽萍(新疆兵团技师培训学院,新疆乌鲁木齐830054) 摘要:本文通过两例空气流量计的故障,讲述了电控发动机工作不稳定时的检修过程,需要用到的检测仪器,检查的关键对象,说明了周密地分析故障原因、灵活运用检测仪器和认真分析检测数据的重要性,避免检查过程中走弯路和误诊。 关键词:空气流量计;故障诊断;示波器;喷油时间 发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要。下面通过两个例子说明。 故障一:凌志LS400 轿车高速闯车。发动机在原地加速时运转正常,当汽车行驶速度在120~140km/h 左右时,汽车会出现闯动的现象,有时闯动频繁,有时只是偶尔闯动,感觉好像是发动机间歇断火。 故障分析:发动机空载运转时正常,而故障只在120km/h车速以上时发生,或者说是有较大负荷时故障才出现,因此故障原因可能是发动机高速断火、断油、喷油量突然减少,或者是废气再循环、汽油蒸汽回收系统、进气控制系统、氧传感器闭环控制系统等在高速工作时不正常造成的。 检修:读取故障代码,无码。 检查点火系统,将示波器接到一个点火线圈的中央高压线,试车,闯车时点火高压为8~10KV,正常,点火波形良好;将示波器接到另一个点火线圈的中央高压线,再试车,出现故障时点火波形也良好。后来将示波器逐个接到各缸的高压线,再试车,结果发现闯车时各缸的高压都正常,波形都正常,可见闯车的原因不是点火系统造成的,应查找其他方面的原因。 将示波器接到第一缸喷油器控制端,试车,观察喷油时间的变化情况,闯车时该气缸的喷油时间正常,为3.5ms 左右。然后将示波器逐个接到其余气缸的喷油器控制端,再试车,观察喷油时间的变化情况,闯车时每个气缸的喷油时间都无异常。也不能说明故障是喷油量造成的。 接上scanner MT2500 故障诊断仪,读取数据流,从获得的数据来看,当系统由闭环控制进入开环控制时,车速在120km/h 左右,是容易出现闯车的时候。断开氧传感器接线,强迫发动机常处于开环控制,接着试车,故障依旧。其他数据都正常。 最后怀疑可能是某个传感器的信号不稳定,影响了发动机的动态工作,而且这个信号在诊断仪上又看不出问题。关键的传感器有曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器、空气流量计、车速传感器等。 将示波器逐个接到曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器,试车,出现故障时这些信号都正常。将示波器接到空气流量计(涡流式)信号端,试车,出现故障时发现矩形波信号有偶尔中断的现象,接着测量其电源端与接地端的工作电压,出现故障时,电压为稳定的5V,电压正常。说明该故障是空气流量计高速时有时信号输出不正常所致。将检查情况告知车主,车主说该空气流量计不是他的,前段时间曾在另一修理厂检修过其他方面的故障,回来后就发现了现在这个问题,怀疑被人调换了空气流量计,后来找到原修理厂,要回了原件,装回后汽车工作恢复正常。 故障二:现代Elantra 1.6 轿车出现冒黑烟、怠速游车的故障,而且黑烟随加速而增多,油耗大。 分析:黑烟随加速而增多,油耗大,应该是喷油量偏多,混合气过浓造成的。 检修:先读故障代码,诊断盒在离合器右侧的保险盒下方,接上发光二极管(该车无CHECK 灯),读到21 号代码(水温传感器信号不良),检查水温传感器的插头有油污,清洁后故障代码可以清除,但故障依旧。 接上金德K8 诊断仪,读取数据流,热车怠速的喷油时间为8ms 左右(正常为2~3ms),空气流量计的输出信号频率在80~1200Hz (正常为30~40Hz)之间快速变动,发动机转速在700~1100RPM 之间变动,其他信号参数基本正常。 从测量数据来看,很有可能是空气流量计信号不正常而引起喷油量异常,引起故障;也有可能是其他方面的原因造成发动机游车后,进气波动太大而引起空气流量计信号不正常的,不过前者的可能性更大一些。 为了进一步确定空气流量计是否良好,拆下空气滤清器,接通点火开关,用电吹风对着空气流量计吹气,在“进气量”稳定的情况下,空气流量计的信号仍然波动很大,说明空气流量计有故障。 后来又用信号模拟仪输出矩形波信号来代替空气流量计信号,当频率为35Hz 时,喷油量为2.6ms,发动机怠速运转平稳,不冒黑烟;将频率调到110Hz(该仪器只有四级调节),喷油时间略微上升,发动机也运转平稳,不冒黑烟,因此可以断定该故障是由空气流量计引起的。 订购新的空气流量计换上,起动发动机,发动机运转正常,不冒黑烟。再次读取数据,正常怠速时喷油时间为2.6ms 左右,空气流量计的输出信号为30Hz 左右。发动机故障排除。 深入探讨:在第一案例中,用示波器测量点火和喷油的参数,以及使用故障诊断仪读取数据流,都不能发现问题。后来考虑到检测仪器显示刷新率的问题,然后通过分析传感器信号的影响,捕捉到了空气流量计瞬间工作失常的信号。在第二案例中,从检测结果和故障现象来看,给人感觉就是空气流量计原因造成的。但是,其他原因也有可能造成类似的故障,如ECU有故障,笔者就曾有过此类故障的误诊。 通过上述两个例子来看,故障诊断过程中除了要灵活运用检测仪器,还要认真分析检测结果,不能盲目地信赖和依赖检测数据,否则会陷入困境或者走弯路,甚至误诊。

相关文档
相关文档 最新文档