文档库 最新最全的文档下载
当前位置:文档库 › 羰基二咪唑促进的酰胺化偶联

羰基二咪唑促进的酰胺化偶联

羰基二咪唑促进的酰胺化偶联
羰基二咪唑促进的酰胺化偶联

N,N′-Carbonyldiimidazole-Mediated Amide Coupling:Significant Rate Enhancement Achieved by Acid Catalysis with Imidazole·HCl

Emily K.Woodman,Julian G.K.Chaffey,Philip A.Hopes,*David R.J.Hose,and John P.Gilday*

AstraZeneca,Global PR&D,A V lon Works,Se V ern Road,Hallen,Bristol BS107ZE,U.K.

Abstract:

Over a series of10aromatic amines we show the rate of CDI mediated amidation to be signi?cantly enhanced upon introduction of imidazole·HCl as a proton source for acid catalysis.Our work supports and provides an application for previous investigations into the imidazolium effect,thus increasing the scope of CDI as an amide-coupling reagent with aromatic amines.The in?uence of the relative p K a of the amines studied on the rate of reaction was also investigated.

Introduction

N,N′-Carbonyldiimidazole(CDI)is one of several commonly used reagents for coupling carboxylic acids with aliphatic or aromatic amines to form amides1(Scheme1).Since its initial development as a reagent in19602its applicability has been shown both in small-scale research and in large-scale manu-facture.3

CDI(2)has several bene?ts as an amide-coupling reagent in large-scale manufacture.It is relatively cheap and readily available in kilogram quantities,and the only byproducts are carbon dioxide and imidazole which,being relatively benign, are unlikely to cause problems on scale up(Scheme1).These bene?ts make CDI(2)an excellent reagent for activating amide-coupling reactions at scale;however,CDI(2)is not without its drawbacks.Slow reaction rates between aromatic amines and the CDI intermediates4have limited the scope of the reaction in the pharmaceutical and the?ne chemicals industries.

CDI(2)was used recently for an amide coupling reaction in an AstraZeneca project.The coupling,involving two aromatic substrates,proceeded at a satisfactory rate in the laboratory, but the rate was observed to be signi?cantly retarded upon scale up to the large-scale laboratory(LSL).Initial suggestions were that scale-up factors such as changes in rate of carbon dioxide removal and in batch water content had led to the rate retard-ation.The in?uence of carbon dioxide on the rate of a CDI-mediated amide coupling reaction has already been investigated by Vaidyanathan and co-workers,5but it was thought that in our case the reduction in water content,reducing proton availability,was the overriding factor.Following this,we initiated a work programme on a model system in order to gain a better understanding of the reaction mechanism and those factors that would affect the robustness of the process.

The mechanism for the reaction of acyl-imidazole intermedi-ates with nucleophilic reagents has been reported,6and it has been shown that signi?cant rate improvements can be achieved through use of a cationic imidazolide intermediate(7)(Scheme 2)in reactions with nucleophiles.7This imidazolium effect4has been applied in the case of aliphatic amines and demonstrated to be bene?cial to the rate of CDI-mediated amidations,due to the increased reactivity of the intermediate containing a pro-tonated or methylated imidazole leaving group.To our know-ledge there is no precedent for the application of the imidazo-lium effect to achieve rate enhancements in amide-coupling reactions with aromatic amines.

Consideration of the literature led us to devise a hypothesis that the addition of a weakly acidic compound to the amide coupling reaction would have two advantageous effects.First, it would act as a proton source that is required in the proton transfer steps,and second it would result in the partial protonation of the imidazolide(3),leading to the more reactive intermediate(7a).Therefore,the weakly acidic compound would not only lead to the required increased rate of reaction, but it would also result in a more robust process.Whilst the option of using methylating agent,such as methyl iodide,was considered,it was not pursued as Jencks and co-workers have previously shown that methylated and protonated intermediates are equivalent in the case of weakly nucleophilic amines.6,7In addition,it is desirable to avoid the use of toxic alkylating reagents such as methyl iodide.

Our choice of weakly acidic compound was required to meet a number of criteria:it had to be cheap and readily available in kilogram quantities;it must be easily removed from the reaction mixture with little or no modi?cations to the current work-up procedure;it must not lead to the formation of impurities that may affect the downstream chemistry;and?nally it must be acidic enough to increase the concentration of the protonated intermediate(7a),but not suf?ciently acidic to signi?cantly protonate the nucleophilic amine.To this end,imidazole·HCl was selected as it meets all of the above requirements and imidazole is already present in the reaction mixture.We hypothesised that the aqueous disassociation constant of imidazole·HCl(p K a)7.0)8would be suf?ciently acidic to

*To whom correspondence should be addressed.Telephone:+44117 9385456.Fax:+441179385081.E-mail:Philip.Hopes@https://www.wendangku.net/doc/d314691735.html,; John.Gilday@https://www.wendangku.net/doc/d314691735.html,.

(1)Montalbetti,C.A.G.N.;Falque,V.Tetrahedron2005,61,10827.

(2)Paul,R.;Anderson,G.W.J.Am.Chem.Soc.1960,82(17),4596.

(3)Dale,D.J.;Dunn,P.J.;Golighty,C.;Hughes,M.L.;Levettt,P.C.;

Pearce,A.K.;Searle,P.M.;Ward,G.;Wood,https://www.wendangku.net/doc/d314691735.html,.Process Res.De V.2000,4,17.

(4)Grzyb,J.A.;Shen,M.;Yoshina-Ishii,C.;Chi,W.;Stanley Brown,

R.;Batey,R.A.Tetrahedron2005,61,7153.

(5)Vaidyanathan,R.;Kalthod,V.G.;Ngo,D.P.;Manley,J.M.;Lapekas,

https://www.wendangku.net/doc/d314691735.html,.Chem.2004,69,2565–2568.(6)Oakenfull,D.G.;Salvesen,K.;Jencks,W.P.J.Am.Chem.Soc.1971,

93,188.

(7)Wolfenden,R.;Jencks,W.P.J.Am.Chem.Soc.1961,83,4390.

Organic Process Research&Development2009,13,106–113

106?Vol.13,No.1,2009/Organic Process Research&Development10.1021/op800226b CCC:$40.75 2009American Chemical Society Published on Web12/05/2008

partially protonate the imidazolide intermediate (3)(predicted p K a )3.7)9whilst ensuring suf?cient unprotonated amine was present to carry out ef?cient nucleophilic attack.

We chose to investigate a series of 10aromatic and heteroaromatic amines (Table 1)that span 12p K a units (based upon aqueous p K a predictions),which would cover a range of reaction rates.This gave us the opportunity to investigate both the effect of using imidazole ·HCl for acid catalysis and the in?uence of the amine,or more speci?cally the p K a of the amine on the reaction.This paper reports the results of our investiga-tions into these 10amines (Table 1).10

Results and Discussion

Each amine was investigated by carrying out the amidation reaction with benzoic acid (8)in two steps (Scheme 3).In the ?rst step the imidazolide intermediate (3)was formed in greater than 97%conversion.The reaction mixture was then heated to 50°C before the addition of the amine (4).The progress of the amidation reaction was monitored by HPLC,using a butylamine quench to facilitate analysis.In each case the reaction was carried out both with and without acid catalysis in order to give a direct comparison of rates.NMP was used as the reaction solvent for all reactions to ensure complete dissolution of all reactants and intermediates.Figure 1shows a representative example of the results collected.11

Figure 1demonstrates a signi?cant decrease in reaction lifetime on changing the noncatalysed reaction conditions (~5days)to those with acid catalysis (~5h).All of the reactions involving anilines follow analogous reaction pro?les,although

the results for the heterocyclic amines deviate from the trend.Table 2lists each of the amines studied together with the lifetimes (de?ned as time to >90%conversion by quantitative HPLC)of their reactions with benzoic acid both with acid catalysis and without acid catalysis at 50and 100°C where applicable.

Using numerical methods,12the rate constants for the reactions of each amine under both acidic and nonacidic conditions were determined (Table 3).It has been assumed for the purposes of ?tting the data that the reactions obey second-order kinetics.

Only the results from the series of anilines (4a -4g )will be considered initially,ignoring the heterocycles (4h -4j ).Through-out the series of anilines the rate constant is seen to increase by 20-fold on average when the reaction is carried out under acid catalysis compared to being carried out without acid catalysis.This difference in rate demonstrates that using imidazole ·HCl as a proton source for acid catalysis in CDI-mediated amide-coupling reactions does lead to an increase in the rate of reaction between the imidazolide intermediate and the amine within this series of anilines.The Br?nsted-type plot (Figure 2)demonstrates strong correlation between the aqueous p K a of the anilines and their corresponding logarithmic rates of reaction.

The plot shows clearly that the rate of reaction,both in the catalysed and uncatalysed cases,decreases as the p K a of the amine decreases,re?ecting the decreasing nucleophilicity of the amine.The strong correlation (R 2>0.97)in each of the cases suggests that across the series of anilines the mechanism and rate-determining step of the reaction is consistent.However,the fact that the two correlations are distinct implies that the rate-determining step differs between the two sets of conditions.These observations support our suggestion that one rate-determining step,in the presence of imidazole ·HCl,is controlled by the protonated intermediate,whereas the other,without imidazole ·HCl present,is not.

Whilst the results for the anilines clearly show an increase in reaction rate when the reaction is carried out with acid catalysis,the results for the heterocyclic amines are not as conclusive.The rate of reaction increases by an order of magnitude with acid catalysis compared to the rate of the uncatalysed reaction in the case of 4-aminopyrimidine (4h ),which is consistent with the trend seen in the anilines.However,in the case of 4-aminopyridine (4j )the trend is reversed,and the rate of reaction is seen to decrease by 6-fold under acid

(8)Bonvicini,P.;Levi,A.;Lucchini,V.;Modena,G.;Scorrano,

G.J.Am.

Chem.Soc.1973,95,5960.

(9)ACD Labs pKa Database,Version 10.01;Advanced Chemistry

Developments Inc.:Toronto,Canada,2007.

(10)References for quoted p K a ’s:(a)Willi,A.V.;Meirer,W.Hel V .Chim.

Acta 1956,39,318.(b)Bolton,P.D.;Hall,F.M.Aust.J.Chem.1967,20,1797.(c)Bolton,P.D.;Hall,F.M.J.Chem.Soc.1969,B ,259.(d)ACD Labs pKa Database,Version 10.01;Advanced Chemistry Developments Inc.:Toronto,Canada,2007.(e)Sheppard,W.A.J.Am.Chem.Soc.1962,84,3072.(f)Fickling,M.M.;Fischer,A.;Mann,B.R.;Packer,J.;Vaughan,J.J.Am.Chem.Soc.1956,81,4226.(g)Gold,V.;Tomlinson,C.J.Chem.Soc.1971,B ,1707.(h)Fischer,A.;Galloway,W.J.;Vaughan,J.J.Chem.Soc.1964,3591.(i)Bender,M.;Chow,Y.J.Am.Chem.Soc.1959,81,3929.(j)Albert,A.;Goldacre,R.;Phillips,J.N.J.Chem.Soc.1948,2240.

(11)A full set of reaction pro?les can be found in the Supporting

Information.

(12)The ?tting of the experimental data was performed using Dynochem

V ersion 3.2.1.0.;Performance Fluid Dynamics (P.F.D.)Limited:Dublin,Ireland,2007.

Scheme 1

Scheme 2

Vol.13,No.1,2009/Organic Process Research &Development

?

107

catalysis,implying that the proton source is retarding the reaction rate rather than accelerating it.

No rate constants are reported for2-aminopyrazine(4i)as, at50°C,no reaction was seen either with or without acid catalysis over a6-day period.It seems that under the conditions chosen4i is simply too unreactive.However,by increasing the reaction temperature to100°C the reaction could be driven to completion within24h with acid catalysis(6times faster than without acid catalysis).

The clear correlations seen between p K a and reaction rate in the Br?nsted-type plot shown in Figure2are lost if the heterocyclic amines are included.The loss of correlation could imply that the heterocyclic amines react V ia a different rate-determining step from that of the anilines.

The Hammett plot13(Figure3)for the series of anilines shows a reasonable linear relationship for both the acidic and nonacidic processes.The3-chloro-4-?uoroaniline is an obvious and unexplained outlier.The gradients of the regression lines, corresponding to F of the Hammett equation,are both negative (-3.66and-3.56for the acidic and nonacidic processes, respectively),indicating that electron-donating groups on the aniline increases the rate of reaction through the stabilisation of the developing positive charge at the reactive centre in the transition state.The values of F are not dissimilar to F obtained for the reaction of a series of anilines with benzoyl chloride in benzene at25°C(F)-2.69).14The very similar values of F obtained for the acidic and nonacidic processes suggest that, from the perspective of the aniline,the reaction mechanism is virtually identical in both regimes.This lends additional support that the acidic conditions activate the benzoyl imidazolide to attack(Table4).

During our work,we have assumed that the imidazolium effect proposed by Jencks,and named as such by Batey,is correct.We decided to explore this further through density functional theory(DFT)calculations.In principle the benzoyl imidazolide could protonate either on the nitrogen atom(7a) or the carbonyl oxygen(12)(Scheme4).Either structure would activate the carbonyl group to nucleophilic attack.

The gas-phase proton af?nities15of benzoyl imidazolide(9) were calculated16at the B3LYP/6-31+G*//B3LYP/6-31G*level of theory.The results obtained indicate that the protonation of the nitrogen atom is preferred(940.7kJ mol-1)over protonation of the carbonyl oxygen(827.2and833.9kJ mol-1for the Z-(13)Hammett,L.P.

Chem.Re V.1935,17(1),125.

(14)Sykes,P.A Guidebook to Mechanism In Organic Chemistry,6th ed.;

Longman Group Ltd.:Harlow,1986;p364.

(15)The proton af?nity is de?ned as the negative of the enthalpy change

in the gas-phase reaction between a proton and the chemical species

concerned,usually an electrically neutral species,to give the conjugate

acid of that species.

(16)See Supporting Information for more details of the calculations. Table1.Amines investigated together with their aqueous

p K a’s and the amides formed

a Value in parentheses refers to the p K a of the ring nitrogen.

Scheme3

108?Vol.13,No.1,2009/Organic Process Research&Development

and the E -oxonium ions respectively).The energy difference of over 100kJ mol -1indicates that the protonation of the oxygen is virtually insigni?cant compared to that of the nitrogen atom of the imidazole ring.

The Br?nsted-type and Hammett plots show clear correla-tions with the reaction rate for the anilines studied.However,the heterocyclic amines do not obey these simple models.As such we decided to examine a multiparameter,quantitative structure activity relationship (QSAR)approach,which could be used to predict the rates of reaction of all amines studied,supporting our emphasis on improving the scope of CDI.The geometry of each amine in turn was optimised at the B3LYP/6-31G*level of theory.From these geometries

quantum mechanically (QM)derived descriptors were obtained that represent aspects of the nucleophilicity of the amine.The following descriptors relating to the nucleophilic nitrogen atom were considered:partial atomic charge,the occupancy and percentage of s-orbital character of the lone-pair,molecular electrophilicity and softness,as well as the condensed atom electrophilicity and softness indices.The relationship between the logarithmic rate of reaction and the QM-derived descriptors was examined using the projection of latent structures (PLS)modelling technique.Four models were built that examined the acidic and nonacidic regimes for all of the compounds and the aniline subset.All four models were re?ned through cross-validation and model validation techniques to produce single-component models with high R 2and Q 2values.Figure 4shows that virtually identical loadings plots were obtained for the PLS models of the anilines under both acidic and nonacidic conditions,indicating that the descriptors have equal signi?cance under each regime.This suggests that the addition of imidazole ·HCl to the reaction mixture does not unduly modify the intrinsic reactivity of the anilines compared to that of the uncatalysed reaction,further supporting interpreta-tion of the Hammett plots above.

The PLS model encompassing both the anilines and heterocyclic amines under nonacidic conditions is broadly similar to those obtained for the anilines alone,the most noticeable difference is in the loading for the percentage s-orbital character.

The model that is most strikingly different is the one obtained under acidic conditions,which includes both the anilines

and

Figure 1.Reaction pro?le showing amide formation over time for amine 4d.Table 2.Experimental reaction times

reaction time

(h)a

amine temperature (°C)

non-acid catalysis acid catalysis 4a 50104b 502314c 502724d 504534e 50175294e 100ND 34f 50.1431434f 100ND 104g 50.211>1434g 100ND 224h 50.2111434h 100ND 234i 100140254j

50

114

>120

a

Reaction time to greater than 90%conversion.ND )Not Determined.

Table 3.Rate constants calculated for reactions at 50°C

rate constant (mol/L ·s)

log (rate constant)amine

non-acidic

acidic non-acidic acidic 4-methoxyaniline 4a 3.808×10-3 4.043×10-2-2.42-1.39aniline

4b 1.802×10-4 4.649×10-3-3.74-2.334-chloroaniline

4c 3.129×10-5 1.016×10-3-4.50-2.993-chloro-4-?uoroaniline 4d 2.627×10-5 4.978×10-4-4.58-3.304-tri?uoromethylaniline 4e 5.996×10-6 5.269×10-5-5.22-4.284-cyanoaniline 4f 3.678×10-7 1.084×10-5-6.43-4.964-nitroaniline

4g 1.545×10-7 3.797×10-6-6.81-5.424-aminopyrimidine 4h 2.902×10-7 2.967×10-6-6.54-5.534-aminopyrazine 4i ND a

ND

ND ND 4-aminopyridine

4j

2.527×10-5

4.042×10-6

-4.60

-5.39

a

ND )Not Determined.

Vol.

13,No.1,2009/Organic Process Research &Development ?109

heterocyclic amines.The re?ned model does not include the descriptors directly relating to the nitrogen lone-pair (occupancy and s-orbital character),suggesting that as a complete group the addition of acid has an effect on the nucleophilicity of the amine as the regime changes.As demonstrated in the Hammett plot,there is no effect upon the ability of the anilines to act as

nucleophiles upon adding acid to the system,indicating that the heterocyclic amines do not ?t the previously observed model.

This behaviour can be readily explained in terms of the p K a of the nitrogen atoms in the heterocycle (Table 1).The aqueous disassociation constant of the heterocyclic nitrogen in 4-ami-nopyridine is 9.12,indicating that in the presence of the imidazole ·HCl the ring nitrogen is protonated (Scheme 5).This will result in the exocyclic nitrogen donating electron density into the ring to stabilise the positive charge;thus,the exocyclic nitrogen will have a lower propensity to undergo nucleophilic attack.The QM descriptors fail to describe this behaviour correctly,as the descriptors were calculated for the neutral and not the protonated form.

Overall the models generated under the QSAR approach support the experimental results obtained and provide a useful model in the case of the anilines (within the p K a range studied).However,it can be seen that the heterocycles do not ?t

the

Figure 2.Br?nsted-type plot for the aniline

series.

Figure 3.Hammett plot for the aniline series.Table 4.Hammett plot parameters

log (k X /k H )

amine

σvalue a acidic nonacidic 4-methoxyaniline -0.270.94 1.32aniline

0.000.000.004-chloroaniline

0.23-0.66-0.763-chloro-4-?uoroaniline 0.43b -0.97-0.844-tri?uoromethylaniline 0.54-1.95-1.484-cyanoaniline 0.66-2.63-2.694-nitroaniline

0.78

-3.09

-3.07

a

σvalues used were obtained from ref 18.b The σvalue used is the sum of the σp-Cl and σm-F .

110

?

Vol.13,No.1,2009/Organic Process Research &

Development

aniline model and further work would be required,covering a wider range of heterocycles in order to develop an alternative,more appropriate model.

Having investigated the properties of the nucleophile we felt that it would be useful to understand further the effect of acid concentration on the rate of reaction.As such we undertook a further experiment to demonstrate the change in rate as the concentration of imidazole ·HCl is https://www.wendangku.net/doc/d314691735.html,ing 4-chloro-aniline (4c )as a typical aniline,we designed an experiment to

investigate how the rate of reaction changes as the number of equivalents of imidazole ·HCl is varied between 0and 2in 0.5increments.For ef?ciency we carried out this ?nal study using an automated reaction system,17which allowed us to investigate the different reactions simultaneously.Although this forced us to vary the conditions away from those used in the rest of this paper,we were able to generate a self-consistent set of data across ?ve different concentrations of imidazole ·HCl.As before,we made the assumption that the reaction followed second-order kinetics in order to ?t rate constants to the data.From Figure 5,using the chosen aniline,it can be seen that the rate of reaction increases linearly with the initial charge of imidazole ·HCl.This is consistent with the overall rate equation for the reaction being dependent upon acid concentration derived from the imidazole ·HCl charge and that 7a forms part of the

Scheme

4

Scheme

5

Figure 4.Summary plot of PLS

loadings.

Figure 5.Change in rate with initial charge of imidazole ·HCl.

Vol.13,No.1,2009/Organic Process Research &Development

?

111

rate-determining step for the reaction.Together with the evidence from the Hammett plot discussed above this leads us to the conclusion that changing from a nonacidic regime to an acidic regime enhances the rate by increasing the concentration of7a present without adversely affecting the level of unpro-tonated amine.

The linear relationship obtained supports our hypothesis that only a small proportion of the imidazolide is protonated under these reaction conditions.Whilst additional rate enhancements may be possible,we have restricted our investigation to practical imidazole·HCl charges.

Conclusions

Over the series of anilines screened,we have demonstrated that the use of imidazole·HCl signi?cantly enhances the rate of reaction.This observation supports previous investigations into the imidazolium effect and suggests that protonation in situ can be used effectively to increase the rate of reactions between aromatic amines and the imidazolide intermediate generated in CDI-mediated amidations.The anilines follow the trend of increasing reaction rate with increasing aqueous p K a,when reacting with the benzoyl imidazolide intermediate under either acidic or nonacidic conditions.Furthermore,the logarithmic rate constants for anilines can be modelled using quantum mechani-cally derived descriptors under acidic and nonacidic regimes.

In conclusion we have shown that reactions,which under standard conditions can take days to reach completion,can now be carried out in a matter of hours upon addition of imidazole·HCl.Crucially,for large-scale manufacture this rate enhancement can be achieved without the need for more forcing conditions,thus maximising throughput for an otherwise slow reaction with minimum impact on cost.

Experimental Section

General Considerations.All reagents were purchased from commercial sources and used without any additional puri?ca-tion.All experiments were carried out under a nitrogen atmosphere to maintain anhydrous conditions.The reaction pro?les were followed quantitatively by HPLC on a Hewlett-Packard series1100machine using a Hichrom ACE Phenyl 50mm×3.0mm×3μm column at45°C;?ow rate:1.25 mL/min;injection volume:2μL;detection wavelength:220 nm;mobile phase5%methanol in water increasing to95% methanol in water over a6min period,95%methanol in water was then held for1.5min.Both the water and the methanol eluent contained0.03%tri?uoroacetic acid.m-Terphenyl was used as an internal standard for the HPLC analysis,and all measurements were made within a previously de?ned linearity range.1H NMR and13C NMR spectra were recorded on a Varian Inova NMR400MHz spectrometer operating at399.9 MHz in DMSO-d6for1H NMR and100.55MHz for13C NMR. The chemical shifts,δ,were recorded relative to tetramethyl-silane as an internal standard;all coupling constants,J,are reported in Hz.All compounds were standardised against 2,3,5,6-tetrachloronitrobenzene(TCNB)by1H NMR.GC/MS was recorded on Agilent Micromass GC-TOF.IR was recorded on a Perkin-Elmer UTAR spectrometer.

Generic Experimental Procedure.Without Acid Catalysis. Benzoic acid(Aldrich>99.5%)(8,1.00g,8.19mmol);CDI (Acros97%)(2,1.3equiv,1.76g,10.65mmol);m-terphenyl (Aldrich>98%)(200mg,0.86mmol)and anhydrous NMP (Aldrich99.5%)(20mL,20rel vols)were charged to a clean, dry,three-necked,round-bottomed,100mL?ask,?tted with an overhead stirrer(200rpm),nitrogen bubbler,and thermom-eter.The reaction was allowed to proceed at ambient temper-ature until at least97%conversion to the imidazolide interme-diate(9)was achieved based upon HPLC.Samples were prepared for analysis by taking a50μL aliquot from the reaction mixture,quenching it in200μL of butylamine.After holding the quench mixture at ambient temperature for5min it was diluted to50mL with3:1methanol/water and then analysed using the HPLC method described above.17Upon reaching >97%conversion,the reaction liquor was heated to50°C,and the appropriate amine(all sourced from Acros or Aldrich >98%)(4)(12.28mmol,1.5equiv)was charged.Samples were then taken using the method described above at regular time intervals chosen according to the expected lifetime of the reaction.

With Acid Catalysis.The reaction conditions were the same as the uncatalysed reaction except that imidazole·HCl(Aldrich 98%)(1.76g,12.28mmol,1.5equiv)was charged to the reaction at the same time as the benzoic acid.

Work-Up.The reaction mixtures were drowned out into water(20mL)at ambient temperature.The precipitated white solid was isolated by?ltration and dried under vacuum at40°C.The dry solid was recrystallised from the minimum amount of hot absolute ethanol and isolated by?ltration at ambient temperature.The white crystalline solid was dried under vacuum at40°C.With the exception of two,all the amides synthesised in the course of this study are known and characterised in the literature.The two novel compounds synthesised have been fully characterised,and the details are listed below.In the case of the known compounds structural identity was con?rmed by1H NMR;characterisation references for these compounds can be found in Table4.

4h N-Pyrimidin-4-ylbenzamide:HPLC RT2.98min;mp 97-98°C;1H NMR(399.89MHz,DMSO-d6)δ11.22(1H, s),8.93(1H,s),8.70(1H,d,J)5.6Hz),8.19(1H,d,J)6.8 Hz),8.00(2H,d,J)8.4Hz),7.60(1H,m)7.51(2H,m);13C NMR:(100.55MHz,DMSO-d6)δ167.62,158.38,158.23, 133.40,132.62,128.64,128.36,126.09,110.77;GC/MS-EI(m/ z):Calcd for C11H9N3O199.0744(M+)found199.0738(M+). IR(ATR)1682,1568,1504,1459,1394,1308,1265,1176, 1112,1072,1024,997,926,897,866,834,789,718,689, 663cm-1.

4i N-Pyrazin-5-ylbenzamide:HPLC RT 2.90min;mp 145-147°C;1H NMR:(399.89MHz,DMSO-d6)δ11.12(1H, s),9.43(1H,d,J)1.6),8.49(1H,m),8.43(1H,m),8.06(2H, m),7.63(1H,m),7.54(2H,m);13C NMR:(100.55MHz, DMSO-d6)δ166.15,149.05,142.55,139.94,137.47,133.36, 132.25,128.39,128.15;GC/MS-EI(m/z):Calcd for C11H9N3O (17)The imidazolide intermediate(3)was not suitable for analysis by

HPLC;addition of the imidazolide intermediate to butylamine facilitated analysis of the imidazolide by reacting to form the butyl amide derivative,which was easily detected by HPLC.

(18)Hansch,C.;Leo,A.;Taft,R.W.Chem.Re V.1991,91(2),165.

112?Vol.13,No.1,2009/Organic Process Research&Development

199.0744(M+)found199.0718(M+).IR(ATR)1671,1530, 1410,1292,1258,1054,1010,841,801,707cm-1.

Experimental Procedure Investigation in the Automated Reactor,SK233.N-Benzoylimidazole(Alfa Aesar96%)(9, 7.06g,41.0mmol),imidazole(Acros>99%)(2.79g,1equiv, 41.0mmol),and m-terphenyl(1.06g,4.5mmol)were made up into100mL of stock solution with anhydrous NMP.The stock solution was then divided into?ve20mL portions and charged into?ve clean dry reaction tubes.Imidazole.HCl was charged to the tubes as follows;Tube A:0g,0equiv;Tube B: 0.44g,4.10mmol,0.5equiv;Tube C:0.87g,8.20mmol,1 equiv;Tube D:1.31g,12.30mmol,1.5equiv;Tube E:1.74g, 16.40mmol,2equiv.The tubes were then set up in the SK233 instrument and heated to46°C.4-Chloroaniline(4c,16g,61.5 mmol)was made up into a20mL stock solution with anhydrous NMP;this solution was then charged in2.5mL aliquots to each of the?ve reaction tubes.The SK233was programmed to sample the reaction tubes at regular time intervals after the amine charge.The sampling protocol was as follows:take50μL aliquot from the reaction tube and quench it into200μL of butylamine;after a5min hold take a50μL aliquot from the quench and charge it into1.5mL of3:1methanol/water.The samples collected were then analysed using the HPLC method described above.16

Acknowledgment

We thank Jonathan Moseley for his help in the preparation of this manuscript.We also thank Ian Derrick for his support and advice in running the SK233.We thank Gordon Plummer and Richard Wisedale for additional analytical support. Supporting Information Available

Complete set of graphs to complement Figure1,and a further explanation of the computational work undertaken.This infor-mation is available free of charge via the Internet at http:// https://www.wendangku.net/doc/d314691735.html,.

Received for review September12,2008.

OP800226B

Vol.13,No.1,2009/Organic Process Research&Development?113

硅烷偶联剂的使用说明资料

硅烷偶联剂的使用说 明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个 /μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用 Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇) 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及 CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS),是指1g硅烷偶联剂的溶液所能覆盖基体的面积(㎡/g)。若将其与含硅基体的表面积值(㎡/g)关连,即可计算出单分子层覆盖所需的硅烷偶联剂用量。以处理填料为例,填料表面形成单分子

钯催化交叉偶联反应

钯催化交叉偶联反应 钯催化交叉偶联反应是一类用于碳碳键形成的重要化学反应,在有机合成中应用十分广泛。 简介: 为制造复杂的有机材料,需要通过化学反应将碳原子集合在一起。但是碳原子在有机分子中与相邻原子之间的化学键往往非常稳定,不易与其他分子发生化学反应。以往的方法虽然能令碳原子更加活跃,但是,过于活跃的碳原子却又会产生大量副产物,而用钯作为催化剂则可以解决这个问题。钯原子就像“媒人”一样,把不同的碳原子吸引到自己身边,使碳原子之间的距离变得很近,容易结合——也就是“偶联”。这样的反应不需要把碳原子激活到很活跃的程度,副产物比较少,因此更加精确而高效。赫克、根岸英一和铃木章通过实验发现,碳原子会和钯原子连接在一起,进行一系列化学反应。这一技术让化学家们能够精确有效地制出他们需要的复杂化合物。 发展阶段: 一、大约100年前,法国化学家维克多·格林尼亚发现,将一个镁原子同一个碳原子偶联在一起,会将额外的电子推向这个碳原子,使得它能够更容易同另外一个碳原子连接在一起。不过,科学家们发现,这样的方法在创造简单的分子时起到了效果,但是在对更为复杂的分子进行合成时,却在试管里发现了很多并不需要的副产品。 二、早在上世纪60年代,赫克就为钯催化交叉偶联反应奠定了基础,1968年,他报告了新的化学反应——赫克反应,该反应使用钯作为主要的催化剂来让碳原子连接在一起。 三、1977年,根岸英一对其成果进行了精练,他使用一种有机氯化物作为催化剂;两年后,铃木章发现使用有机硼化合物的效果会更好。应用: 如今,“钯催化交叉偶联反应”被应用于许多物质的合成研究和工业化生产。例如合成抗癌药物紫杉醇和抗炎症药物萘普生,以及有机分子中一个体格特别巨大的成员——水螅毒素。科学家还尝试用这些方法改造一种抗生素——万古霉素的分子,用来灭有超强抗药性的细菌。此外,利用这些方法合成的一些有机材料能够发光,可用于制造只有几毫米厚、像塑料薄膜一样的显示器。科学界一些人士表示,依托“钯催化交

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X ,而与有机聚合物的反应活性则取于碳官能团C-丫。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeC、OOVi 及CH2-CHOCH-2O 的硅烷偶联剂;环氧树脂多选用含CH2- CHCH2及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NC0NH硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而, 光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕 3 种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中丫与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si—OH含量。已知,多数硅质基体的Si —OH含是来4-12 个/卩叭因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用丫3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因丫3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si —OH数为5.3个/卩川硅质基体,经在400C或800C 下加热处理后,则Si —OH值可相应降为2.6个/卩卅或V 1个/卩讥反之,使用湿热盐酸处理基体,则可得到高Si —OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS,是指ig硅烷偶联剂的溶液所能覆

硅烷偶联剂使用说明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的

碱性磷酸酶染色液(偶氮偶联法)

碱性磷酸酶染色液(偶氮偶联法) 简介: 碱性磷酸酶(Alkaline phosphatase ,简称ALP 或AKP)为一类磷酸酯酶,广泛分布于哺乳动物组织内,其活性所需最适pH 9.2~9.8。碱性磷酸酶染色液(偶氮偶联法)是采用偶氮偶联法(又称同时偶联法),细胞内碱性磷酸酶可使AB-BI 磷酸盐水解,释放出磷酸与萘酚,后者与偶联重氮盐生成有色产物,定位于细胞质中, 碱性磷酸酶活性部位呈红色,位于胞桨。 组成: 操作步骤(仅供参考): 1、 血液、骨髓或细胞涂片、冰冻切片、石蜡切片入ALP 固定液固定,水洗。 2、滴加配制好的ALP 孵育液,放入湿盒中,避光孵育,水洗。 3、Lea 苏木素染色液复染或甲基绿染色液复染。 4、水洗、镜检或甘油明胶封固后镜检。 染色结果: 临床意义: 1、 类白血病反应积分明显增高,未经治疗的慢性粒细胞白血病积分明显减低。 2、 急性细菌性感染积分明显增高,病毒性感染积分多正常或减低。 3、 再生障碍性贫血积分常增高,PNH 、MDS 积分常减低。 编号 名称 DE0004 4×2ml DE0004 4×10ml DE0004 4×20ml Storage 试剂(A): ALP 固定液 2ml 10ml 20ml RT 避光 试剂(B): ALP 孵育液 B1: AS-BI 染色液 1ml 5ml 10ml -20℃ 避光 B2: FBB 染色液 1ml 5ml 10ml -20℃ 避光 临用前,按B1:B2=1:1比例混合,即为ALP 孵育液,即配即用。 试剂(C): Lea 苏木素染色液 2ml 10ml 20ml 4℃ 避光 试剂(D): 甲基绿染色液 2ml 10ml 20ml RT 避光 使用说明书 1份 ALP 活性部位 红色 细胞核 蓝色(苏木素)或绿色(甲基绿)

常用硅烷偶联剂介绍

常用硅烷偶联剂介绍标准化管理部编码-[99968T-6889628-J68568-1689N]

常用硅烷偶联剂介绍 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946

沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560 一、国外对应牌号: A-187(美国联碳公司)。

硅烷偶联剂的使用方法

硅烷偶联剂的使用方法 硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂的原液。 (1)表面预处理法 将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。所用溶剂多为水、醇(甲氧基硅烷选择甲醇,乙氧基硅烷选择乙醇)、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。氯硅烷及乙氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。水溶性较差的硅烷偶联剂,可先加入0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%)、醇(72%)、水(8%),醇一般为乙醇(对乙氧基硅烷)甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷)因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值,除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4—5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,最好在一小时内用完。 (2)直接添加方法 将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为基体树脂量的1~5%。涂胶后依靠分子的扩散作用,偶联剂分子迁移到粘接界面处产生偶联作用。对于需要固化的胶粘剂,涂胶后需放置一段时间再进行固化,以使偶联剂完成迁移过程,方能获得较好的效果。实际使用时,偶联剂常常在表面形成一个沉积层,但真正起作用的只是单分子层,因此,偶联剂用量不必过多。 硅烷偶联剂具体使用方法 (1)预处理填料法 将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。

碱性磷酸酶染色液(偶氮偶联法)使用说明

碱性磷酸酶染色液(偶氮偶联法)使用说明 自备材料: 1、载玻片、湿盒 2、普通光学显微镜 产品简介: 碱性磷酸酶(Alkaline phosphatase,简称ALP或AKP)为一类磷酸酯酶,广泛分布于哺乳动物组织内,其活性所需最适pH9.2~9.8。此酶主要存在于物质交换活跃之处(细胞膜),如肠上皮和肾近曲小管的刷状缘、附睾上皮之静纤毛、肝的毛细胆管膜以及微动脉和毛细血管动脉部之内皮,还见于内质网、高尔基复合体、吞饮小泡、肠上皮之溶酶体、中性粒细胞之中性颗粒以及平滑肌之细胞膜。

碱性磷酸酶染色液(偶氮偶联法)不是采用金属沉淀法来显示碱性磷酸酶活性,而是采用偶氮偶联法(又称同时偶联法),其原理是在pH9.2~9.8的碱性条件下,细胞内碱性磷酸酶可使AB-BI磷酸盐水解,释放出磷酸不萘酚,后者不偶联重氮盐生成有色产物,定位于细胞质中。该染液可用于血液、骨髓或细胞涂片、冰冻切片、梯度入水后的石蜡切片等的碱性磷酸酶染色,碱性磷酸酶活性部位呈蓝色,位于胞桨,结果较金属盐沉淀法可靠。 操作步骤(仅供参考): 一、涂片或切片 1、血液、骨髓或细胞涂片、冰冻切片、石蜡切片入ALP固定液固定3min(梯度入水后的 石蜡切片无需固定),水洗。 2、滴加配制好的ALP孵育液,放入湿盒中,避光孵育15~20min,水洗。 3、入核固红染色液或甲基绿染色液复染3~5min。 4、水洗、镜检或甘油明胶封固后镜检。 二、贴壁培养细胞 1、取6孔板或其他容器培养的细胞,弃液,PBS清洗干净。 2、加入ALP固定液固定3min或4%多聚甲醛固定10~15min,PBS清洗。 3、滴加配制好的ALP孵育液,放入湿盒中,避光孵育15~20min,PBS清洗。 4、入核固红染色液或甲基绿染色液复染3~5min。 5、PBS清洗、镜检。

钯催化反应及其机理

钯催化反应及其机理研究 摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。 关键词:过渡金属催化偶联反应钯催化机理 1.引言 进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。在众多过渡金属中,金属钯是目前研究得最深入的一个。自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。 2.钯催化各反应机理的研究 2.1.钯催化的交叉偶联反应 自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为homo coupling)。 2.1.1Heck反应 Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新C—C 键的重要反应[3]。反应物主要为卤代芳烃(碘、溴)与含

硅烷偶联剂的产品分类与用途.pdf

硅烷偶联剂介绍

目录 1 硅烷偶联剂 (1) 有机硅烷偶联剂的选择原则 (3) 偶联剂用量 (4) 硅烷偶联剂作用机理 (5) 硅烷偶联剂使用方法 (6) 硅烷偶联剂分类与用途 (7) 硅烷偶联剂A-151 (7) 硅烷偶联剂A-171 (8) 硅烷偶联剂A-172 (9) 硅烷偶联剂KH-540 (9) 硅烷偶联剂KH-550 (10) 硅烷偶联剂KH-551 (10) 硅烷偶联剂KH-560 (11) 硅烷偶联剂KH-570 (12) 硅烷偶联剂KH-580 (13) 硅烷偶联剂KH-602 (13) 硅烷偶联剂KH-791 (14) 硅烷偶联剂KH-792 (15) 硅烷偶联剂KH-901 (16) 硅烷偶联剂KH-902 (16) 硅烷偶联剂nd-22 (17) 硅烷偶联剂ND-42(南大42) (17) 硅烷偶联剂ND-43 (17) 硅烷偶联剂SI-69 (18) 苯基三甲氧基硅烷 (18) 苯基三乙氧基硅烷 (19) 甲基三乙氧基硅烷 (20)

钛酸酯偶联剂 (20) 钛酸酯偶联剂101(钛酸酯TTS) (20) 钛酸酯偶联剂102 (21) 钛酸酯偶联剂105 (21) 有机硅烷偶联剂的选择原则 有机硅烷偶联剂的选择一般凭借对有机硅烷偶联剂侧试数据进行经脸总结,准确.地预测有机硅烷偶联剂是非常困难的。使用有机硅烷偶联剂后增大的键强度是一系列复杂因素的综合,如浸润、表面能、边界层的吸附、极性吸附,酸碱相互作用等. 预选有机硅烷偶联剂可遵循以下规津:不饱和聚醋可选用乙烯纂、环氧基及甲基丙烯陈氧基型有机硅烷偶联剂;环氧树脂宜选用环氧基或氨基型有机硅烷偶联剂;酚醛树脂宜选用氨基或服基型有机硅烷偶联剂;烯烃聚合物宜选用乙烯基型右机硅烷偶联剂;硫磺硫化的橡胶宜选用疏基型有机硅烷偶联剂等, 一、选用硅烷偶联剂的一般原则已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验,预选并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOOVi及CH2-CHOCH2O的硅烷偶联剂:环氧树脂多选用含CH2CHCH2O及H2N硅烷偶联剂:酚醛树脂多选用含H2N及H2NCONH硅烷偶联剂:聚烯烃多选用乙烯基硅烷:使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接强度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应:改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性:后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 硅烷偶联剂牌号偶联剂应用领 域 偶联剂作用 KH-540 KH-550 胶黏剂行业●提高粘接力及粘接寿命 ●在潮湿和干燥的条件下仍具有良好的粘结效果●更佳的耐溶剂性、提高储存寿命 KH-560 KH-570 KH-792 Si-602 Si-563 KH-540 KH-550 涂料行业●有机聚合物和无机表面之间的附着力促进剂●粘合体系的交联剂和固化剂,共聚单体 ●填料和颜料的分散剂 ●在抗刮和抗腐蚀涂料中充当粘结组分及涂层 KH-560 KH-570 KH-792 Si-602 Si-563 A-151

医院检验中心中性粒细胞碱性磷酸酶染色偶氮偶联法

医院检验中心中性粒细胞碱性磷酸酶(NAP) 染色偶氮偶联法[ 原理] 中性粒细胞胞浆中的碱性磷酸酶在碱性环境中,能水解磷酸萘酚钠,释放的萘酚与重氮盐作用生成不溶性有色的偶氮染料,定位于胞浆中。 [ 试剂] (1)固定剂,为40 %甲醛25m1,加无水乙醇至100m1。 (2)丙二醇缓冲液。①贮备液(0 . 2mol/L 2—氨基-2-甲基 -1 ,3- 丙二醇液) 为2- 氨基-2- 甲基-1 ,3- 丙二醇10 .5g,蒸馏水加至500ml。②应用液(0.05mol/L pH9.75),为0.2mol/L 贮备液25m1,o.1mol/L 盐酸5m1 ,蒸馏水加 至100m1。 (3)基质孵育液pH9.5-9 . 6(用前临时配制),a—磷酸萘 酚钠20mg溶于0.05mol/L丙二醇缓冲液20m1,再加坚 牢蓝RR(或坚牢紫酱)20mg,混合后用滤纸过滤,立即应用

(4)10g/l 亮绿 [ 操作] (1)新鲜血片或骨髓片用4- 10C的固定剂固定30秒 (2)在涂片上滴加新配过滤的孵育液,在室温下作用 10-15 分钟。 (3)水洗,10g/L 亮绿复染 2 分钟。 (4)水洗,晾干镜检。 [ 结果观察] (-) :阴性反应。 (+) :胞浆中含少量紫黑色,无紫黑色颗粒或红色物质。 (++) :胞浆中含有中等量紫黑色颗粒或呈弥漫红色。 (+++) :胞浆中有丰富的紫黑色颗粒或弥漫较深红色。 (++++) :有极丰富的大紫黑色颗粒或弥漫深红色。 [ 参考值] 中性粒细胞碱性磷酸酶活性积分值为10—50 分。

[ 临床意义] 基本同改良Gomo;氏钙钻法。 [ 附注] (1)若涂片不能及时测定,可固定干燥后放冰箱4C保存。 (2)在甘油磷酸钠和巴比妥钠应临用前称取,分别为0.38 和 0. 28,再加蒸馏水20m1即配成。配制后的B -甘油磷酸钠 不宜久放。 (3)涂片从孵育液拿出可不用水洗,直接加硝酸钻,但与硝酸 钴作用后,应反复水洗,以免残留的硝酸钻与硫化胺作用后使整个涂片变黑,造成假阳性。 (4)每次染色时,应同时做 1 份感染思者的血片为阳性对照, 以增加结果的可靠性。对照片可 1 次涂几十片,固定干燥 后,放冰箱可保存几个月。 (5)硫化胺试剂本身黄色很谈,若变深黄色,应及时更换。 试剂放置时间越长黄色越深。这说明硫大量析出,硫 离子浓度大大减少。易引起假阴性。这是试验成功与

自由基引发剂--偶氮二异丁腈的制备方法、反应机理及常见反应

偶氮二异丁腈(AIBN)是一种常用的自由基引发剂,不溶于水,溶于甲醇、乙醇、丙酮、乙醚、甲苯等有机溶剂和乙烯基单体。AIBN在60℃以上分解形成异丁腈基,从而引发自由基反应。AIBN易燃有毒,当加热至100℃熔融时急剧分解,释放出的有机氰化物,对人体危害较大。 用途 可用作自由基型加聚反应(如醋酸乙烯酯等)引发剂;泡沫橡胶、塑料的发泡剂;及用作有机合成试剂;也用作有机合成试剂。 三丁基氢化锡参与的反应一般用AIBN引发。有机合成中,这两种试剂联用可以完成很多环化、偶联和去卤素反应。推动卤代烃的脱卤素反应在上述条件下发生的动力,可以归结到锡和碳原子分别与氢和卤素原子形成的键之间的键能差异(Sn-H<Sn-Br,但C-H>C-Br)。 除三丁基氢化锡外,其他常与AIBN联用的试剂还有:三(三甲硅基)硅烷、苯硫酚、二苯基膦、三苯基锗烷+加压CO等。 偶氮二异丁腈作为自由基引发剂的优势: * 分解温度(65~85°C)适用于大多数反应; * 一级分解速率对不同的溶剂变化较小;

* 不易受自由基进攻,因此诱导分解和转移反应可以忽略不计; * 能在较低温度下通过光照分解 制备 偶氮二异丁腈可通过丙酮连氮法制备。首先由丙酮与水合肼反应生成丙酮连氮,生成的丙酮连氮与氰氢酸反应生成二异丁腈肼,再经次氯酸氧化生成偶氮二异丁腈,并从乙醚中重结晶获得产物。 反应机理 # 巴顿脱氧反应(Barton-McCombie) 巴顿脱氧反应是一种醇脱氧的方法。首先将醇转化为硫代羰基衍生物,以Bu3SnH作为自由基供体,AIBN 作为自由基引发剂,启动自由基链。反应的驱动力是形成稳定的S-Sn键。硫对Bu3Sn·的攻击引发分解反应,生成烷基自由基。生成的烷基自由基再与Bu3SnH反应,实现醇脱氧。同时,生成的自由基Bu3Sn·作为下一轮循环反应的自由基。 启动: 反应循环:

钯催化交叉偶联反应

钯催化的交叉偶联反应 一、偶联反应综述 1.交叉偶联反应 偶联反应,从广义上讲,就是由两个有机分子进行某种化学反应而生成一个新有机分子的过程。狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成的反应,根据类型的不同,又可分为自身偶联反应和交叉偶联。交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。 2.碳碳键形成的重要性 新碳-碳键的形成在有机化学中是极其重要的。人们了解了天然有机物质的结构和性能,并根据有机物质的结构,通过碳原子组装成链,建立有机分子,最终实现天然有机物质的人工合成。目前为止,人类已经利用有机合成化学手段创造出几千万种物质,且越来越多的有机物质已经广泛应用到制药、建材、食品、纺织等人类生活领域,我们的生活也几乎离不开有机物了。合成药物、塑料等有机物质时,需要用小的有机分子将碳原子连接在一起构建新的复杂大分子,因而有机合成中高效的连接碳-碳键的方法是有机合成化学中的重要工具。从以往该领域诺贝尔化学奖的授予情况也可以看出合成新碳-碳键的重要性:1912年维克多·格林尼亚因发明格林尼亚试剂——有机镁试剂获奖,1950年迪尔斯和阿尔德因发明双烯反应迪尔斯-阿尔德反应获奖,1979年维蒂希与布朗因发明维蒂希反应共同获奖,2005年伊夫·肖万、罗伯特·格拉布、理查德·施罗克因在有机化学的烯烃复分解反应研究方面作了突出贡献获奖。 3.有机合成中的钯催化交叉偶联反应 随着时代发展,合成有机化学的研究愈加深入,20世纪后半期,科学家们发现了大量通过过渡金属催化来创造新有机分子的反应,促使有机合成化学快速发展。

特别是赫克、根岸英一和铃木章发现的钯催化交叉偶联反应,为化学家们提供了一个更为精确有效的工具。三位科学家发现的钯催化交叉偶联反应中都使用了金属钯作为反应的催化剂,当碳原子与钯原子连在一起时,钯原子唤醒了“懒惰”的碳原子但又不至于使它太活泼,于是形成温和的碳-钯键,在反应过程中,钯原子又可以把别的碳原子吸引过来,形成另一个金属-碳键,此时两个碳原子都连接在钯原子上,它们的距离足够接近而发生反应,生成新的碳-碳单键。以下两个反应式代表了典型的两类钯催化交叉偶联反应。 上述两个反应的催化剂都是零价的金属钯,都使用卤代烃RX(或卤代烃的类似物)作为亲电偶联试剂。区别在于两个反应所选用的亲核偶联试剂,在反应(1)中,选用的是烯烃,反应(2)中则是一种有机金属化合物R〃M(M为Zn,B,Al 或Sn)。我们所熟知的赫克反应属于反应(1)这一类的交叉偶联反应,根岸反应和铃木反应属于反应(2)这一类。由于反应底物不同,三个反应的应用范围和适用途径也各不相同。 4.“钯催化的交叉偶联反应”内容及反应原理 (1)Heck反应 Heck反应以有机钯配合物为催化剂得到具有立体专一性的芳香代烯烃(图1)。反应物主要是卤代芳烃(碘、溴)与含有吸电子基团的烯烃。该反应的催化剂通常用Pd(0),Pd(II)或含Pd的配合物(常用醋酸钯和三苯基膦)。卤代烃首先与A 发生氧化加成反应,C-X键的断裂与Pd-C和Pd-X键的形成是同步进行的。氧化加成反应是偶联反应中最常见的决速步骤,经过氧化加成化合物A生成中间体B,B再经过配体解离,得到化合物RPdLX。RPdLX先与烯烃配位,然后再经烯烃插入,配

硅烷偶联剂kh-550化学品安全技术说明书

硅烷偶联剂KH-550化学品安全技术说明书 (MSDS) 第一部分:化学品名称 化学品中文名称:硅烷偶联剂KH-550 化学品英文名称:?Silanc Coupling?Agcm KH-550? 中文名称2: 分子式: 分子量: 第二部分:成分/组成信息 主要成分:γ-氨丙基-乙氧基硅烷? 含量:≥97% CAS No. 919-30-2 第三部分:危险性概述 危险性类别:腐蚀性。对眼睛、皮肤和粘膜组织有腐蚀性。该物质和水或湿气接触时会反应生成乙醇。乙醇可能对中枢神经系统造成影响。 侵入途径:吸入、食入、皮肤接触、眼睛接触 健康危害:眼睛:接触液体或蒸汽可能导致眼睛疼痛、红肿和烧伤 皮肤:可能导致疼痛、红肿和皮肤烧伤 吸入:吸入可能引起呼吸道刺激,烧灼感,咳嗽,咽喉痛 食入:误食可能导致消化道刺激、烧灼感和灼伤。吞咽有害 第四部分:急救措施 皮肤接触:立即就医。移除受污染衣物和鞋子。擦去后用水和肥皂清洗至少15分钟。化学烧伤必须由医生及时处理。衣物和鞋子再次使用前应彻底清洗。 眼睛接触:立即就医。立即用清水冲洗眼睛至少15分钟,反复提起上下眼睑。如果可行,检查并移除隐形眼镜。化学烧伤必须由医生及时处理。 吸入:立即就医。移至通风良好处。患者应注意保暖和休息。如果出现呼吸停止、呼吸困难和呼吸不规则,由受过训练的人员进行人工呼吸或给予氧气。如果患者失去意识,将其处于复原体位,立即就医。保持气道畅通。放松患者紧束的衣物,如衣领、领带、皮带或腰带。食入:立即就医。切勿催吐。如果患者清醒,漱口后饮用足量的清水。患者应注意保暖和休息。如果患者失去意识,切勿从口腔给其服用任何物品。 第五部分:消防措施 危险特性:可燃液体。和水反应生成乙醇 有害燃烧产物:碳氧化物、碳氢化物、氦氧化物、二氧化硅 灭火方法:砂、专用粉末和合适的泡沫,严禁灭火剂接触容器内容物。禁用含水灭火剂,禁用水。可以用水雾冷却暴露于火场中的容器。禁止让水进入容器 特殊的灭火方法:如果发生火灾,及时疏散和隔离人群。在不危及人员安全情况下,由受过训练的专业人员进行灭火。在不危及人员安全情况下尽可能将容器从火场移至空旷处。灭火时应处于上风处,以避免接触有害蒸汽和有毒分解产物。采取措施避免该物质和灭火的流出物进入溪流或供水系统。

钯催化的交叉偶联反应——2010年诺贝尔化学奖简介

doi:10.3969/j.issn0253-9608.2010.06.005 钯催化的交叉偶联反应 ———2010年诺贝尔化学奖简介 肖唐鑫① 刘 立② 强琚莉③ 王乐勇④ ①②博士研究生,③博士,④教授,南京大学化学化工学院,南京210093 关键词 钯催化 偶联反应 诺贝尔化学奖 2010年10月6日,瑞典皇家科学院宣布将2010年诺贝尔化学奖授予美国科学家Richar d F.Heck,日本科学家Ei-ichi Ne g ishi和A kira Suzuki。这三名科学家是因为在有机合成领域中钯催化交叉偶联反应方面的卓越研究而获奖。它为化学家提供了一款精致的工具来合成复杂的有机分子。这一成果广泛应用于制药、电子工业和先进材料等领域。笔者对钯催化交叉偶联反应领域作了粗浅的介绍,以期起到抛砖引玉之作用。 2010年的诺贝尔化学奖揭晓后,很多专业人士对此 并不感到惊讶,认为这次的评选结果实乃众望所归。确实如此,三位科学家都已近耄耋之年,他们所做的贡献早已造福全球,按理早应摘取这个桂冠了。当瑞典皇家科学院在2010年10月6日宣布将诺贝尔化学奖颁发给美国科学家Richard F.Heck和日本科学家Ei-ichi Negishi,Akira Suzuki时,Heck所说的一句话———这是个圆满的结局———道出了所有人的心声。目前,钯催化的交叉偶联反应在全球的科研、医药生产、电子工业和先进材料等领域都有广泛应用。以在此领域有卓越贡献的科学家名字命名的有机反应对于从事化学的人来说是耳熟能详的,如Heck反应、Negishi反应、Suzuki反应、Stille反应、Kumada反应、Sonogashira反应以及Hiyama反应等等。 众所周知,有机合成化学以其强大的生命力制造出了几千万种新的物质,并且这个数目仍在迅速的膨胀,而有机合成化学的基础核心是新型、高效有机合成方法学的研究和发展。我们从21世纪这10年来三次与有机合成方法学相关的诺贝尔化学奖授予情况可以看出这一领域的重要性:2001年W.S.Knowles,R.Noyori 和K.B.Sharpless因在发展催化不对称合成研究方面获奖;2005年Y.Chauvin,R.H.Grubbs和R.R. Schrock因在发展烯烃复分解反应所作出的贡献而获奖;最后就是2010年的钯催化交叉偶联反应的获奖。下面对钯催化交叉偶联反应的早期研究、反应机理以及发展应用等做一个粗浅的介绍,以期达到抛砖引玉之作用。1早期研究 有机合成化学制造出的这几千万种新的物质绝大多数都是以碳原子为主来构建的。为了制备结构更复杂、功能更强大的新型材料,就要想办法通过各种化学反应将碳原子连接在一起。然而碳原子本身是十分稳定的,在化学反应中并不活泼,所以就得想办法来激活碳原子,让它更容易参与反应并与其他碳原子连接起来,逐步形成更高层次的碳基骨架。1912年,法国人Grignard因发明有机镁试剂(格氏试剂)而荣获诺贝尔化学奖,可以说是碳基活化史上的第一个里程碑。随着时代的发展,人们对碳基的研究愈加深入。在研究的前期,要么无法活化碳基,化合物难于参加反应;要么使碳原子过于活跃,虽然能有效地制造出很多简单的有机物,但要是合成复杂分子却有大量的副产物生成。正如大家所知,在有机合成操作中提纯是一项繁琐的工作。Heck,Negishi和Suzuki等人通过实验发现,当碳原子和钯原子连接在一起,会形成一种“温和”的碳钯键,在这里钯既活跃了碳基,又使其不至于过于活泼,然后又可以把别的碳原子吸引过来,这样使得两个碳原子距离拉近,容易成键而偶联起来。在这里钯原子就相当于“媒人”的作用,只需使用催化剂就行。所以“钯催化交叉偶联反应”就是一款精致的工具,让化学家得以像艺术家一样来雕刻和拼接类似积木的模块(小的基团),构筑令人叹为观止的艺术品(有机复杂分子)。与此同时还避免了过多不必要副产物的生成。 Heck1931年出生于美国麻省斯普林菲尔德(Spri- · 332·Chinese J ournal o f N ature V ol.32N o.6   Brief Introduction of No bel Prize

硅烷偶联剂使用方法

硅烷偶联剂kh550使用方法硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4-5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。(3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在120℃下烘烤15分钟。(4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。大致的填料直径和使用硅烷的比例如下:填料尺寸使用硅烷比例60目0.1%,100目0.25%,200目0.5%,300目0.75%,400目1.0%,500目以上1.5%常用硅烷醇/水溶液所需PH值:产品名称处理时的溶剂适宜PH 值KH-550乙醇/水:9.0~10.0 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的

相关文档