文档库 最新最全的文档下载
当前位置:文档库 › 等差数列前n项和与第n项关系

等差数列前n项和与第n项关系

等差数列前n项和与第n项关系
等差数列前n项和与第n项关系

等差数列中S n 与a n 间的重要关系及其应用

“设S n 、a n 分别是等差数列{a n }的前n 和与通项,则它们之间有如下的重要关系:S n =(kn )a n ,其中k 是非零实数,n 是正整数。”

我们知道,等差数列{a n }的前n 和S n 、通项a n 分别有如下的表达式:

⑴ S n =na 1- n(n-1)2 d ,其可等价变形为S n = d 2 n 2 +(a 1-d

2 )n ,它是关于

n 的二次函数且不含常数项,一般形式是:S n =An 2+Bn ,其中A 、B 是非零待

定系数;

⑵ a n = a 1 +(n-1)d ,其可等价变形为a n =dn+(a 1 -d ),它是关于n 的一次函数,一般形式是:a n =an+b ,其中a 、b 是非零待定系数;

通过对等差数列{a n }前n 和S n 的一般形式S n =An 2+Bn 与其通项a n 的一般形式a n =an+b 的观察分析,不难得出S n 与a n 之间有这样的重要关系式:S n =(kn )a n 。

S n 与a n 相互关系的应用举例: 例1有两个等差数列{a n }、{b n },其前n 和分别为S n 、 T n ,并且

n n T S =7n+2n+3 ,求:⑴ 55b a 的值;⑵11

5b a

的值

分析:由等差数列可知,其前n 项和是关于n 的二次函数且不含常数项;

根据已知条件,两个等差数列前n 项和的比的结果是关于n 的一次因式,说明它们在相比的过程中约去了一个共同的因式kn ,于是,我们只要将其还原,即可得到两个等差数列的前n 项和,再对照等差数列前n 项和的二次函数形

式:S n = d 2 n 2 +(a 1-d

2 )n ,很快便可得到其首项、公差与通项,进而由等差

数列通项公式求出数列中的任意一项。

解:n n T S =7n+2n+3 ?n n T S =n n T S kn n kn n ?++)3(27)(=kn kn kn kn 32722++,于是我们便得到两个等差数列{a n }{b n }的前n 项和分别是S n =7kn 2+2kn, T n =kn 2+3kn 。设等差数列{a n }、{b n }的公差分别是d 1、d 2。根据等差数列的前n 项和S n 是关于n 的二次函数且不含常数项,即S n = d 2 n 2 +(a 1-d

2 )n ,于是相互对照

比较便得:

①21d =7k 且a 1-2

1d =2k ,解之得 a 1=9k ,d 1=14k ,从而有a 5=65k ;②22d =k

且b 1-

2

2

d =3k ,解之得 b 1=4k ,d 2=2k , 从而有b 5=12k , b 11=24k 。

因此,

55b a =k k 1265=12

65 ;115b a =k k 2465=2465

例2 已知等差数列{a n }的前项和S n 满足条件:S n =2n 2+3n ,

求此等差数列的通项a n

解: 根据等差数列的前n 项和S n 是关于n 的二次函数且不含常数项,

即S n = d 2 n 2 +(a 1-d

2

)n,并结合已知条件等差数列{a n }的前项和

S n =2n 2+3n 立有, d 2 =2且a 1-d

2 =3, 解之得 a 1=5,d=4,于是便

得所求等差数列的通项a n =4n+1.

练习:

⒈ 有两个等差数列{a n }、{b n },其前n 和分别为S n 、 T n ,

并且

n n T S =5n+22n-1 ,求:⑴ 55b a 的值;⑵11

7b a

的值.

⒉ 已知等差数列{a n }的前项和S n 满足条件:S n =5n 2-2n ,

求此等差数列的通项a n 。

《等差数列前n项和公式》教学设计53171

《等差数列的前n项和》教学设计 一、设计理念 让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构,因为建构主义学习理论认为,学习是学生积极主动地建构知识的过程.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的. 二、背景分析 本节课教学内容是高中课程标准实验教科书必修5(北师大)中第二章的第三节内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 三、学情分析 1、学生已掌握的理论知识角度:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。 2、学生了解数列求和历史角度:大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知。 3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。 四、教学目标 1、类比高斯算法,探求等差数列前n项和公式,理解公式的推导方法; 2、能较熟练地应用等差数列前n项和公式解决相关问题; 3、经历公式的推导过程,体会层层深入的探索方式,体验从特殊到一般、具体到抽象的研究方法,学会观察、归纳、反思与逻辑推理的能力; 4、通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功;五、教学重点与难点

数列的通项公式与前n项和的关系

数列的通项公式与前n 项和的关系 -CAL-FENGHAI.-(YICAI)-Company One1

1.(11辽宁T17) 已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式; (II )求数列??????-12n n a 的前n 项和. 【测量目标】等差数列的通项,数列的通项公式{}n a 与前n 项和n S 的关系. 【难易程度】容易 【试题解析】(I )设等差数列{}n a 的公差为d ,由已知条件可得11 0,21210,a d a d +=??+=-? 解得11,1. a d =??=-? 故数列{}n a 的通项公式为2.n a n =-(步骤1) (II )设数列1{ }2n n a -的前n 项和为n S ,即211,22 n n n a a S a -=+++故11S =(步骤2) 12.2242n n n S a a a =+++ 所以,当1n >时, 1211111222211121()2422 121(1)22 n n n n n n n n n n n S a a a a a S a n n -------=+++--=-+++--=--- = .2 n n (步骤3) 所以1.2n n n S -= 综上,数列11 { }.22n n n n a n n S --=的前项和(步骤4) 2.(10上海T20) 已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,n +∈N . (1)证明:{}1n a -是等比数列;

(2)求数列{}n S 的通项公式,并求出n 为何值时,n S 取得最小值,并说明理由. 【测量目标】数列的通项公式n a 与前n 项和n S 的关系. 【难易程度】中等 【试题解析】(1)当1n =时,114a =-;当2n 时,11551n n n n n a S S a a --=-=-++,()15116 n n a a -∴-=-,(步骤1) 又11150a -=-≠,∴数列{}1n a -是等比数列;(步骤2) (2)由(1)知:151156n n a -??-=- ??? ,得151156n n a -??=- ???,(步骤3) 从而()1575906n n S n n -+??=+-∈ ???N ;(步骤4) 解不等式1n n S S +<,得15265n -??< ???,562log 114.925n >+≈,(步骤5) ∴当15n 时,数列{}n S 单调递增;(步骤6) 同理可得,当15n 时,数列{}n S 单调递减; 故当15n =时,n S 取得最小值.(步骤7) 3.(09辽宁T14) 等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = . 【测量目标】数列的通项公式{}n a 与前n 项和n S 的关系. 【难易程度】中等 【参考答案】13 【试题解析】∵11(1)2 n S na n n d =+-∴5131510,33S a d S a d =+=+. ∴5311114653060(1515)154515(3)15S S a d a d a d a d a -=+-+=+=+=. ∵53655,S S -=故413 a = . 4.(09全国II T19) 设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+

等差数列的前n项和练习 含答案

等差数列的前n项和练习-含答案. 项和等差数列的前n课时作业8分满分:100时间:45分钟

课堂训练) (2,S=0,则n等于a1.已知{}为等差数列,a=35,d=-nn1B.34 A.3336 . DC.35 D 【答案】 +naS=n【解析】本题考查等差数列的前项和公式.由1n?1n-n?n -1??n36. ,可以求出n=0d=35n+×(-2)=22,则数列前24=+3(aa)+2(a+a+a).等差数列2{a}中,133710n5) 13项的和是( 26 .A.13 B156 .D52 C.

B 【答案】++)2()+a+a+a=24?6a6a=24?aa3(【解析】a +41013375410?+a13?a?13?a+a413×10131426. ====?a=4S1310222________. 50.=则SS=S.3等差数列的前n项和为,S20,=30n201090 【答案】 等差数列的片断数列和依次成等差数列.【解析】 S∴,S也成等差数列.-,-SSS2020101030S∴2(90. ()S-=SS+)S-S,解得=301020301020. . S=460,求S,4.等差数列{a}的前n项和为S,若S=8428n20n12a 应用基本量法列出关于a和的方程组,解出d【分析】(1)11;d,进而求得S和28的一元二次函数且常n因为数列不是常数列,因此S 是关于(2)n

2,、b数项为零.设S=anS+bn,代入条件S=84,=460,可得a20n12 S;则可求28SdSddd??nn2是一个等差),故(a-S(3)由=n++n(a-得??1n1nn2222??SSS282012. =+2812+,∴2×,可求得列,又2×20=28281220 a}的公差为d,方法一:设【解析】{n?n?n -1S则. d=na+1n21112×?,84+d=a1212?由已知条件得: 19 ×20?,=460+20ad12??,=-d11=14,15a2a+11解得整理得????4.=d+19d=46,a21?-1?nn所以S-17n,2n15n +×4=2=-n2所以S-17×28=1 092.

最新2.3等差数列的前n项和第一课时教案

§2.3 等差数列的前 n 项和 授课类型:新授课 (第1课时) 一、教学目标 知识与技能:掌握等差数列前n 项和公式;会用等差数列的前n 项和公式解决问题。 过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律;通过公式推导的过程教学,扩展学生思维。 情感态度与价值观:通过公式的推导过程,使学生体会数学中的对称美,促进学生的逻辑思维。 二、教学重点 等差数列n 项和公式的理解、推导及应用 三、教学难点 灵活应用等差数列前n 项公式解决一些简单的有关问题 四、教学过程 1、课题导入 “小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家 出道题目: 1+2+…100=?” 过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。” 教师问:“你是如何算出答案的? 高斯回答说:因为1+100=101; 2+99=101;…50+51=101,所以 101×50=5050” 这个故事告诉我们: (1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规 律性的东西。 (2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。 2、讲授新课 (1)等差数列的前n 项和公式1:2 )(1n n a a n S += 证明: n n n a a a a a S +++++=-1321 ① 1221a a a a a S n n n n +++++=-- ② ①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=-- ∵ =+=+=+--23121n n n a a a a a a ∴)(21n n a a n S += 由此得:2 )(1n n a a n S +=

数列通项公式和前n项和的常见解题方法

一、 观察法:已知数列的前几项,要求写出数列的一个通项公式 例1、求下列数列的一个通项公式。 ①1 3572,4,8,165101520 -- ②1,0,1,0 ③3,33,333,3333 ④11,103,1005,10007 二、定义法:主要应用于可定性为等差或等比数列的类型,可直接利用等差或等比数列的通项公式进行求解。例2、求下列数列的通项公式 ①已知数列{}a n 中() *112,3n n a a a n N +==+∈求通项公式。 ②已知{}a n 中a 13=-且n n a a 21=+求此数列的通项公式。 ③已知等比数列2,a ,a +4,…写出其通项a n 的表达式. ④已知数列{}n a 中,满足a 1=6,a 1+n +1=2(a n +1) (n ∈N + ),则数列{}n a 的通项公式 三、 递推关系式形如1()n n a a f n +=+ (其中()f n 不是常数函数) 此类问题要利用累加法, 利用公式121321()()()n n n a a a a a a a a -=+-+-+???+-来求解. 例.若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。 变式:(1)数列{a n }满足a 1=1且132(2),n n n a a n n a -=+-≥求 (2)数列{a n }满足a 1=1且11(2),2 n n n n a a n a -=+ ≥求 四、 递推关系式形如1()n n a a f n += (其中()f n 不是常数函数) 此类问题要利用累乘法,利用公式321121n n n a a a a a a a a -=??? 来求解. 例.在数列{}n a 中,11=a ,n n n a a 21=+(* N n ∈),求通项n a 。 变式:若1124,n n n a a a n ++==,求n a 五、 (构造数列法) 递推关系式形如 1n n a pa q +=+(,,1,0)q p p q ≠≠为常数且 此类问题可化为1()11n n q q a p a p p ++=+--,即数列{}1 n q a p +-是一个以p 为公比的等比数列. 例.已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列{}n a 的通项公式 变式:115,23n n n a a a a -==+且,求 六、利用前n 项和S n 求通项 利用{11,1 ,2n n a n n S S n a -=-≥= ,一定要验证首项。 例:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)223n S n n =-。 (2)12-=n s n (2)若数列{a n }的前n 项和S n =32 a n -3,求{a n }的通项公式.

等差数列前n项求和

2.3 等差数列的前n 项和 一、教学目标 1、理解等差数列的概念;探索并掌握等差数列的通项公式、前n 项和。 2、体会等差数列与二次函数的关系。 二、基础知识 1、数列前n 项和公式: 一般地,称n a a a a ++++...321为数列}{n a 的前n 项的和,用n S 表示,即n n a a a a S ++++= (321) 2、数列通项n a 与前n 项和n S 的关系 当2≥n 时,有n n a a a a S ++++=...321;13211...--++++=n n a a a a S ,所以n a =____________;当n=1时,11s a =。总上可得n a =____________ 3、等差数列}{n a 的前n 项和的公式=n S ________________=__________________ 4、若数列{}n a 的前n 项和公式为Bn An S n +=2(B A ,为常数),则数列{}n a 为 。 5、在等差数列}{n a 中,n S ;n S 2-n S ;n S 3-n S 2;。。。 仍成等差数列,公差为___________ 6、在等差数列}{n a 中:若项数为偶数2n 则=n S ________________;奇偶-s s =________________;=偶奇 s s ________________。 若项数为奇数2n-1则=-1n S ________________;偶奇-s s =________________;=偶奇 s s ________________。 7、若数列}{n a 与}{n b 均为等差数列,且前n 项和分别是n S 和n T ,则 =m m b a _____________。 三、典例分析 例1、已知数列{}n a 的前n 项和22+=n S n ,求此数列的通项公式。 解析:32111=+==s a ① )2(12]2)1[(2221≥-=+--+=-=-n n n n s s a n n n ② 在②中,当n=1时,1112=-?与①中的1a 不相等

高中数学必修五《等差数列的前n项和》名师教学设计

《等差数列的前n项和》教学设计 一.教学目标: (1)掌握等差数列前n项和公式的推导和应用; (2)体会方程、函数和数形结合的数学思想; (3)发展学生数学抽象、逻辑推理和数学建模等学科核心素养; (4)感受数学文化,品味数学魅力. 二.教学重点:等差数列前n项和公式的推导及应用 教学难点:等差数列前n项和公式的推导 三.教学过程: (一)公式探究 公元前4世纪,古希腊毕达哥拉斯学派数学家常用小石子在沙滩上摆成各种形状来研究各种有形数。比如:三角形数:1,3,6,10,...... 1 3 6 10 ...... 问题1:三角形数的第100个数是? 【学生活动】分组讨论,展示成果 问题2:三角形数的第n个数是? 【学生活动】分组讨论,展示不同方法,在比较争论中感悟倒序相加的优势 追问1:为什么要对和式配对? 追问2:为什么要倒序相加? 追问3:能再举出一个可以用倒序相加法求和的数列吗? 追问4:所有等差数列都可以用倒序相加法求和吗? 【学生活动】回答问题,相互补充 小结:我们借助“倒序相加”这一手段,将和式转化为n个相同数求和的问题,实现了化多为少的目的,而最终这一目的可以达到的根本原因是:等差数列自身的性质。 (二)公式应用

问题3:在等差数列{}n a 中, (1)1503,101a a ==,求50S ; (2)113,2 a d ==,求10.S 由(2)推导公式:1(1)2n n n d S na -=+ . 问题4:在等差数列{}n a 中,已知1315,,222 n n d a S ===-,求1a 及n . (三)感悟提升 问题5:回顾刚刚的探究过程,我们有什么收获? 【学生活动】展开讨论,总结收获 1. 数学知识: (1)1()2n n a a S += (2)1(1)2 n n n d S na -=+ 2. 数学方法:倒序相加(除了可以对等差数列求和还可以对哪些数列求和?) 3. 数学思想:数形结合,方程思想,函数思想 4. 数学文化:北宋时期的沈括提出了隙积术,南宋时期的杨辉发明了垛积术; 《九章算术》、《张丘建算经》等我国经典数学著作中都研究过等差数列的求和问题。

高考数学----数列通项公式与前n项和公式

数列通项与求和 一、观察法(归纳猜想、根据周期规律) 二、根据递推关系求通项 (一)累加法 形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数,则求n a 可用累加法。 ① 若)(n f 是关于n 的一次函数,累加后可转化为等差数列求和; ② 若)(n f 是关于n 的指数函数,累加后可转化为等比数列求和; ③ 若)(n f 是关于n 的分式函数,累加后可裂项求和。 (二)累乘法 形如 )2)((1 ≥=-n n f a a n n 或1)(-=n n a n f a ,且)(n f 不为常数,求n a 用累乘法。 (三)待定系数法 形如0(,1≠+=+k b ka a n n ,其中a a =1)型 (1)若1=k 时,数列{n a }为等差数列; (2) 若0=b 时,数列{n a }为等比数列; (3) 若1≠k 且0≠b 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求。 方法如下:设)(1λλ+=++n n a k a ,比较系数得λ。 (四)倒数法 形如1+= +n n n ca a a d 型,取倒数变成 1111 +=+n n d a c a c 的形式的方法叫倒数变换.取倒数后有两种类型:一是直接转化为等差数列;二是再借助于待定系数法去求解. (五)对数变换法 形如 r n n pa a =+1)0,0(>>n a p 这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。 三、和n S 有关的求通项的方法

已知数列}{n a 前n 项和n S ,则用公式???≥-==-211 1 n S S n S a n n n (注意:不能忘记讨论1=n )。 四、形如)(1n f a a n n =++型和 ) (1n f a a n n =?+型 (一)形如)(1n f a a n n =++型 (1)若 d a a n n =++1(d 为常数),则数列{ n a }为“等和数列”,它是一个周期数列,周期为2,其通项分 奇数项和偶数项来讨论; (2)若f(n)为n 的函数(非常数)时,可通过构造转化为) (1n f a a n n =-+型,通过累加来求出通项;或 用逐差法(两式相减)得) 1()(11--=--+n f n f a a n n ,分奇偶项来分求通项. (二)形如) (1n f a a n n =?+型 (1)若 p a a n n =?+1(p 为常数),则数列{ n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇 数项和偶数项来讨论; (2)若f(n)为n 的函数(非常数)时,可通过逐差法得) 1(1-=?-n f a a n n ,两式相除后,分奇偶项来分 求通项. 一、公式法 ①等差数列前n 项和S n =____________=________________,推导方法:____________; ②等比数列前n 项和S n =? ??? ? ,q =1, = ,q ≠1.推导方法:乘公比,错位相减法. ③常见数列的前n 项和: a .1+2+3+…+n = ; b .2+4+6+…+2n = ; c .1+3+5+…+(2n -1)= ; )12)(1(61 12++==∑=n n n k S n k n 2 13)]1(21 [+==∑=n n k S n k n 二、倒序相加:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如__________数列的前n 项和公式即是用此法推导的. 三、错位相减:形如a n =b n ·c n ,其中一个是等差数列一个是等比数列 四、分组求和:形如a n =b n +c n , 五、裂项(相消)法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,只剩有限项再求 和.

等差数列前n项和公式教育教学案例分析

等差数列前n项和公式教学案例分析

————————————————————————————————作者:————————————————————————————————日期:

《等差数列前n项和公式》教学案例分析教学案例: 一、教学设计思想 本堂课的设计是以个性化教学思想为指导进行设计的。 本堂课的教学设计对教材部分内容进行了有意识的选择和改组,为了体现个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中心,以老师为引导,以小组的合作为主要学习方式。课堂结构个性化,让学生在探究中展现个性,在合作中促进学生的个性发展。 在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。 二、学生情况与教材分析 1、学生通过上一节的学习,已经了解了等差数列的定义,基本上掌握了通项公式,会运用等差数列的通项公式进行解题,因此只要简单地回顾上一节课的知识就可引入新课; 2、几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。 3、学习应该是学生积极主动的建构知识的过程,应该与学生熟悉的背景相联系。本课要求学生通过自主地观察、讨论、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。 三、教学目标 1、知识目标 (1)掌握等差数列前n项和公式,理解公式的推导方法; (2)能较熟练应用等差数列前n项和公式求和。 2、能力目标 经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。

数列通项公式和前n项和求解方法全

数列通项公式的求法详解 一、 观察法(关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2) ,1716 4,1093 ,542,21 1(3) ,52,21,32 ,1(4) ,5 4 ,43,32 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+? -=+n n a n n . 二、 公式法 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

等差数列前n项和公式及性质

2.2 等差数列的前n项和 第一课时等差数列前n项和公式及性质 【选题明细表】 基础达标 1.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( B ) (A)40 (B)42 (C)43 (D)45 解析:∵a1=2,a2+a3=13, ∴3d=13-4=9,∴d=3, a4+a5+a6=S6-S3=6×2+×6×5×3-(3×2+×3×2×3)=42.故选B. 2.等差数列{a n}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为( B ) (A)28 (B)29 (C)30 (D)31

解析:∵S奇=a1+a3+…+a2n+1=(n+1)a n+1, S偶=a2+a4+…+a2n=na n+1, ∴S奇-S偶=a n+1=29.故选B. 3.(2013南阳高二阶段性考试)已知等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9等于( D ) (A)27 (B)36 (C)45 (D)54 解析:∵2a8=a5+a11=6+a11,∴a5=6, ∴S9===9a5=54.故选D. 4.(2012郑州四十七中月考)设等差数列{a n}的前n项和为S n,若 S3=9,S6=36,则a7+a8+a9等于( B ) (A)63 (B)45 (C)36 (D)27 解析:由S3,S6-S3,S9-S6成等差数列, ∴2(S6-S3)=S3+(S9-S6),∴a7+a8+a9=S9-S6=2(S6-S3)-S3=2×(36-9)-9=45.故选B. 5.(2013广州市铁一中第一学期期中测试)在各项均不为零的等差数列中,若a n+1-+a n-1=0(n≥2),则S2n-1-4n等于( A ) (A)-2 (B)0 (C)1 (D)2 解析:由已知得2a n-=0, 又a n≠0,∴a n=2, ∴S2n-1===2(2n-1), ∴S2n-1-4n=-2.故选A.

等差数列的前n项和教学案例

等差数列的前n项和 一、教学内容分析 本节课教学内容是《普通高中课程标准实验教科书?数学(5)》(人教A版)中笫二章的第三节“等差数列的前n项和”(第一课时).本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用?等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 二、学生学习情况分析 在本节课之询学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生已有了函数知识,因此在教学中可适当渗透函数思想?高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍. 三、设计思想 建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主.合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的. 四、教学目标 1.理解等差数列前n项和公式的推导过程;掌握并能熟练运用等差数列前n 项和公式;了解倒序相加法的原理; 2.通过公式的推导过程,体验从特殊到一般的研究方法,渗透函数思想与方程(组)思想,培养学生观察、归纳、反思的能力;通过小组讨论学习,培养学生合作交流、独立思考等良好的个性品质. 五、教学重点和难点 本节教学重点是探索并掌握等差数列前n项和公式,学会用公式解决一些实际问题;难点是等差数列前n项和公式推导思路的获得. 六、教学过程设计.V ? ? ? '、 (一)创设情景,唤起学生知识经验的感悟和体验 世界七大奇迹之一的泰姬陵坐落于印度古都阿格,传说陵寝中有一个三角形图案,以相同大小的圆宝??:?:?:?:?:?:?:?:?:?石镶饰而成,共有100 层,你知道这个图案一共花了多少宝石吗?

数列通项公式前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列 {}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及 前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12-=n s n 变式练习:

1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和21 2n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 变式练习: 1. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 2.已知数列: 求通项公式 类型2 特征:递推公式为 n n a n f a )(1=+ 对策:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法求解。 例4. 已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,求n a 。 变式练习:

等差数列前n项和公式》教学设计

《等差数列的前n项和公式》教学设计 职业技术学校刘老师 大纲分析: 高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。 教材分析: 数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。 学生分析: 数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。 教学目标: 知识与技能目标: 掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。 过程与方法目标: 培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标: 体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 教学重点与难点: 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 教学用具:ppt 整节课分为三个阶段: 问题呈现阶段 探究发现阶段 公式应用阶段 问题呈现1: 首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道 这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100) 紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。 200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=? 据说,当其他同学忙于把100个数逐项相加时, 10岁的高斯却用下面的方法迅速算出了正确答案: (1+100)+(2+99)+……+(50+51)=101×50=5050 【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。 问题呈现2: 图案中,第1层到第21层一共有多少颗宝石?

等差数列前n项和性质

精心整理 2.3.2等差数列的前n 项和的性质【学习目标】 1.熟练掌握等差数列前n 项和公式,等差数列前n 项和的性质以及其与二次函数的关系; 2. 在学习等差数列前n 项和性质的同时感受数形结合的基本思想,会由等差数列前n 项和公式求其通项公式. 【自学园地】 1. 等差数列的前n 项和的性质: 已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m ,n ,p ,q ,k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k . (2)a m (3)(4(5(6){pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 2.{}n a 为等差数列?其前n 项和2n S An Bn =+. 3.若数列{}n a 为等差数列{ }n S n ?成等差. 4.等差数列的单调性的应用: (1)当10,0a d ><时,n S 有最大值,n 是不等式100 n n a a +≥??

(2)当10,0a d <>时,n S 有最大值,n 是不等式1 00n n a a +≤??>?的正整数解时取得. (II )当数列中有某项值为0时,n 应有两解.110m m m S S a ++=?=. 5.知三求二问题:等差数列数列前n 项和公式中各含有4个元素:1,,,n n S n a a 与1,,,n S n a d ,已知其中3个量,即可求出另外1个;综合通项公式及前n 项和公式,已知其中3个量即可求出另外2个量. 【典例精析】 1.(1(2(3(4,则项数n (5d . (62.3.4(1(2)问12,,S 中哪个值最大?5中,a 1=-60,6.7.已知正项数列{}n a 的前n 项和为n S ,且(1)n a n n = +,求n S 8.已知正项数列{}n a 的前n 项和为n S ,且1(2) n a n n = +,求n S 【巩固练习】 1.一个有11项的的等差数列,奇数项之和是30,则它的中间项是() A.8 B.7 C.6 D.5 2.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612 S S =()

完整版等差数列前n项和教案

等差数列的前n项和(第一课时)教学设计 【教学目标】 一、知识与技能 1 ?掌握等差数列前n项和公式; 2?体会等差数列前n项和公式的推导过程; 3?会简单运用等差数列前n项和公式。 二、过程与方法 1?通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法; 2.通过公式的运用体会方程的思想。 三、情感态度与价值观 结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。 【教学重点】 等差数列前n项和公式的推导和应用。 【教学难点】 在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。 【重点、难点解决策略】 本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。 【教学用具】 多媒体软件,电脑 【教学过程】 一、明确数列前n项和的定义,确定本节课中心任务:

前n 和呢,于数列{a n } :ai, a 2, as, a n ,…我 称ai+且2+23+…+a n 数列{a n } 的前n 和,用Sn 表不,Sn=ai+a2+a3+…+a 如 , Si =ax S 7 =ai+a 24-a 3+ +a 7,下面我们来共同探究如何求等差数列的前 n 项 和。 二、问题牵引,探究发现 问题1:(播放媒体资料情景引入)古算术《张邱建算经》中卷有一道题:今有与人钱,初一人 与一钱,次一人与二钱,次一人与三钱,以次与之,转多一钱,共有百人,问共与几钱? 即:Sioo=l+2+3+ ? +100=? 著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同 学们思考高斯方法的特点,适合类型和方法本质。 同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的加法运算为 相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的项数为奇数时怎么办 呢? — ...... .... 探索与发现1:假如让你计算从第一人到第21人的钱数,高斯 的首尾配对法行吗? 即计算S2F1+2+3+?+21的值,在这个过程中让学生发现当 项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助 学生思考解决问题的办法,为引出倒序相加法做铺垫。 特点: 首项与末项的和: 第2项与倒数第2项的和: 第3项与倒数第3项的和: 1+ 100 = 101, 2 + 99 =101, 3+98 =101, 50+ 51 = 101, 101 X 50 = 5050。 5050 第50项与倒数第50项的和: 于是所求的和是: 1 + 2+3+ ? +100 二 101X50

求通项公式的几种方法与总结

睿 博 教 育 学 科 教 师 讲 义 讲义编号: LH-rbjy0002 副校长/组长签字: 签字日期: 教学内容 数列通项及求和 主干知识整合: 1.数列通项求解的方法 (1)公式法;(2)根据递推关系求通项公式有:①叠加法;②叠乘法;③转化法.(3)不完全归纳法即从特殊到一般的归纳法;(4)用a n =?? ? S 1n =1 S n -S n -1n ≥2 求解. 2.数列求和的基本方法: (1)公式法;(2)分组法;(3)裂项相消法;(4)错位相减法;(5)倒序相加法. ? 探究点 一 公式法 如果所给数列满足等差或者等比数列的定义,则可以求出a 1,d 或q 后,直接代入公式求出a n 或S n . 已知{a n }是等差数列,a 10=10,前10项和S 10=70,则其公差d =________. ? 探究点二 根据递推关系式求通项公式 如果所给数列递推关系式,不可以用叠加法或叠乘法,在填空题中可以用不完全归纳法进行研究. 例2 (1)已知数列{a n }满足a 1=2,a n +1=5a n -13 3a n -7(n ∈N *),则数列{a n }的前100项的和为________. (2)已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l

时,都有a i +b j =a k +b l ,则 12010∑=+2010 1 i i i )b (a 的值是________. (1)200 (2)2012 【解析】 (1)由a 1=2,a n +1=5a n -133a n -7(n ∈N * )得a 2=5×2-133×2-7=3,a 3=5×3-133×3-7= 1,a 4=5×1-13 3×1-7 =2,则{a n }是周期为3的数列,所以S 100=(2+3+1)×33+2=200. (2)由题意得a 1=1,a 2=2,a 3=3,a 4=4,a 5=5;b 1=2,b 2=3,b 3=4,b 4=5,b 5=6.归纳得a n =n , b n =n +1;设 c n =a n +b n ,c n =a n +b n =n +n +1=2n +1,则数列{c n }是首项为c 1=3,公差为2的等差数列,问题转化为求数列{c n }的前2010项和的平均数. 所以12010∑=+20101i i i )b (a =12010× 2010× 3+4021 2 =2012. ? 探究点四 数列的特殊求和方法 数列的特殊求和方法中以错位相减法较为难掌握,其中通项公式{a n b n }的特征为{a n }是等差数列,{b n }是等比数列. 例4 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式; (2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 【解答】 (1)设{a n }公比为q ,由题意得q >0, 且?? ? a 2=2a 1+3,3a 2+5a 3=2a 4, 即??? a 1q -2=3,2q 2 -5q -3=0, 解得?? ? a 1=3,q =3 或? ?? ?? a 1 =-6 5,q =-12(舍去), 所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1.② ②-①得,2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1, =- 31-3n 1-3 +n ·3n +1=3 2 (1-3n )+n ·3n +1

相关文档
相关文档 最新文档