文档库 最新最全的文档下载
当前位置:文档库 › 度日法和温频法计算方法介绍

度日法和温频法计算方法介绍

度日法和温频法计算方法介绍
度日法和温频法计算方法介绍

度日法和温频法计算方法介绍

摘要:根据《可再生能源建筑应用示范项目测评导则》(地源热泵系统测评)可以知道:建筑全年累计冷热负荷的计算,冬季:根据测试期间系统的实测热负荷和室外气象参数,采用度日法计算供暖季累计热负荷。夏季:根据测试期间系统的实测冷负荷和室外气象参数,采用温频法计算供冷季累计冷负荷。本文主要介绍度日法、温频法的来源以及相关的计算公式。

前言

能耗模拟计算的基础是建筑物冷、热负荷的计算。建筑物热负荷计算较冷负荷计算简单,因为冬季的耗热量比较稳定。而夏季建筑物冷耗量受许多因素的影响,如太阳辐射、围护结构的热传导、墙体的蓄热等。根据ARSHRAE 公布的建筑能耗计算方法,大致分为两类:一类是精确模拟计算法,包括DOE- 2、BLAST 、AXCESS 以及国内的DEST 等。这类软件一般较为复杂,不太容易被一般的设计和运行管理人员掌握;另一类是简化模拟法,包括度日法、当量运行小时数法、设备满负荷小时数法、温频法(BIN)等。虽然这类方法在理论上做了大量简化,结果也较粗略,但计算速度快,易于手算,可用于研究能耗趋势,进行系统比较与替代[1]。

一、度日法

度日法:通常用来计算采暖期总的累计采暖耗能量。

度日,是指每日平均温度与规定的标准参考温度(或称温度基准)的离差.因此,某日的度日数,就是该日平均温度与标准参考温度的实际离差。即:

()B H D D T T

=-

式中:

(HDD)——某日度日数(D.D),当B T T >时,则(HDD)=0;

B T ——标准参考温度(℃),一般取18℃;

T

——某日平均温度(℃),我国气象部门统一规定每天观测记录(2, 8, 14和20

时)室外空气温度,故281420

4

T T T T T +++=

采暖期总度日数是采暖期每日度日数的总和.为了使统计出的度日数具有足够的代表性,一般应统计十年以上的气象资料,具体的数据可以查阅《中国建筑热环境分析专用气象数据集》。

度日法采暖耗能量用下式计算:

()W

N D

s t C HDD q Q -?=

24

s Q ——供暖季累计热负荷(kWh )

; q

——建筑物总的设计空调热负荷(kW );

HDD

——采暖期度日数,(D.D );

D C ——修正系数,考虑间歇采暖对连续采暖的修正,可按表1取值;

M

N t -?——室内外设计温差(℃)。

表1:修正系数

η0.5~0.55,新式节能锅炉可取0.65。

以上来源:《简明空调设计手册》P403~P405(主编:赵荣义)

二、温频法(BIN )

所谓的BIN 方法,就是假设围护结构负荷( 包括日射及温差负荷) 可变换成室外气温的线性关系,依此线性关系计算出不同温度下的负荷并乘以该温度段出现的小时数,便得出该温度下的冷、热耗量。将夏季或冬季各温度下的冷、热耗量累计求和便是全年冷或热耗量。

由上面描述可以看出,BIN 是一种方法,一种线性处理数据的方法,因此,不能单纯的看待BIN 是一种公式,也正因为如此,在文章[7]中,季节冷负荷或热负荷的计算采用了公式(2-1),文章[8]针对透过玻璃窗的日射负荷与室外干球温度有着一定线性关系与实际不相符的情况提出了作者新的BIN 方法。

[]()W X

N X Q K t

t f =

-∑

式中:

Q ——建筑物季节冷负荷或热负荷(KWh ) K

——建筑物综合传热系数(W/℃) W X

t ——某一时刻室外空气的干球温度(℃)

N t ——室内设计状态的干球温度(℃)

X

f ——某室外空气干球温度值的年(或季节)小时频率值(h )

在下面的内容中将要介绍BIN 的另一种使用方法。这种方法也是在计算建筑空调耗能的一种常用方法。

用BIN 方法计算负荷时,要用到BIN 气象参数。所谓BIN 气象参数,就是根据某地全年室外干球温度或者随机气象模型生成的逐时值,整理并统计出一定间隔(一般的该温度间隔取为2℃)的温度段中的温度在全年或者某个时期所出现的小时数,即温度的时间频率表。为了适应不同的需求,可以统计不同时间段(夏季或冬季)及每日不同起始结束时刻的BIN 气象参数[2]。

2.1 逐时室外空气温度

,,m ax db h db h t t f D R

=-?

式中:

,db h t ——逐时温度 D R

——气温的日波动幅度即日较差,,m ax ,m in db db D R t t =-;

,m ax ,,m ax ,m in

db db h db db t t f t t -=

-——是与时间h 有关的系数[3],可从表2查得。

表2:系数f 随时间变化表

2.2 建筑物负荷计算

夏季建筑物冷负荷的计算公式如下:

EJ OUT Q t t t t Q EJ

N OUT N ?=

--

式中:

OUT Q ——室外温度为out t 时的建筑物冷负荷(kW )

EJ Q ——室外温度为EJ t 时的建筑物冷负荷(kW );

N t ——建筑物夏季室内设计温度(℃)。 EJ

t ——建筑物夏季设计室外温度(℃)

如下是某工程冷负荷计算的实例,本实例中BIN 气象参数使用的是某地全年室外干球温度逐时值(来源于《中国建筑热环境分析专用气象数据集》)。

某一工程,EJ t 为室外设计温度35.6℃,EJ Q 为空调设计冷负荷8458kW ,室外温度out t 按典型年[6]数据选取(《中国建筑热环境分析专用气象数据集》),室内设计温度为25℃。根据公式求出每一温频下的冷负荷,再将冷负荷与对应温频下的小时数相乘并累加即可算出供冷季累计冷负荷L Q 。具体计算结果见表3。

表3:夏季累计空调冷负荷计算表

故供冷季累计冷负荷Q L=5333492 kWh。

参考文献及术语解释

[1]赵峰, 文远高,热泵空调系统能耗的温频法模拟与分析[J],建筑节能,

2007,35(6):39-43。

[2]申世超,黄高飞. 水源热泵空调系统能耗的分析与比较[J]. 医药工程设

计,2008,29(3), 57-59.

[3](美)弗兰克.P. 英克鲁佩勒(Frank.P.Incropera), 戴维.P. 戴威特

(David.P.Dewitt); 葛新石等译. 传热的基本原理. 安徽教育出版社, 1985.

[4]采暖度日数(HDDl8):一年中,当某天室外日平均温度低于18℃时,将

低18℃的度数乘以1天,并将此乘积累加。

[5]空调度日数(CDD26):一年中,当某天室外日平均温度高于26℃时,将

高于26℃的度数乘以1天,并将此乘积累加。

[6]典型气象年(TMY):以近30年的月平均值为依据,从近10年的资料中

选取一年各月接近30年的平均值作为典型气象年。由于选取的月平均值在不同的年份,资料不连续,还需要进行月间平滑处理。

[7]冉春雨,贾正超.长春市某高校间歇采暖节能潜力分析[J],吉林建筑工程

学院学报,2010,27(5),41-44。

[8]王永辉,狄育慧,基于温频(BIN)法对蒸发冷却空调系统季节能耗的

研究[J],制冷与空调,2012,12(2),41-46

数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

牛顿插值法原理及应用

牛顿插值法 插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了牛顿插值。牛顿插值通过求各阶差商,递推得到的一个公式: f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。 插值函数 插值函数的概念及相关性质[1] 定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点 x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数. 称x1,x2,…xn 为插值节点,称[a,b]为插值区间。 定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序 程序框图#include void main() { float x[11],y[11][11],xx,temp,newton; int i,j,n; printf("Newton插值:\n请输入要运算的值:x="); scanf("%f",&xx); printf("请输入插值的次数(n<11):n="); scanf("%d",&n); printf("请输入%d组值:\n",n+1); for(i=0;i

商的近似数练习题

商的近似数练习题 1、填一填 (1) 0.9367保留一位小数约是( ),保留两位小数约是( ),保留三位小数约是( )。 (2)求商的近似数时,计算到比保留的位数(),再将()“四舍五入”。 (3) 13÷14的商保留一位小数要除到第( )位,约是( );保留两位小数要除到第( )位,约是( )。 2. 按照“四舍五入”法求出商的近似值,填在下表中。 3. 求下面各题的商的近似值。 56.29÷6.1 99÷101 28.74÷313.1÷4.9 保留两位小数保留两位小数保留两位小数保留三位小数 63.8÷87 0.68÷0.95 18÷7 53.3÷4.7 保留一位小数保留整数精确到0.1 保留整数 4.张师傅8小时做零件617个,平均每小时约做零件多少个?(得数保留整数) 5.我国有五大淡水湖,其中鄱阳湖最大,面积为2933平方千米,巢湖居第五,面积

为770平方千米。鄱阳湖的面积约是巢湖面积的多少倍?(得数保留两位小数) 6.一架飞机0.5小时飞行166.5千米,一只燕子每小时飞行94.5千米,飞机每小时飞行的路程约是燕子的多少倍?(得数保留整数) 7.木工师傅做一个方桌面,需木板0.65平方米。现有6.34平方米的木板,可以做多少个这样的方桌面?(得数保留整数) 8.一列火车每小时行65.5千米,从甲城到乙城用了9.3小时,一架飞机每小时飞行166千米,从甲城到乙城需要多少小时?(保留两位小数) 9.王叔叔进了一箱苹果重40千克,批发价是192元,打开箱子发现苹果烂了3千克,这箱苹果至少平均每千克卖多少元才能保证盈利不低于20元? 10.为了鼓励节约用电,某市电力公司规定了以下的电费计算方法:每月用电不超过100千瓦时,按每千瓦时0.52元收费;每月用电超过100千瓦时,超过的部分按每千瓦时0.6元收费。张叔叔家十月份付电费64.4元,用电约多少千瓦时?(结果保留整数)

数值分析插值算法源程序

#include #include float f(float x) //计算ex的值 { return (exp(x)); } float g(float x) //计算根号x的值 { return (pow(x,0.5)); } void linerity () //线性插值 { float px,x; float x0,x1; printf("请输入x0,x1的值\n"); scanf("%f,%f",&x0,&x1); printf("请输入x的值: "); scanf("%f",&x); px=(x-x1)/(x0-x1)*f(x0)+(x-x0)/(x1-x0)*f(x1); printf("f(%f)=%f \n",x,px); } void second () //二次插值 { float x0,x1,x2,x,px; x0=0; x1=0.5; x2=2; printf("请输入x的值:"); scanf("%f",&x); px=((x-x1)*(x-x2))/((x0-x1)*(x0-x2))*f(x0)+((x-x0)*(x-x2))/((x1-x0)*(x1-x2))*f(x1)+((x-x0)* (x-x1))/((x2-x0)*(x2-x1))*f(x2);

printf("f(%f)=%f\n",x,px); } void Hermite () //Hermite插值 { int i,k,n=2; int flag1=0; printf("Hermite插值多项式H5(x)="); for(i=0;i<=n;i++) { int flag=0; flag1++; if(flag1==1) { printf("y%d[1-2(x-x%d)*(",i,i); } else { printf("+y%d[1-2(x-x%d)*(",i,i); } for(k=0;k<=n;k++) { if(k!=i) { flag++; if(flag==1) { printf("(1/x%d-x%d)",i,k); } else { printf("+(1/x%d-x%d)",i,k);

近似数

求近似数 教学目标: 1、通过具体的情景让学生理解近似数的含义,体会近似数在生活中的作用。 2、通过独立猜测、交流等活动让学生掌握一定猜测的方法,培养学生的数感和估计能力。教学重、难点: 理解近似数的含义是本节课的重点,合理地取近似数是本节课的难点。 教学过程: 一、准备练习 1、接着数数。 1998、()、()、() 9997、()、()、() 497、()()、() 2、按要求排列下面各数。 1001 996 1008 ()>()>() 205 306 402 ()< ()<() 二复习练习: 1、(试问)“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么? 组织学生进行讨论、交流。思考:后半句约1500人是什么意思? 2、(教师小结):我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)我们用近似数就是为了让我们更容易记住,所以,一般我们都用整百、整千、整万数。 3、请你说说身边的近似数,找找生活中的近似数。按照教师的要求,先独立想想,再和小组的同学交流。 4、请大家看总复习120页5题. 谁来读一下? 师:上面这段话中哪些数据是近视数,哪些是准确数? 自主做,合作查. 5、辨别准确数和近似数 ⑴飞云江大桥全长1700多米。 ⑵2004年瑞安市交通事故6344起。 ⑶瑞安市有911个村民委员会。 ⑷塘下镇小轿车有8000辆左右。 ⑸塘下镇中心小学花木大约有3550棵。 ⑹瑞安市实验小学有学生2165名。 说说哪些是准确数?哪些是近似数? 6、填空: (1)新长镇的人数是9992人,约是()人. (2)9993是( )位数,这个数大约是( ). (3)392加249的和大约是( ). (4)498元的相机,我只带了349元,大约还差( )元.

牛顿插值法

题目:牛顿插值法在凸轮修正设计中 的应用 算法:Newton插值法 组号:6 组员:赵冬冬闫鹏田二方李婵娟张帅军郑亚军刘洋郭洋波

牛顿插值法在凸轮修正设计中的应用 赵冬冬,闫鹏,田二方,李婵娟,郭洋波,张帅军,郑亚军,刘洋(河南理工大学机械与动力工程学院,河南焦作 454000) 摘要:本文利用牛顿插值法,提出了一种简单实用的凸轮工作轮廓线的修正方法。首先对要进行修正的的曲线附近的一些离散点的数据进行分析处理,确定插值多项式的阶次以满足高精度和低运算量的要求。然后利用Matlab编程计算出插值点的值,并进行误差分析,实现对凸轮的局部工作廓线进行修正。 关键词:凸轮轮廓线;牛顿插值;修正 Interpolation method Newton inthe design of CAM fixed application ZHAO Dongdong,YAN Peng,TIAN Erfang,LI Chanjuan,,GUO Yangbo,ZHANG Shuaijun,ZHENG Yajun,LIU Yang (School of Machinery and power engineering Henan polytechnic uiversity ,Jiaozuo 454000) Abstract: Based on the Newton interpolation method, we put forward a simple but practical solution to the work of the cam contour correction. Firstly,we rehandle the discrete data nearby the premodifying curve and get the order of the polynomial to meet the demand of high precision and low computation.Then The Newton interpolation and error analysis are realized by matlab programming. SO far ,we’ve resolved the problem of the cam contour correction . Key words: Newton interpolation; cam contour;correction 0.问题背景 在自动包装机或包装线中,为保证各个机械间歇运动的快捷与准确,常常采用凸轮机构来实现。包装材料、产品和包装地间歇输送、翻转或转移、工作转台的间歇转位,工作机构带停留段的往复运动,有特定位移、速度或加速度要求的动作等,均属于简谐运动范围,正确设计或选用简谐运动机构,对包装机的运行性能具有关键性的作用。凸轮机构在高速包装机械设备中应用更广泛,是一种不可缺少和替代的重要机构。 1.问题分析及模型 高速包装机械中凸轮工作廓线的设计多采用解析法,这样既保证了凸轮的运动特性,又便于对凸轮机构进行运动学和动力学分析,因此这就使得在不同工况下,凸轮设计的解析方程式往往是不相同的。这样虽然能保证凸轮的精度,但同时也对凸轮在实际使用中的修正提高了难度,因为只有建立新的解析方程式才能对凸轮进行修正,尤其是只需对凸轮局部曲线进行修正时,也要建立相应的解析方程,这样就使曲线修正的工作量大增,工作效率降低[1]。

近似数

近似数 一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数,如:我国的人口无法计算准确数目,但是可以说出一个近似数.比如说我国人口有13亿,13亿就是一个近似数. 一个近似数四舍五入到哪一位,那么就说这个近似数精确到哪一位,从左边第一个不是0的数字起到精确的数位止的所有数止。如:我国的人口无法计算准确数目,但是可以说出一个近似数.比如说我国人口有15亿,15亿就是一个近似数. 近似数的四则计算 加法和减法 在通常情况下,近似数相加减,精确度最低的一个已知数精确到哪一位,和或者差也至多只能精确到这一位。示例例如,一个同学去年体重30.4千克,今年体重比去年增加了3.18千克。求今年体重时要把这两个近似数加起来。因为30.4只精确到十分位,比3.18的精确度(精确到百分位)低,所以加得的和最多也只能精确到十分位。为了容易看出计算结果的可靠程度,我们在竖式中每一个加数末尾添上一个“?”,用来表示被截去的数字。30.4?+ 3.18 33.5?可以看到,因为第一个加数从百分位起的数就不能确定,所以加得的和从百分位起数字也不能确定。近似数的加减一般可按下列法则进行:(1)确定计算结果能精确到哪一个数位。(2)把已知数中超过这个数位的尾数“四舍五入”到这个数位的下一位。(3)进行计算,并且把算得的数的末一位“四舍五入”。例1 求近似数2.37与5.4258的和。先把5.4258“四舍五入”到千分位,得5.426,再做加法。 2.37 +5.426 7.796 把7.796“四舍五入”到百分位,得7.80。例2 求近似数0.075与0.001263的差。先把0.001263“四舍五入”到万分位。0.075 -0.0013 0.0737 把0.0737“四舍五入”到千分位,得0.074。例3 求近似数25.3、0.4126、2.726的和。25.3 0.41 + 2.73 28.44 把28.44“四舍五入”到十分位,得28.4。 在通常情况下,近似数相乘除,有效数字最少的一个已知数有多少个有效数字,积或者商也至多只能有同样多个有效数字。例如,近似数9.04和4.3相乘,从竖式中看到,积里只有前两位数字是确定的,就是说只能有两位有效数字。这和第二个因数的有效数字的个数相同。9.0 4 ?×4.3 ?????? 2 7 1 2 ? 3 6 1 6 ? 3 8.?????近似数的乘除一般可按下列法则进行(1)确定结果有多少个有效数字。(2)把已知数中有效数字的个数多的四舍五入到只比结果中需要的个数多一个。(3)进行计算,并且把算得的数“四舍五入”到应有的有效数字的个数。例4 求247.65与0.32的积。把247.65“四舍五入”到个位。 2 4 8 ×0.3 2 4 9 6 7 4 4 7 9.3 6 把79.36“四舍五入”到个位,得79。例5 求近似数7.9除以24.78的商。 7.9÷24.78≈7.9÷24.8≈0.318≈0.32 混合运算 近似数的混合运算,可按运算顺序和近似数的计算法则分步计算,但中间运算的结果要比最后结果多取一位数字。例6 计算3.054×2.5-57.85÷9.21。 3.054×2.5-57.85÷9.21 ≈3.05×2.5-57.85÷9.21 ≈7.63-6.28≈1.4 根据已知数据,最后运算的结果要取两位数字,因此,中间运算的结果要取三位数字! 近似数和有效数字 与实际数字比较接近,但不完全符合的数称之为近似数。对近似数,人们常需知道他的精确度。一个近似数的近确度通常有以下两种表述方式用四舍五入法表述。一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。另外还有进一和去尾两种方法。用有效数字的个数表述。有四舍五入得到的近似数,从左边第一个不是零的数字起,到末位数字为止的数所有数字,都叫做这个数的有效数字。 有效数 对于一个近似数,从左边第一个不是0的数字起,到精确到的位数止,所有的数字都叫做这个数的有效数字 1.有效数字中只应保留一位欠准数字,因此在记录测量数据时,只有最后一位有效数字是欠准数字。2.在欠准数字中,要特别注意0的情况。0在非零数字之间与末尾时均为有效数;在小数点前或小数点后均不为有效数字。如0.078和0.78与小数点无关,均为两位有效数字。506与220均为三位有效数字。3.л等常数,具有无限位数的有效数字,在运算时可根据需要取适当的位数。 (1)实验中的数字与数学上的数字是不一样的.如数学的8.35=8.350=8.3500, 而实验的8.35≠8.350≠8.3500. (2)有效数字的位数与被测物的大小和测量仪器的精密度有关.如前例中测得物体的长度为7.45cm,若改用千分尺来测,其有效数字的位数有五位. (3)第一个非零数字前的零不是有效数

计算方法习题集第一,二章规范标准答案

第一章 误差 1 问3.142,3.141,7 22分别作为π的近似值各具有几位有效数字? 分析 利用有效数字的概念可直接得出。 解 π=3.141 592 65… 记x 1=3.142,x 2=3.141,x 3=7 22. 由π- x 1=3.141 59…-3.142=-0.000 40…知 34111 10||1022 x π--?<-≤? 因而x 1具有4位有效数字。 由π- x 2=3.141 59…-3.141=-0.000 59…知 223102 1||1021--?≤-

1112*10) 1(2110)19(21102110003%3.0)(--?+≤?+?=?< =a x r ε 设x*具有n 位有效数字,令-n+1=-1,则n=2,从而x*至少具有2位有效数字。 4 计算sin1.2,问要取几位有效数字才能保证相对误差限不大于0.01%。 分析 本题应利用有效数字与相对误差的关系。 解 设取n 位有效数字,由sin1.2=0.93…,故a 1=9。 411 *10%01.01021|*|| *||)(-+-=≤?≤-= n r a x x x x ε 解不等式411 101021-+-≤?n a 知取n=4即可满足要求。 5 计算760 17591-,视已知数为精确值,用4位浮点数计算。 解 =-760 175910.131 8×10-2-0.131 6×10-2=0.2×10-5 结果只有一位有效数字,有效数字大量损失,造成相对误差的扩大,若通分后再计算: 56101734.010 5768.01760759176017591-?=?=?=- 就得到4位有效数字的结果。 此例说明,在数值计算中,要特别注意两相近数作减法运算时,有效数字常会严重损失,遇到这种情况,一般采取两种办法:第一,应多留几位有效数字;第二,将算式恒等变形,然后再进行计算。例如,当x 接近于0,计算x x sin cos 1-时,应先把算式变形为 x x x x x x x cos 1sin )cos 1(sin cos 1sin cos 12+=+-=- 再计算。又例如,当x 充分大时,应作变换 x x x x ++= -+111 ) 1(1111+=+-x x x x 6 计算6)12(-=a ,取4.12≈,采用下列算式计算: (1) 6 )12(1+; (2)27099-;

计算方法实验报告 插值

实验名称:插值计算 1引言 在生产和科研中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。 设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn. 插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。 通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。 2实验目的和要求 用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函 数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。

3算法描述 1.分段线性插值流程图

2.分段二次插值流程图

3.拉格朗日插值流程图

4程序代码及注释 1.分段线性插值

牛顿插值法的分析与应用

牛顿插值法的分析与应用 学生: 班级: 学号: : 指导教师: 成绩:

一.定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商 i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 二. 牛顿插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 三.算法 步骤1:输入节点(xj ,yj ),精度ξ,计值点xx ,f0→p ,1→T ,1→i ; 步骤2:对k=1,2,……,i 依次计算k 阶均差 f[xi-k,xi-k+1,…,xi] = (f[xi-k+1,…,xi]- f[xi-k,…,xi])/( xi -xi-k ) 步骤3:(1)、若| f[x1,…,xi]- f[x0,…,xi-1]|< ξ,则p 为最终结果Ni-1(x),余项Ri-1= f[x0,…,xi](xx-xi-1)T 。 (2)、否则(xx-xi-1)*T →T ,p+ f[x0,…,xi]*T →p ,转步骤4。 步骤4:若i

数值分析常用的插值方法

数值分析报告 班级: 专业: 流水号: 学号: 姓名:

常用的插值方法 序言 在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,牛顿、拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。 插值问题的提法是:假定区间[a,b〕上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……x n处的值是f(x0),……f(x n),要求估算f(x)在[a,b〕中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0, C1,……C n的函数类Φ(C0,C1,……C n)中求出满足条件P(x i)=f(x i)(i=0,1,……n)的函数P(x),并以P(x)作为f(x)的估值。此处f(x)称为被插值函数,x0,x1,……xn 称为插值结(节)点,Φ(C0,C1,……C n)称为插值函数类,上面等式称为插值条件,Φ(C0,……C n)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。

求解这类问题,它有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值。 一.拉格朗日插值 1.问题提出: 已知函数()y f x =在n+1个点01,,,n x x x L 上的函数值01,,,n y y y L ,求任意一点 x '的函数值()f x '。 说明:函数()y f x =可能是未知的;也可能是已知的,但它比较复杂,很难计算其函数值()f x '。 2.解决方法: 构造一个n 次代数多项式函数()n P x 来替代未知(或复杂)函数()y f x =,则 用()n P x '作为函数值()f x '的近似值。 设()2012n n n P x a a x a x a x =++++L ,构造()n P x 即是确定n+1个多项式的系数 012,,,,n a a a a L 。 3.构造()n P x 的依据: 当多项式函数()n P x 也同时过已知的n+1个点时,我们可以认为多项式函数 ()n P x 逼近于原来的函数()f x 。根据这个条件,可以写出非齐次线性方程组: 20102000 20112111 2012n n n n n n n n n n a a x a x a x y a a x a x a x y a a x a x a x y ?++++=?++++=?? ? ?++++=?L L L L L 其系数矩阵的行列式D 为范德萌行列式: ()20 0021110 2111n n i j n i j n n n n x x x x x x D x x x x x ≥>≥= = -∏L L M M M M L

matlab_牛顿插值法_三次样条插值法

(){} 2 1 ()(11),5,10,20: 1252 1()1,(0,1,2,,)()2,(0,1,2,,)() ()2 35,20:1100 (i i i i n n k k k Newton f x x n x f x x i i n f x n x y i n Newton N x S x n x k y f x = -≤≤=+=-+====-+ = 题目:插值多项式和三次样条插值多项式。已知对作、计算函数在点处的值;、求插值数据点 的插值多项式和三次样条插值多项式;、对计算和相应的函数值),()() (1,2,,99)4:()max ()()max ()n k n k n k n k n k n k k k N x S x k E N y N x E S y S x ==-=- 和; 、计算,; 解释你所得到的结果。 算法组织: 本题在算法上需要解决的问题主要是:求出第二问中的Newton 插值多项式 )(x N n 和三次样条插值多项式()n S x 。如此,则第三、四问则迎刃而解。计算两 种插值多项式的算法如下: 一、求Newton 插值多项式)(x N n ,算法组织如下: Newton 插值多项式的表达式如下: )())(()()(110010--???--+???+-+=n n n x x x x x x c x x c c x N 其中每一项的系数c i 的表达式如下: 1102110) ,,,(),,,(),,,(x x x x x f x x x f x x x f c i i i i i -???-???= ???=- 根据i c 以上公式,计算的步骤如下: ?? ??? ?? ?????+??????? ???????????----) ,,,,(1) ,,,(),,,,(),(,),,(2)(,),(),(11101111011010n n n n n n n n x x x x f n x x x f x x x f n x x f x x f x f x f x f 、计算、计算、计算、计算 二、求三次样条插值多项式)(x S n ,算法组织如下:

近似数、科学计数法及几何图形计算公式

部分重要概念及计算方法 1.近似数:是指与准确数相近的一个数.一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位.如: 2.15643精确到0.1(十分位),就是2.2,精确到0.01(百分位)就是2.16. 2.有效数字 定义:一个数从左边第一个不为0的数字数起一直到最后一位数字(包括0,科学计数法不计10的N次方),这中间所有的数字都叫这个数的有效数字.简单的说,把一个数字前面的0都去掉就是有效数字了;如:①0.0109,前面两个0不是有效数字,后面的109均为有效数字(注意,中间的0也算); ②3.109×105中,3 1 0 9均为有效数字,后面的105不是有效数字 ③5200000000,全部都是有效数字; ④0.0230,前面的两个0不是有效数字,后面的230均为有效数字(后面的0也算). 3.科学计数法:将一个数字表示成a×10n的形式,其中1≤|a|<10,n是整数(|n|与小数点移动的位数相同),这种记数方法叫科学计数法.如:①890314000=8.90314×108;②839960000=8.3996×108;③0.00934593=9.34593×103-;④100万=1000000=1×106 【注意:原数≥10,小数点从右往左移动,此时“n”为正整数,如例子中的①②;原数<1,小数点从左往右移动,此时“n”为负整数,如例子中的③】 【习题】 1.下列说法错误的是() A.3.14×103是精确到十位 B.4.609万是精确到万位 C.近似数0.8和0.80表示的意义不同 D.用科学计数法表示的数2.5×104其原数是25000 2.用四舍五入法,按括号中的要求对下列各数取近似数 (1)①4685000(精确到千位)②14亿(精确到十万位) (2)下列用科学计数法表示的数,原来各是什么数? 3×106,6.2×105,8.003×107. 3.把6978000按四舍五入法精确到万位的近似值用科学记数法表示为() A.6980000 B.6.98×106 C.698×104 D.6.978×106 4.用四舍五入法将0.0756×107精确到万位的近似值用科学记数法表示为() A.0.076×107 B.7.6×105 C.7.6×106 D.7.56×105 5.把123.45×104用科学记数法表示为_____,它精确到位____,若精确到万位表示为_____. 6.一个数用“四舍五入”法精确到万位约是7万,这个数最大是_____,最小是______. 7.用四舍五入法对数4795058.18取近似值,精确到万位,结果用科学记数法表示为_____. 8.用四舍五入法对2.05×105取近似值,使它精确到万位,则2.05×105≈_____. 9.用科学记数法表示13040900,若精确到百万位,则近似值为______. 10.用四舍五入法把3085000精确到万位的近似值是____. 11.据统计,某一天上海世博网站的访问人次为201947,用四舍五入法精确到万位的近似值为() A.2.0×105 B.2.1×105 C.2.2×105 D.2×105 常见单位换算 注意:大单位化小单位用乘法,小单位化大单位用除法. 口诀:大化小乘才好,小化大用除法. 一.重量单位换算 1吨=1000千克 1吨=1000 000克 1千克=1000克 500克=1斤 1千克=1公斤 1公斤=2斤二.人民币单位换算 1元=10角 1角=10分 1元=100分 三.时间单位换算 1世纪=100年 1年=12个月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天

16、求商的近似数的方法

日期: 年 月 日(星期 ) 课 题 16、求商的近似数的方法 重点 难点 学习水平 课 型 新授课 课 时 1 课 时 识记 理解 运用 教学目标 1、能理解商的近似数的意义。 √ 2、掌握用“四舍五入”法求商的近似数的一般方法。 √ √ √ 3、培养学生在实际生活中灵活运用数学知识的能力 √ √ 突破重点 难点设想 本节课的重难点是掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法,为此在教学中注重新旧知识的迁移,引导学生自主学习、总结。 教学媒体 多媒体 教 学 活 动 及 主 要 语 言 学 生 活 动 一、创境激疑 复习旧知:(出示如下题目) 1、用“四舍五入”法将下面的数改写成一位小数。 8.769 3.452 12.71 18.64 2、计算下面各题,得数保留两位小数。 2.43×4.67 12.15×3.41 订正答案,并通过问题:你是用什么方法求这些数的近似数? (保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。) 3、引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数) 二、互动解疑 1、出示教材第32页例6情境图。 阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢? 引导学生自主列算式,并试着计算:19.4÷12 学生在计算过程中,会发现除不尽。这时,师引导学生小组交流种情况应该怎么办? 通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。 教师小结:根据我们的生活实际,当所买的商品数量少的时 候可以保留整数或者保留一位小数,或者两位小数。当然如果数 量很多的时候,通常会计算到分,这就要根据我们的实际需要进 行取近似数了。看来取近似数一种是按照要求去取,一种是按照 抢答 独立完成 说一说自己的计算方法 明确目标 看图理解题意 自主列算式,并试着计 算 理解 理解数学知识在生活 中的具体运用

数值计算方法复习题2

习题二 1. 已知 ,求的二次值多项式。 2. 令 解:; ,介于x和0,1决定的区 间内;,当时。 的数表,分别用线性插值与二次插值求 3. 给出函数 ,试利用拉格朗日余项定理写出以为节点的三次 4. 设 插值多项式。 ,求及的值。1,0 5. 已知 6. 根据如下函数值表求四次牛顿插值多项式,并用其计算 , 的如下函数值表,解答下列问题(1)试列出相应 7. 已知函数 的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。 解:向前插值公式

向后插值公式 8. 下表为概率积分 的数据表,试问:1)时, 积分 在各点的数据(取五位有效数 9. 利用 字),求方程 在0.3和0.4之间的根的近似值。0.3376489 10. 依据表10中数据,求三次埃尔米特插值多项式。 11. 依据数表11 项式。 上给出的等距节点函数表,用分段线性插值求 12. 在 的近似值,要使截断误差不超过 取? 13. 将区间 分成n等分,求在上的分段三次埃尔米 特插值多项式,并估计截断误差。 14、给定的数值表

用线性插值与二次插值计算ln0.54的近似值并估计误差限 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计。线性插值时,用0.5及0.6两点,用Newton插值 误差限 ,因,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限, 故 15、在-4≤x≤4上给出的等距节点函数表,若用二次插值法 求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式, 令因 得

16、若,求和 解:由均差与导数关系 于是 17、若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 18、求证 解:只要按差分定义直接展开得 19、已知的函数表

数值计算方法试题集及答案

《数值计算方法》复习试题 一、填空题: 1、,则A的LU分解为。 答案: 2、已知,则用辛普生(辛卜生)公式计算求得,用三点式求得。 答案:, 3、,则过这三点的二次插值多项式中的系数为,拉格朗日插值多项式 为。 答案:-1, 4、近似值关于真值有( 2 )位有效数字; 5、设可微,求方程的牛顿迭代格式是( ); 答案 6、对,差商( 1 ),( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x)=0在区间(a,b)内的根时,二分n次后的误差限为 ( ); 9、求解一阶常微分方程初值问题= f (x,y),y(x0)=y0的改进的欧拉公式为 ( ); 10、已知f(1)=2,f(2)=3,f(4)=,则二次Newton插值多项式中x2系数为( ); 11、两点式高斯型求积公式≈( ),代数精度为( 5 ); 12、解线性方程组A x=b的高斯顺序消元法满足的充要条件为(A的各阶顺序主子式均 不为零)。 13、为了使计算的乘除法次数尽量地少,应将该表达式改写为,为了减少舍入误差,应将表达式改写为。 14、用二分法求方程在区间[0,1]内的根,进行一步后根的所在区间为,1 ,进行 两步后根的所在区间为,。 15、计算积分,取4位有效数字。用梯形公式计算求得的近似值为,用辛卜生公式 计算求得的近似值为,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 16、求解方程组的高斯—塞德尔迭代格式为,该迭代格式的迭代矩阵的谱半径

= 。 17、设,则,的二次牛顿插值多项式为。 18、求积公式的代数精度以( 高斯型 )求积公式为最高,具有( )次代数精 度。 19、已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求≈( 12 )。 20、设f (1)=1,f(2)=2,f (3)=0,用三点式求( )。 21、如果用二分法求方程在区间内的根精确到三位小数,需对分( 10 )次。 22、已知是三次样条函数,则 =( 3 ),=( 3 ),=( 1 )。 23、是以整数点为节点的Lagrange插值基函数,则 ( 1 ),( ),当时( )。 24、解初值问题的改进欧拉法是 2 阶方法。 25、区间上的三次样条插值函数在上具有直到_____2_____阶的连续导数。 26、改变函数 ()的形式,使计算结果较精确。 27、若用二分法求方程在区间[1,2]内的根,要求精确到第3位小数,则需要对分 10 次。 28、设是3次样条函数,则 a= 3 , b= -3 , c= 1 。 29、若用复化梯形公式计算,要求误差不超过,利用余项公式估计,至少用 477个求积节点。 30、写出求解方程组的Gauss-Seidel迭代公式,迭代矩阵为,此迭代法是否收敛收敛。 31、设,则 9 。 32、设矩阵的,则。 33、若,则差商 3 。 34、数值积分公式的代数精度为 2 。 35、线性方程组的最小二乘解为。 36、设矩阵分解为,则。 二、单项选择题: 1、Jacobi迭代法解方程组的必要条件是( C )。 A.A的各阶顺序主子式不为零 B. C. D. 2、设,则为( C ). A. 2 B. 5 C. 7 D. 3 3、三点的高斯求积公式的代数精度为( B )。 A. 2 B.5 C. 3 D. 4 4、求解线性方程组A x=b的LU分解法中,A须满足的条件是( B )。 A.对称阵B.正定矩阵 C.任意阵 D.各阶顺序主子式均不为零 5、舍入误差是( A )产生的误差。

相关文档
相关文档 最新文档