文档库 最新最全的文档下载
当前位置:文档库 › Linux内核版本号格式

Linux内核版本号格式

Linux内核版本号格式

Linux学习:Linux内核版本号格式

major.minor.patch-build.desc

1、major:表示主版本号,有结构性变化时才变更。

2、minor:表示次版本号,新增功能时才发生变化;一般奇数表示测试版,偶数表示生产版。

3、patch:表示对次版本的修订次数或补丁包数。

4、build:表示编译(或构建)的次数,每次编译可能对少量程序做优化或修改,但一般没有大的(可控的)功能变化。

5、desc:用来描述当前的版本特殊信息;其信息由编译时指定,具有较大的随意性,但也有一些描述标识是常用的,比如:

<1>rc(有时也用一个字母r),表示候选版本(release candidate),rc后的数字表示该正式版本的第几个候选版本,多数情况下,各候选版本之间数字越大越接近正式版。

<2>smp,表示对称多处理器(Symmetric MultiProcessing)。

<3>pp,在Red Hat Linux中常用来表示测试版本(pre-patch)。

<4>EL,在Red Hat Linux中用来表示企业版Linux(Enterprise Linux)。

<5>mm,表示专门用来测试新的技术或新功能的版本。

<6>fc,在Red Hat Linux中表示Fedora Core。

Alpha版本是内部测试版,是比Beta版还早的测试版,一般不向外部发布,会有很多Bug,除非你也是测试人员,否则不建议使用。

Beta版本是测试版,这个阶段的版本会一直加入新的功能。

RC版本(Release Candidate) 是发行候选版本。和Beta版最大的差别在于Beta阶段会一直加入新的功能,但是到了RC版本,几乎就不会加入新的功能了,而主要着重于除错。

RTM版本(Release to Manufacture)是给工厂大量压片的版本,内容跟正式版是一样的。

OEM版本是给计算机厂商随着计算机贩卖的,也就是随机版。只能随机器出货,不能零售。只能全新安装,不能从旧有操作系统升级。如果买笔记型计算机或品牌计算机就会有随机版软件。包装不像零售版精美,通常只有一面CD和说明书(授权书)。

RTL版本(Retail)是真正的正式版,正式上架零售版。

设备驱动加到Linux内核中

7.2.3 设备驱动加到Linux内核中 设备驱动程序编写完后将该驱动程序加到内核中。这需要修改Linux 的源代码,然后重新编译内核。 ①将设备驱动程序文件(比如mydriver.c)复制到/Linux/drivers/char目录下。该目录保存了Linux下字符设备的设备驱动程序。修改该目录下mem.c 文件,在int chr_dev_init()函数中增加如下代码: #ifdef CONFIG_MYDRIVER device_init(); #endif 其中CONFIG_MYDRIVER是在配置Linux内核时赋值。 ②在/linux/drivers/char目录下Makefile中增加如下代码: ifeq ($(CONFIG_MYDRIVER),y) L_OBJ + = mydriver.o endif 如果在配置Linux内核时选择了支持新定义的设备,则在编译内核时会编译mydriver.c生成mydriver.o文件。 ③修改/linux/drivers/char目录下config.in文件,在 comment Character devices 语句下面加上 bool suppot for mydriver CONFIG_MYDRIVER 这样,若编译内核,运行make config,make menuconfig或make xconfig,那么在配置字符设备时就会有选项: Support for mydriver 当选中这个设备时,设备驱动就加到了内核中了。 重新编译内核,在shell中将当前目录cd 到Linux目录下,然后执行以下代码: # make menuconfig # make dep # make 在配置选项时要注意选择支持用户添加的设备。这样得到的内核就包含用户的设备驱动程序。 Linux通过设备文件来提供应用程序和设备驱动的接口,应用程序通过标准的文件操作函数来打开、关闭、读取和控制设备。查看Linux文件系统下的/proc/devices,可以看到当前的设备信息。如果设备驱动程序已被成功加进,这里应该由该设备对应的项。/proc/interrupts纪录了当时中断情况,可以用来查看中断申请是否正常;对于DMA和I/O口的使用,在/proc下都有相应的文件进行记录;还可以在设备驱动程序中申请在/proc 文件系统下创建一个文件,该文件用来存放设备相关信息。这样通过查看该文件就可以了解设备的使用情况。总之,/proc文件系统为用户提供了查

Linux内核—文件系统模块的设计和开发

Linux内核—文件系统模块的设计和开发 郑小辉 摘要:目前,Linux技术已经成为IT技术发展的热点,投身于Linux技术研究的社区、研究机构和软件企业越来越多,支持Linux的软件、硬件制造商和解决方案提供商也迅速增加,Linux在信息化建设中的应用范围也越来越广,Linux产业链已初步形成,并正在得到持续的完善。随着整个Linux产业的发展,Linux技术也处在快速的发展过程中,形成了若干技术热点。 本文介绍了Linux的发展和特点,以及与其他文件系统的区别。文中主要是对Linux2.4.0内核文件系统源代码的分析,并参考其文件格式设计一个简洁的文件系统。源代码的分析主要介绍了VFS文件系统的结构,Linux自己的Ext2文件系统结构,以及文件系统中的主要函数操作。 在设计的简洁文件系统中,通过调用一些系统函数实现了用户的登录、浏览目录、创建目录、更改目录、创建文件以及退出系统功能。 关键字:Linux 源代码分析文件系统Ext2 Linux内核

Linux kernel -Design and development for the File System Module Zheng xiaohui Abstract: Currently, Linux IT technology has become a hot development technology. Participating in Linux technology research communities, research institutes and software enterprises are in support of Linux more and more, software and hardware manufacturers and solution providers have increased rapidly, In the development of the information industry the Linux application is also increasing, Linux industry chain has taken shape, and is sustained improvemently. With the entire industry in the development of Linux, and Linux is also at the rapid development process, formed a number of technical points. This paper presents the development of Linux and features, and with other file system differences. The main text of the document is Linux2.4.0 system kernel source code analysis, and I reference its file format to design a simple file system. The analysis of the source code mainly on the VFS file system structure, Linux Ext2 its own file system structures, file systems and the main function operation. In the design of the file simple system, some system function is used to achieve function such as: the user's login, browse catalogs, create directories, Change directory, create documents and withdraw from the system function and etc. Key words: Linux, the source code, file system, Ext2, Linux kernel

如何安装Linux内核源代码

如何获取Linux内核源代码 下载Linux内核当然要去官方网站了,网站提供了两种文件下载,一种是完整的Linux 内核,另一种是内核增量补丁,它们都是tar归档压缩包。除非你有特别的原因需要使用旧版本的Linux内核,否则你应该总是升级到最新版本。 使用Git 由Linus领头的内核开发队伍从几年前就开始使用Git版本控制系统管理Linux内核了(参考阅读:什么是Git?),而Git项目本身也是由Linus创建的,它和传统的CVS不一样,Git是分布式的,因此它的用法和工作流程很多开发人员可能会感到很陌生,但我强烈建议使用Git下载和管理Linux内核源代码。 你可以使用下面的Git命令获取Linus内核代码树的最新“推送”版本: $ git clone git://https://www.wendangku.net/doc/d33294053.html,/pub/scm/linux/kernel/git/torvalds/linux-2.6.git 然后使用下面的命令将你的代码树与Linus的代码树最新状态同步: $ git pull 安装内核源代码 内核包有GNU zip(gzip)和bzip2格式。Bzip2是默认和首选格式,因为它的压缩比通常比gzip更好,bzip2格式的Linux内核包一般采用linux-x.y.z.tar.bz2形式的文件名,这里的x.y.z是内核源代码的具体版本号,下载到源代码包后,解压和抽取就很简单了,如果你下载的是bzip2包,运行: $ tar xvjf linux-x.y.z.tar.bz2 如果你下载的是gzip包,则运行: $ tar xvzf linux-x.y.z.tar.gz 无论执行上面哪一个命令,最后都会将源代码解压和抽取到linux-x.y.z目录下,如果你使用Git下载和管理内核源代码,你不需要下载tar包,只需要运行git clone命令,它就会自动下载和解压。 内核源代码通常都会安装到/usr/src/linux下,但在开发的时候最好不要使用这个源代码树,因为针对你的C库编译的内核版本通常也链接到这里的。 应用补丁

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

linux内核启动 Android系统启动过程详解

linux内核启动+Android系统启动过程详解 第一部分:汇编部分 Linux启动之 linux-rk3288-tchip/kernel/arch/arm/boot/compressed/ head.S分析这段代码是linux boot后执行的第一个程序,完成的主要工作是解压内核,然后跳转到相关执行地址。这部分代码在做驱动开发时不需要改动,但分析其执行流程对是理解android的第一步 开头有一段宏定义这是gnu arm汇编的宏定义。关于GUN 的汇编和其他编译器,在指令语法上有很大差别,具体可查询相关GUN汇编语法了解 另外此段代码必须不能包括重定位部分。因为这时一开始必须要立即运行的。所谓重定位,比如当编译时某个文件用到外部符号是用动态链接库的方式,那么该文件生成的目标文件将包含重定位信息,在加载时需要重定位该符号,否则执行时将因找不到地址而出错 #ifdef DEBUG//开始是调试用,主要是一些打印输出函数,不用关心 #if defined(CONFIG_DEBUG_ICEDCC)

……具体代码略 #endif 宏定义结束之后定义了一个段, .section ".start", #alloc, #execinstr 这个段的段名是 .start,#alloc表示Section contains allocated data, #execinstr表示Section contains executable instructions. 生成最终映像时,这段代码会放在最开头 .align start: .type start,#function /*.type指定start这个符号是函数类型*/ .rept 8 mov r0, r0 //将此命令重复8次,相当于nop,这里是为中断向量保存空间 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader

Linux kernel内核升级全过程,教你一次成功

序言 由于开发环境需要在linux-2.6内核上进行,于是准备对我的虚拟机上的Linux系统升级。没想到这一弄就花了两天时间( 反复装系统,辛苦啊~~),总算把Linux系统从2.4.20-8内核成功升级到了2.6.18内核。 网上虽然有很多介绍Linux内核升级的文章,不过要么过时,下载链接失效;要么表达不清,不知所云;更可气的是很多 文章在转载过程中命令行都有错误。刚开始我就是在这些“攻略”的指点下来升级的,以致于浪费了很多时间。 现在,费尽周折,升级成功,心情很爽,趁性也来写个“升级攻略”吧!于是特意又在虚拟机上重新安装一个Linux系统 ,再来一次完美的升级,边升级边记录这些步骤,写成一篇Linux内核升级记实录(可不是回忆录啊!),和大家一起分享 ~~! 一、准备工作 首先说明,下面带#号的行都是要输入的命令行,且本文提到的所有命令行都在终端里输入。 启动Linux系统,并用根用户登录,进入终端模式下。 1、查看Linux内核版本 # uname -a 如果屏幕显示的是2.6.x,说明你的已经是2.6的内核,也用不着看下文了,该干什么干什么去吧!~~~如果显示的是 2.4.x,那恭喜你,闯关通过,赶快进行下一步。 2、下载2.6内核源码 下载地址:https://www.wendangku.net/doc/d33294053.html,/pub/linux/kernel/v2.6/linux-2.6.18.tar.bz2 3、下载内核升级工具 (1)下载module-init-tools-3.2.tar.bz2 https://www.wendangku.net/doc/d33294053.html,/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.2.tar.bz2 (2)下载mkinitrd-4.1.18-2.i386.rpm https://www.wendangku.net/doc/d33294053.html,/fedora/linux/3/i386/RPMS.core/mkinitrd-4.1.18-2.i386.rpm (3)下载lvm2-2.00.25-1.01.i386.rpm https://www.wendangku.net/doc/d33294053.html,/fedora/linux/3/i386/RPMS.core/lvm2-2.00.25-1.01.i386.rpm (4)下载device-mapper-1.00.19-2.i386.rpm https://www.wendangku.net/doc/d33294053.html,/fedora/linux/3/i386/RPMS.core/device-mapper-1.00.19-2.i386.rpm (2.6.18内核和这4个升级工具我都有备份,如果以上下载地址失效,请到https://www.wendangku.net/doc/d33294053.html,/guestbook留下你的邮箱,我给你发过去)

Linux内核与跟文件系统的关系

Linux内核与根文件系统的关系 开篇题外话:对于Linux初学者来说,这是一个很纠结的问题,但这也是一个很关键的问题!一语破天机:“尽管内核是Linux 的核心,但文件却是用户与操作系统交互所采用的主要工具。这对Linux 来说尤其如此,这是因为在UNIX 传统中,它使用文件I/O 机制管理硬件 设备和数据文件。” 一.什么是文件系统 文件系统指文件存在的物理空间,linux系统中每个分区都是一个文件系统,都有自己的目 录层次结构。 Linux文件系统中的文件是数据的集合,文件系统不仅包含着文件中的数据而且还有文件系统的结构,所有Linux 用户和程序看到的文件、目录、软连接及文件保护信息等都存储在其 中。这种机制有利于用户和操作系统的交互。 每个实际文件系统从操作系统和系统服务中分离出来,它们之间通过一个接口层:虚拟文件系统或VFS来通讯。VFS使得Linux可以支持多个不同的文件系统,每个表示一个VFS 的通用接口。由于软件将Linux 文件系统的所有细节进行了转换,所以Linux核心的其它部分及系统中运行的程序将看到统一的文件系统。Linux 的虚拟文件系统允许用户同时能透明地安装 许多不同的文件系统。 在Linux文件系统中,EXT2文件系统、虚拟文件系统、/proc文件系统是三个具有代表性的 文件系统。 二.什么是根文件系统 根文件系统首先是一种文件系统,该文件系统不仅具有普通文件系统的存储数据文件的功能,但是相对于普通的文件系统,它的特殊之处在于,它是内核启动时所挂载(mount)的第一个文件系统,内核代码的映像文件保存在根文件系统中,系统引导启动程序会在根文件系统挂载之后从中把一些初始化脚本(如rcS,inittab)和服务加载到内存中去运行。我们要明白文件系统和内核是完全独立的两个部分。在嵌入式中移植的内核下载到开发板上,是没有办法真正的启动Linux操作系统的,会出现无法加载文件系统的错误。 那么根文件系统在系统启动中到底是什么时候挂载的呢?先将/dev/ram0挂载,而后执行/linuxrc.等其执行完后。切换根目录,再挂载具体的根文件系统.根文件系统执行完之后,也就是到了Start_kernel()函数的最后,执行init的进程,也就第一个用户进程。对系统进行各 种初始化的操作。 根文件系统之所以在前面加一个”根“,说明它是加载其它文件系统的”根“,既然是根的话,那么如果没有这个根,其它的文件系统也就没有办法进行加载的。它包含系统引导和使其他文件系统得以挂载(mount)所必要的文件。根文件系统包括Linux启动时所必须的目录和关键性的文件,例如Linux启动时都需要有init目录下的相关文件,在Linux挂载分区时Linux 一定会找/etc/fstab这个挂载文件等,根文件系统中还包括了许多的应用程序bin目录等,任何包括这些Linux 系统启动所必须的文件都可以成为根文件系统。Linux启动时,第一个必须挂载的是根文件系统;若系统不能从指定设备上挂载根文件系统,则系统会出错而退出启动。成功之后可以自动或手动挂载其他的文件系统。因此,一个系统中可以同时存在不同的文件系统。在Linux 中将一个文件系统与一个存储设备关联起来的过程称为挂载(mount)。使用mount 命令将一个文件系统附着到当前文件系统层次结构中(根)。在执行挂装时,要提供文件系统类型、文件系统和一个挂装点。根文件系统被挂载到根目录下“/”上后,在根目录下就有根文件系统的各个目录,文件:/bin /sbin /mnt等,再将其他分区挂接到/mnt 目录上,/mnt目录下就有这个分区的各个目录,文件。

Linux内核十个版本性能对比

【IT168 评论】从2008年1月底至今,Linux Kernel系统内核已经先后升级了十次,版本号也从2.6.24上升到2.6.33,并且下个版本2.6.34也已进入开发阶段。今天我们就看看过去两年内这十个版本在性能上有何差异。 测试平台是一套工作站系统,硬件配置包括AMD Opteron 2384 2.7GHz四核心处理器(“上海”)、泰安Thunder n3600B S2927主板(NVIDIA nForce 3600PRO 芯片组)、4GB DDR2 ECC Reg内存、希捷ST3300622AS 300GB硬盘、ATI FirePro V8700显卡,软件上采用Ubuntu 8.04.4 LTS 64位操作系统,组件有GNOME 2.22.3、https://www.wendangku.net/doc/d33294053.html, Server 1.4.0.90、GCC 4.2.4、EXT3。 Linux Kernel 2.6.24-2.6.33的每个版本都从Ubuntu PPA源上获取,而且均为64位版本。除了替换内核之外,系统其他设置均保持默认。 Apache Benchmark(静态网页服务):2.6.33成绩大幅提升,但事实最早的2.6.24版反而才是好的,之后八个版本都差得很多,最新版终于基本正常了。

PostgreSQL pgbench(每秒钟TPC-B交易数):2.6.30的成绩比上个版本骤然提升了多达770%,但之后2.6.32迅速下滑,最新的2.6.33却又完全不如2.6.30之前的六个版本了。

7-Zip Compression(文件压缩速度):不同版本有所波动,最新的2.6.33成了赢家,这才是我们最希望看到的。 LZMA Compression(256MB文件压缩):十个版本几乎没什么区别。

Linux的版本与内核

Linux的版本与内核 Linux有两种版本,一个是核心(kernel)版,一个是发行(distribution)版。核心版的序号由三部分数字构成,其形式为:major.minor.patchlevel,其中,majoro为主版本号,minor为次版本号,二者共同构成了当前核心版本号。patchlevel表示对当前版本的修订次数。例如,2.2.11表示对核心作用2.2 版本的第11次修订。根据约定,次版本号为奇数时,表示该版本加入新内容,但不一定稳定,相当于测试版;次版本号为偶数时,表示这是一个可以使用的稳定版本。鉴于Linux内核开发工作的连续性,内核的稳定版本与在此基础上进一步开发的不稳定版本总是同时存在的。建议采用稳定的核心版本。 Linux的内核具有两种不同的版本号,实验版本和产品化版本。要确定LINUX版本的类型,只要查看一下版本号:每一个版本号由三位数字组成,第二位数字说明版本类型。如果第二位数字是偶数则说明这种版本是产品化版本,如果是奇数说明是实验版本。如2.6.20是产品化版本,2.6.16是实验版本。LINUX的两种版本是相互关联的。实验版本最初是产品化产品的拷贝,然后产品化版本只修改错误,实验版本继续增加新功能,到实验版本测试证明稳定后拷贝成新的产品化版本,不断循环,这样一方面可以方便广大软件人员加入到LINUX的开发和测试工作中来,另一方面又可以让一些用户使用上稳定的LINUX版本。真是做到开发和实用两不误。现在LINUX的内核的最新版本是2.6.20。 Linux内核 Linux是最受欢迎的自由电脑操作系统内核。它是一个用C语言写成,符合POSIX标准的类Unix操作系统。Linux最早是由芬兰黑客 Linus Torvalds为尝试在英特尔x86架构上提供自由免费的类Unix操作系统而开发的。该计划开始于1991年,这里有一份Linus Torvalds 当时在Usenet新闻组comp.os.minix所登载的贴子,这份著名的贴子标志着Linux计划的正式开始。在计划的早期有一些Minix 黑客提供了协助,而今天全球无数程序员正在为该计划无偿提供帮助。技术上说Linux是一个内核。“内核”指的是一个提供硬件抽象层、磁盘及文件系统控制、多任务等功能的系统软件。一个内核不是一套完整的操作系统。一套基于Linux内核的完整操作系统叫作Linux操作系统,或是GNU/Linux架构。今天Linux是一个一体化内核(monolithic kernel)系统。设备驱动程序可以完全访问硬件。Linux内的设备驱动程序可以方便地以模块化(modularize)的形式设置,并在系统运行期间可直接装载或卸载。Linux不是微内核(microkernel)架构的事实曾经引起了Linus Torvalds与Andy Tanenbaum之间一场著名的争论。 Linux内核简史 操作系统是一个用来和硬件打交道并为用户程序提供一个有限服务集的低级支撑软件。一个计算机系统是一个硬件和软件的共生体,它们互相依赖,不可分割。计算机的硬件,含有外围设备、处理器、内存、硬盘和其他的电子设备组成计算机的发动机。但是没有软件来操作和控制它,自身是不能工作的。完成这个控制工作的软件就称为操作系统,在Linux 的术语中被称为“内核”,也可以称为“核心”。Linux内核的主要模块(或组件)分以下几个部分:存储管理、CPU和进程管理、文件系统、设备管理和驱动、网络通信,以及系统的初始化(引导)、系统调用等。

Linux内核版本号及源代码目录树结构

Linux 内核版本号及源代码目录树结构 一、linux内核版本号的命名机制 Linux内核版本有两种:稳定版和开发版。稳定的内核具有工业级的强度,可以广泛地应用和部署。新的稳定内核相对于较旧的只是修正一些bug或加入一些新的驱动程序。而开发版内核由于要试验各种解决方案,所以变化很快。这两种版本是相互关联,相互循环的。 Linux内核的命名机制: num.num.num 其中第一个数字是主版本号,第二个数字是次版本号,第三个数字是修订版本号。如果次版本号是偶数,那么该内核就是稳定版的;若是奇数,则是开发版的。头两个数字合在一齐可以描述内核系列。如稳定版的2.6.0,它是2.6版内核系列。最新的内核源代码可以在https://www.wendangku.net/doc/d33294053.html,以tar包或者增量补丁的形式下载.。 Linux还有各种发行版本,除了最熟悉的Redhat,Debian,Bluepoint,红旗,还有 Slackware,Mandarke,Turbo。 二、linux源代码目录树结构 Linux用来支持各种体系结构的源代码包含大约4500个C语言程序,存放在270个左右的子目录下,总共大约包含200万行代码,大概占用58MB磁盘空间。 在阅读源码之前,还应知道Linux内核源码的整体分布情况。现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序和网络等组成。Linux内核源码的各个目录大致与此相对应,其组成如下: arch目录包括了所有和体系结构相关的核心代码。它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录。 include目录包括编译核心所需要的大部分头文件,例如与平台无关的头文件在include/linux子目录下。

linux内核中Kconfig文档的作用以及Kconfig的语法

linux内核中Kconfig文档的作用以及Kconfig的语法 2.6内核的源码树目录下一般都会有两个文文:Kconfig 和Makefile。分布在各目录下的Kconfig构成了一个分布式的内核配置数据库,每个Kconfig分别描述了所属目录源文件相关的内核配置菜单。在内核配置make menuconfig(或xconfig等)时,从Kconfig中读出配置菜单,用户配置完后保存到.config(在顶层目录下生成)中。在内核编译时,主Makefile调用这个.config,就知道了用户对内核的配置情况。上面的内容说明:Kconfig就是对应着内核的配置菜单。假如要想添加新的驱动到内核的源码中,可以通过修改Kconfig来增加对我们驱动的配置菜单,这样就有途径选择我们的驱动,假如想使这个驱动被编译,还要修改该驱动所在目录下的Makefile。因此,一般添加新的驱动时需要修改的文件有两种(注意不只是两个)*Kconfig*Makefile要想知道怎么修改这两种文件,就要知道两种文档的语法结构。First: Kconfig每个菜单项都有一个关键字标识,最常见的就是config。语法:config symboloptions<!--[if !supportLineBreakNewLine]-->< ;!--[endif]-->symbol就是新的菜单项,options是在这个新的菜单项下的属性和选项其中options部分有:1、类型定义:每个config菜单项都要有类型定义,bool:布尔类型,tristate

三态:内建、模块、移除,string:字符串,hex:十六进制,integer:整型例如config HELLO_MODULEbool "hello test module"bool类型的只能选中或不选中,tristate类型的菜单项多了编译成内核模块的选项,假如选择编译成内核模块,则会在.config中生成一个 CONFIG_HELLO_MODULE=m的配置,假如选择内建,就是直接编译成内核影响,就会在.config中生成一个CONFIG_HELLO_MODULE=y的配置.2、依赖型定义depends on或requires指此菜单的出现是否依赖于另一个定义config HELLO_MODULEbool "hello test module"depends on ARCH_PXA 这个例子表明HELLO_MODULE这个菜单项只对XScale处理器有效,即只有在选择了ARCH_PXA,该菜单才可见(可配置)。3、帮助性定义只是增加帮助用关键字help或 ---help---<!--[if !supportLineBreakNewLine]--><!--[en dif]-->更多详细的Kconfigconfig语法可参考:Second: 内核的Makefile内核的Makefile分为5个组成部分:Makefile 最顶层的Makefile.config 内核的当前配置文档,编译时成为顶层Makefile的一部分arch/$(ARCH)/Makefile 和体系结构相关的Makefiles/ Makefile.* 一些Makefile的通用规则kbuild Makefile 各级目录下的大概约500个文档,编译时根据上层Makefile传下来的宏定义和其他编译

Linux内核启动流程分析(一)

很久以前分析的,一直在电脑的一个角落,今天发现贴出来和大家分享下。由于是word直接粘过来的有点乱,敬请谅解! S3C2410 Linux 2.6.35.7启动分析(第一阶段) arm linux 内核生成过程 1. 依据arch/arm/kernel/vmlinux.lds 生成linux内核源码根目录下的vmlinux,这个vmlinux属于未压缩, 带调试信息、符号表的最初的内核,大小约23MB; 命令:arm-linux-gnu-ld -o vmlinux -T arch/arm/kernel/vmlinux.lds arch/arm/kernel/head.o init/built-in.o --start-group arch/arm/mach-s3c2410/built-in.o kernel/built-in.o mm/built-in.o fs/built-in.o ipc/built-in.o drivers/built-in.o net/built-in.o --end-group .tmp_kallsyms2.o 2. 将上面的vmlinux去除调试信息、注释、符号表等内容,生成arch/arm/boot/Image,这是不带多余信息的linux内核,Image的大小约 3.2MB; 命令:arm-linux-gnu-objcopy -O binary -S vmlinux arch/arm/boot/Image 3.将 arch/arm/boot/Image 用gzip -9 压缩生成arch/arm/boot/compressed/piggy.gz大小约 1.5MB;命令:gzip -f -9 < arch/arm/boot/compressed/../Image > arch/arm/boot/compressed/piggy.gz 4. 编译arch/arm/boot/compressed/piggy.S 生成arch/arm/boot/compressed/piggy.o大小约1.5MB,这里实 际上是将piggy.gz通过piggy.S编译进piggy.o文件中。而piggy.S文件仅有6行,只是包含了文件piggy.gz; 命令:arm-linux-gnu-gcc -o arch/arm/boot/compressed/piggy.o arch/arm/boot/compressed/piggy.S 5. 依据arch/arm/boot/compressed/vmlinux.lds 将arch/arm/boot/compressed/目录下的文件head.o 、piggy.o 、misc.o链接生成arch/arm/boot/compressed/vmlinux,这个vmlinux是经过压缩且含有自解压代码的内核, 大小约1.5MB; 命 令:arm-linux-gnu-ld zreladdr=0x30008000 params_phys=0x30000100 -T arch/arm/boot/compressed/vmlinux.lds a rch/arm/boot/compressed/head.o arch/arm/boot/compressed/piggy.o arch/arm/boot/compressed/misc.o -o arch/arm /boot/compressed/vmlinux

《深入理解LINUX内核》阅读笔记全二十章

《深入理解LINUX内核》(Understanding The Linux Kernel)第三版 第一章 - 绪论 第一章是绪论。前三节内容很少,讲的都是一些内核边缘相关的东西,不是真正内核的内容,简单了解就好,不必深究。后三节,“操作系统基本概念”简单描述了几个“使用操作系统”要知道的概念;“Unix文件系统概述”也是从用户的角度讲了几个概念,并没有深入到内核;“Unix内核概述”这一节内容很多,最重要的是它在讲述一些内核的重要概念时引出了很多必须处理的问题,让读者带着疑问到本书的后续章节里去自己探寻答案。 第二章 - 内存寻址 这一章的内容都是很底层的,直接是一些硬件特性或者是内核中处理硬件的一些策略。 内存地址根据其组织特点的不同分为三个层次:逻辑地址(虚拟地址)、线性地址、物理地址。再细一层,有分段和分页两种。对这两种机制,书中分别详细描述了其80X86的硬件特性和Linux内核对应的处理。 其中分页是重点。常规分页机制中,页框是4KB;而扩张分页机制的页框是4MB。Linux 采用了4级分页模型,能适应不同的体系结构。本章还讲述了硬件高速缓存和TLB (Translation Lookaside Buffer),TLB的翻译有很多种:转换后援缓冲器、转换检测缓冲区、旁路转换缓冲、页表缓冲,我觉得直接叫页表缓冲就很好理解了,没有必要纠结于单个单词的意思。 第三章 - 进程 这一章讲进程,但没有涉及任何的算法相关的东西,都是那些跟数据有关的系统调用、函数、数据结构,这跟前一章很像。 进程的静态特性:进程描述符,都是task_struct类型的结构,它的字段包含了与一个进程相关的所有信息。进程描述符是很基础很重要的东西,整个内核都构建在它的基础之上。 进程切换,这一章里“切换”是跟“调度”完全不同的概念。切换只是当进程调度时要做的数据的处理,特别是与进程描述符相关的操作以及硬件上下文、进程上下文相关的数据、字段。 创建进程,最重要的是do_fork()函数和copy_process()函数。 还有最后一节是撤销进程。重点是do_exit()函数和进程删除时的父子进程关系。 第四章 - 中断和异常 中断(interrupt)通常被定义为一个事件,该事件改变处理器执行的指令顺序。 中断分为同步和异步中断,或者称为异常和中断。 第二节中断和异常。中断包括可屏蔽中断和非屏蔽中断,而异常则包括处理器探测异常和编程异常。还讲述了一些关于IRQ线的知识,然后是异常处理程序发送的19种信号。当然,少不了中断描述符表。 第四节“初始化中断描述符表”,在Linux中分为以下几种描述符:中断门、系统门、系统中断门、陷阱门、任务门。 第六节中断处理。这是本章的重点,也是难点。 物理IRQ可以分配给32~238范围内的任何向量。 每个中断向量都有它自己的irq_desc_t描述符。

Linux内核详细介绍

Linux内核详细介绍 现如今,电脑的使用越来越普遍,几乎每家每户都有电脑,而电脑的操作离不开操作系统,在这里,小编就向大家介绍Linux 内核。 很多Linux 爱好者对内核很感兴趣却无从下手,本文旨在介绍一种解读Linux内核源码的入门方法,而不是讲解Linux复杂的内核机制。 1.核心源程序的文件组织 (1)Linux核心源程序通常都安装在/usr/src/Linux下,而且它有一个非常简单的编号约定:任何偶数的核心(中间数字)如:2.0.30都是一个稳定的发行的核心,而任何奇数的核心如:2.1.42都是一个开发中的核心。 本文基于稳定的2.2.5源代码,第二部分的实现平台为Redhat Linux 6.0。 (2)核心源程序的文件按树形结构进行组织,在源程序树的

最上层你会看到这样一些目录: arch:arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录; include:include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在include/linux子目录下,与Intel CPU 相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关SCSI设备的头文件目录; init:这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的一个非常好的起点; Mm:这个目录包括所有独立于CPU 体系结构的内存管理代码,如页式存储管理内存的分配和释放等,而和体系结构相关的内存管理代码则位于arch/*/mm/,例如arch/i386/mm/Fault.c; Kernel:主要的核心代码,此目录下的文件实现了大多数Linux系统的内核函数,其中最重要的文件当属sched.c,同样,和

Linux内核启动过程分析

1、Linux内核启动协议 阅读文档\linux-2.6.35\Documentation\x86\boot.txt 传统支持Image和zImage内核的启动装载内存布局(2.4以前的内核装载就是这样的布局): | | 0A0000 +------------------------+ | Reserved for BIOS | Do not use. Reserved for BIOS EBDA. 09A000 +------------------------+ | Command line | | Stack/heap | For use by the kernel real-mode code. 098000 +------------------------+ | Kernel setup | The kernel real-mode code. 090200 +------------------------+ | Kernel boot sector | The kernel legacy boot sector. 090000 +------------------------+ | Protected-mode kernel | The bulk of the kernel image. 010000 +------------------------+ | Boot loader | <- Boot sector entry point 0000:7C00 001000 +------------------------+ | Reserved for MBR/BIOS | 000800 +------------------------+ | Typically used by MBR | 000600 +------------------------+ | BIOS use only | 000000 +------------------------+ 当使用bzImage时,保护模式的内核会被重定位到0x1000000(高端内存),内核实模式的代码(boot sector,setup和stack/heap)会被编译成可重定位到0x100000与低端内存底端之间的任何地址处。不幸的是,在2.00和2.01版的引导协议中,0x90000+的内存区域仍然被使用在内核的内部。2.02版的引导协议解决了这个问题。boot loader应该使BIOS 的12h中断调用来检查低端内存中还有多少内存可用。 人们都希望“内存上限”,即boot loader触及的低端内存最高处的指针,尽可能地低,因为一些新的BIOS开始分配一些相当大的内存,所谓的扩展BIOS数据域,几乎快接近低端内存的最高处了。 不幸的是,如果BIOS 12h中断报告说内存的数量太小了,则boot loader除了报告一个错误给用户外,什么也不会做。因此,boot loader应该被设计成占用尽可能少的低端内存。对zImage和以前的bzImage,这要求数据能被写到x090000段,boot loader应该确保不会使用0x9A000指针以上的内存;很多BIOS在这个指针以上会终止。 对一个引导协议>=2.02的现代bzImage内核,其内存布局使用以下格式:| Protected-mode kernel | 100000 +------------------------+ | I/O memory hole | 0A0000 +------------------------+ | Reserved for BIOS | Leave as much as possible unused ~ ~

相关文档
相关文档 最新文档