文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质工程1

蛋白质工程1

蛋白质工程1
蛋白质工程1

第一章基因工程

(1)代表蛋白质工程操作思路的过程是________;代表中心法则内容的是____________。(填写数字)

(2)写出图中各数字代表的生物学过程的名称或内容:

蛋白质工程

蛋白质工程的现状发展及展望 摘要: 蛋白质工程是用分子生物学手段对蛋白质进行分子改造的技术。介绍了蛋白质工程的几种常用方法及其基本原理和研究进展。 关键词: 蛋白质工程;定点诱变; 定向进化 20世纪70年代以来, 对蛋白质的分子改造渐渐进入研究领域, 通过对蛋白质分子进行突变, 得到具有新的表型和功能或者得到比原始蛋白相对活力更高的突变体,对蛋白质的分子改造技术逐渐纯熟。蛋白质工程的主要技术分为理性进化和非理性进化,已经在农业、工业、医药等领域取得了较大的进展。 1.理性进化 理性进化主要是利用定点诱变技术, 通过在已知DNA序列中取代、插入或缺失一定长度的核苷酸片段达到定点突变氨基酸残基的目的。运用该技术已有不少成功改造蛋白质的例子。Markus Roth通过同源性比对和定点突变技术, 对EcoR DNA甲基化酶进行改造,使其对胞嘧啶的亲和性增加了22倍。定点突变还主要应用于蛋白质结构和功能的研究方面。酰基载体蛋白(ACP)的主要作用是在单不饱和脂肪酸的特定位置引入双键, Caho通过定点突变研究, 发现将五个氨基酸残基置换之后的酶, 由6- 16 : 0- ACP脱氢酶变成9- 18 : 0- ACP脱氢酶。Van den Burg利用蛋白同源建模和定点突变技术结合的方法将从Bacillus stear other mophilus分离出来的嗜热菌蛋白酶突变, 得到的突变体稳定性提高了8倍, 100 在变性剂存在的情况下还能发挥作用,但是大部分单个氨基酸的改变对于整个蛋白的影响比较小,很难在高级结构上改变蛋白质的三级结构, 从而造成很大的影响, 所以在定点突变的基础上又出现了许多新的技术, 用于改造蛋白质分子。[1] DNA改组( DNA shuffling)技术克服了随机突变的随机性较大的限制,能够直接将多条基因的有利突变直接重组到一起, 它的原理是使用DNase I酶切或超声波断裂多条具有一定同源关系的蛋白编码基因, 这些小片段随机出现部分片段的重叠, 产生的片段在不加引物的情况下进行几轮PCR,通过随机的自身引导或在组装PCR过程中重新组装成全长的基因, 由于存在不同的模板, 使得到的全长基因具有不同谱系之间的重组, 再进行最后一轮PCR,加入全长引物, 扩增得到改造过的全长基因。利用DNA改组已成功进化了编码内酰胺酶、葡萄糖苷酶、脂肪酶、绿色荧光蛋白、烷基转移酶、苯甲基脂酶基因以及编码砷酸盐和阿特拉

第六章生物合成技术

生物合成技术 生物技术,又称生物工程或生物工程技术,是生物科学与工程技术相结合而形成的新学科。生物技术主要包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程。基因工程又称为重组DNA技术,是通过人工操作,在分子水平上进行基因重组、改造和转移,以获得具有新的遗传特性的细胞,合成人们所需物质的技术过程。酶工程是酶的生产与应用的技术过程。即是通过人工操作,获得人们所需的酶,并通过各种方法使酶发挥其催化功能的技术过程。细胞工程是在细胞水平上改变细胞的遗传特性或通过大规模细胞培养以获得人们所需物质的技术过程。发酵工程又称为微生物工程,是在人工控制的条件下,通过微生物的生命活动而获得人们所需物质的技术过程。发酵方式主要分为固体发酵和液体发酵两大类。生物技术可以定向改造生物、加工生物材料,有目的地利用生命过程,广泛应用于医药、农林牧渔、生态、轻工食品、化工、能源、材料、海洋开发及环境保护等领域,涉及面广,促进传统产业的改造和新型产业的形成。 实验1 大肠杆菌感受态细胞的制备及转化 一、实验目的 1. 学习氯化钙法制备大肠杆菌感受态细胞的方法。 2. 学习将外源质粒DNA转入受体菌细胞并筛选转化体的方法。 二、实验原理 转化是将异源DNA分子引入另一细胞品系,使受体细胞获得新的遗传性状的一种手段,它是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术之一。 转化过程所用的受体细胞一般是限制-修饰系统缺陷的变异株,即不含限制性内切酶和甲基化酶的突变株。受体细胞经过一些特殊方法处理后,细胞膜的通透性发生变化,成为能容许外源DNA 分子通过感受态细胞。在一定条件下,将外源DNA分子与感受态细胞混合保温,使外源DNA分子进入受体细胞。进入细胞的DNA分子通过复制、表达实现遗传信息的转移,使受体细胞出现新的遗传性状。将经过转化后的细胞在选择性培养基中培养即可筛选出转化体。 本实验以E. coli DH 5α菌株为受体细胞,用氯化钙处理受体菌使其处于感受态,然后在一定条件下与pBR322质粒携带有抗氨苄青霉素和抗四环素的基因,因而使接受了该质粒的受体菌也具有抗氨苄青霉素和抗四环素的特性,常用Amp r,Tet r符号表示。将经过转化后的全部受体细胞经过适当稀释后,在含有氨苄青霉素抗四环素的平板培养基上培养,只有转化体才能存活,而未受转化的受体细胞则因无抵抗氨苄青霉素和四环素的能力都被杀死,所有带有抗药基因的质粒DNA 能使受体菌从对抗菌素敏感(Amp s,Tet s)转变为具有抗药性(Amp r,Tet r),即表明了该质粒具有生物活性。这种转化活性是检查质粒DNA生物活性的重要指标。 转化体经过进一步纯化扩增后,再将转入的质粒DNA分离提取出来,可进行重复转化、电泳、电镜观察及做限制性内切酶酶解图谱、分子杂交、DNA测序等实验鉴定。 为提高转化率,实验中要注意以下几个重要因素: (1)细胞生长状态和密度:不要用已经过多次转接及贮存在4℃或室温的培养菌液;细胞生长密度以每毫升培养液中的细胞数在5×107个左右为最佳(可通过测定培养液A600nm控制),密

蛋白质工程(1)

蛋白质工程:以蛋白质的结构与功能为基础,利用基因修饰或基因合成而改造现存蛋白质或组建新型蛋白质的现代生物技术,是基因工程的深化和发展。 蛋白质结构:一级结构:蛋白质多肽链中氨基酸残基的排列顺序。 二级结构:一段连续的肽单位借助氢键排列成具有周期性结构的构象。 三级结构:蛋白质多肽链在各种二级结构的基础上,进一步盘曲折叠形成具有一定规律的三维空间。 四级结构:由两条或两条以上具有独立三级结构的多肽链组成的蛋白质的寡居蛋白,通过肽链间的次级键相互结合形成的空间结构。 蛋白质超二级结构:相邻的二级结构单元组合在一起,彼此相互作用,形成规则排列的组合体,以同一结构模式出现在不同的蛋白质中,这些组合体称为超二级结构,或结构模体。 结构域:指二级结构和结构模体以特定的方式组织连接,在蛋白质分子中形成两个或多个在空间上可以明显区分的三级折叠实体。结构域是蛋白质折叠中的一个结构层次,介于超二级结构和三级结构之间,是蛋白质三级结构的基本单位,也是蛋白质功能的基本单位。 蛋白质变性:天然蛋白质分子受到某些物理因素(热、紫外线、高压)或化学因素(有机溶剂、脲、胍、酸、碱)的影响,引起蛋白质天然结构的破坏,导致生物活性的降低或完全丧失。 蛋白质折叠:蛋白质因所含氨基酸残基的亲水性、疏水性、带正电、带负电……等等特性通过残基间的相互作用而折叠成一立体的三级结构。 蛋白质定向进化:在实验室中模仿自然进化的关键步骤-突变、重组和筛选,在较短时间内完成漫长的自然进化过程,有效地改造蛋白质,使之适于人类的需要。 蛋白质的分子设计:蛋白质的分子设计就是为有目的的蛋白质工程改造提供设计方案,确保获得比天然蛋白质性能更加优越的新型蛋白质。 第二遗传密码:氨基酸顺序与蛋白质三维结构之间存在着对应关系,人们称之为第二遗传密码或折叠密码。蛋白质的化学修饰:凡通过活性基团的引入或去除,而使蛋白质一级结构发生改变的过程。 蛋白质组:基因组表达全部蛋白质及其存在方式,或基因组、一个细胞或一种生物表达的所有蛋白质。 蛋白质组学:定量检测蛋白质水平上的基因表达,从而揭示生物学行为,以及基因表达调控的机制的学科。双向电泳:是等电聚焦电泳和SDS-PAGE的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。 蛋白质芯片:也叫蛋白质微阵列,是将大量蛋白质有规则地固定到某种介质载体上,利用蛋白质与蛋白质、酶与底物、蛋白质与其他小分子之间的相互作用检测分析蛋白质的一种芯片。 噬菌体表面展示技术:噬菌体展示技术是将外源基因或一组一定长度的随机寡居核苷酸片段克隆到特定的表达载体内,使其表达产物与外膜蛋白或噬菌体外壳蛋白以融合蛋白的形式呈现在细胞表面或噬菌体表面。 基因工程抗体:利用基因重组技术对编码抗体的基因按不同需求进行加工改造和重新装配,引入适当的受体细胞,由其编码产生出预期的抗体分子。 抗体酶:通过改变抗体与抗原结合的微环境,并在适当的部位引入相应的催化基团,所产生的具有催化活性的抗体。既有抗体的高度选择性,又有酶的高效催化效率。 单克隆抗体:由一种抗原决定簇激活,并具有相应抗原受体的B细胞产生的针对这一抗原决定簇的抗体。

蛋白质工程重点

一、名词解释 1、蛋白质工程(Protein Engineering)——以蛋白质分子的结构规律及其生物功能的关系作为基础,通过化学、物理和分子生物学的手段进行基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类对生产和生活的需求的工程技术。 2、结构模体(supersecondary structure,motif)——介于蛋白质二级结构和三级结构之间的空间结构,指相邻的二级结构单元组合在一起,彼此相互作用,排列形成规则的、在空间结构上能够辨认的二级结构组合体,并充当三级结构的构件(block building),其基本形式有αα、βαβ和βββ等。 3、结构域(domain)——是在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体。 4、蛋白质的折叠(protein folding)——从体内新生的多肽链或体外变性的多肽链的一维线性氨基酸序列转化为具有特征三维结构的活性蛋白质的过程。 5、分子伴侣(molecular chaperone)——一大类相互之间没有关系的蛋白质,它们具有的共同功能是帮助其他含蛋白质的结构在体内进行非共价的组装和卸装,但不是这些结构在发挥其正常的生物学功能时的永久组成部分。 6、晶胞(Unit cel l)——空间点阵的单位(大小和形状完全相同的平行六面体),是晶体结构的最小单位。 7、核磁共振现象(nuclear magnetic resonance ,NMR)——指核磁矩不为零的核,在外磁场的作用下,核自旋能级发生塞曼分裂(Zeeman splitting),共振吸收某一特定频率的射频辐射(radio frequency, RF)的物理过程。 8、化学势(位)移( )——在有机化合物中,各种氢核周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。 9、耦合常数(J)——由于自旋裂分形成的多重峰中相邻2峰间的距离。用以表征2核之间耦合作用的大小,单位赫兹Hz。 10、蛋白质组(proteome)——一个基因组、一种生物或一种细胞/ 组织所表达的全套蛋白质。 二、问答题 1、蛋白质修饰特异性与非特异性诱变方法: 随机突变:UV、X射线、其他化学方法、转座元件、简并引物 定点突变:核式突变、限制性内切酶位点、寡核苷酸介导突变、PCR依赖 1)、Kunkel突变法 双突变菌株 转染于dut+ung+野生型受体菌不含U碱基的保留,含U碱基的被切除 原理:当大肠杆菌dUTP酶缺失突变时(dut-),这些细菌就不能把dUTP转化为dUMP,因而细菌体内的dUTP浓度大为增加,并且一些dUTP会掺入到DNA合成中应该由胸腺嘧

蛋白质工程及其应用研究进展

蛋白质工程及其应用研究进展 摘要:蛋白质工程是生物工程中五大工程之一,本文对蛋白质工程作了简要概述,介绍了蛋白质工程的特点,并从蛋白质结构分析结构、功能的设计和预测、蛋白的创造和改造等方面对蛋白质工程研究内容进行详细论述,并以实例作了蛋白工程的应用。 关键词:蛋白质工程特点;研究内容;实际应用;展望 蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。可是,生物体内存在的天然蛋白质,有的往往不尽人意,需要进行改造。由于蛋白质是由许多氨基酸按一定顺序连接而成的,每一种蛋白质有自己独特的氨基酸顺序,所以改变其中关键的氨基酸就能改变蛋白质的性质。而氨基酸是由三联体密码决定的,只要改变构成遗传密码的一个或两个碱基就能达到改造蛋白质的目的。蛋白质工程的一个重要途径就是根据人们的需要,对负责编码某种蛋白质的基因重新进行设计,使合成的蛋白质变得更符合人类的需要。这种通过造成一个或几个碱基定点突变,以达到修饰蛋白质分子结构目的的技术,称为基因定点突变技术。 蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。 目前,蛋白质工程尚未有统一的定义。一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 1概念 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。包括在体外改造已有的蛋白质,化学合成新的蛋白质,通过基因工程手段改造已有的或创建新的编码蛋白质的基因去合成蛋白质等。为获得的新蛋白具备有意义的新性质或新功

《蛋白质工程》教学大纲

《蛋白质工程》教学大纲 Protein Engineering 课程编码:27A11714 学分:1.5 课程类别:专业任选课 计划学时:24 其中讲课:24 实验或实践:0 适用专业:生物技术专业 推荐教材:刘贤锡著,《蛋白质工程原理与技术》,山东大学出版社,2002年。 参考书目:汪世华著,《普通高等教育"十一五"规划教材-蛋白质工程》,科学出版社,2008年。 课程的教学目的与任务 通过本课程的学习,掌握蛋白质工程的基本理论、基础知识、主要研究方法和技术以及蛋白质工程的应用,熟悉从事蛋白质工程的重要方法和途径。形成科学的思维方式、培养学生科学思维能力和勇于探索、善于思考、分析问题的能力,激发学生对蛋白质工程的学习热情,为将来的学习和工作奠定坚实的理论和实践基础。 课程的基本要求 本课程的教学目的是使学生掌握蛋白质和蛋白质工程的概念,并在此基础上通过对蛋白质分子设计、蛋白质的热力学和动力学、蛋白质的修饰和表达、蛋白质的结构的学习,加深蛋白质的功能和应用的掌握,通过蛋白质组学的学习了解蛋白质工程的原理。同时兼顾学科发展动向,着重涉及当今蛋白质工程的应用。旨在使本科生了解现代蛋白质工程理论的新进展并为相关学科提供知识和技术。 各章节授课内容、教学方法及学时分配建议(含课内实验) 第一章:绪论建议学时:2 [教学目的与要求] 了解蛋白质工程发展的历史及理论基础、基本研究内容与研究程序,掌握蛋白质结构与功能的关系,了解蛋白质工程的发展方向。 [教学重点与难点] 本部分教学重点也是难点为蛋白质结构与功能的关系。 [授课方法] 以课堂讲授为主,课堂讨论和课下自学为辅。 [授课内容] §1.1 蛋白质工程概论 蛋白质工程的理论基础 蛋白质工程的研究内容 蛋白质工程的基本程序 §1.2蛋白质工程的应用 研究蛋白质结构与功能的关系 改变蛋白质的特性 生产蛋白质和多肽类活性物质

蛋白质工程

课题4 蛋白质工程 教学目标 考点:蛋白质工程(A级,课标要求:1 .举例说出蛋白质工程崛起的缘由 2.简述蛋白质工程的原理;3.通过讨论、进展追踪等活动,提高收集资料、处理资料、撰写专题综述报告的能力。) 案例引入 通过图片引入,想让一种生物性状在另一种生物中表达,在种内可以通过常规杂交育种的方法实现,但要使有生殖隔离的种间生物实现基因交流,需基因工程。但一个新问题出现了,生物产生的天然蛋白质是在长期进化过程中形成的,它的结构,性能不能完全满足人类生产和生活的需要。这就需要对现有蛋白质进行改造,制造出目前从天然蛋白质中找不到的蛋白质。这样人们又开始了新一轮的探索,蛋白质工程应运而生了。 自主学习 一、概念:以蛋白质分子的结构规律及其生物功能的关系为基础,通过物理、化学与生物化学等技术,并借助计算机辅助设计、和重组DNA技术,以天然蛋白质,甚至创造自然界中的蛋白质,以满足生产、生活需要。 二、基本方法、原理 从预期的蛋白质功能出发,设计预期的蛋白质结构,推测应有的氨基酸到相对应的脱氧核苷酸序列(基因),具体见下图: 三、蛋白质工程的主要知识点分析 ①关键技术是,其主要包括内容有等。 ②实施蛋白质工程的前提条件是。 ③测定蛋白质空间结构常用的方法:测定其三维空间结构,了解其构象。 ④蛋白质改造的方法及其含义 “大改”——是指根据的性质和特点,设计并制造出自然界中的全新蛋白质,使之具有特定的氨基酸序列、空间结构和预期功能。 “中改”——是指在蛋白质分子中替代或。 “小改”——是指通过基因的,有目的地改造蛋白质分子中 部位的一个或几个,以改善蛋白质的性质和功能。 ⑤改造蛋白质的核心技术是,常用方法是,基本过程 是 . 四、蛋白质工程的应用 (1)在酶工程领域:有目的的提高酶的热稳定性,增加耐酸、碱、有机溶剂的能力;增强酶的活性;大量生产人类需要的酶:常用方 法,

蛋白质组学及其主要技术

蛋白质组学及其主要技术 朱红1 周海涛2 (综述) 何春涤1, (审校) (1.中国医科大学附属第一医院皮肤科,辽宁沈阳110001; 2.北京大学深圳医院核医学 科,广东深圳518036) 【摘要】蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。蛋白质组学是以蛋白质组为研究对象的新兴学科,近年来发展迅速,已成为后基因组时代的研究热点。目前,蛋白质组学研究技术主要包括:样品的制备和蛋白质的分离、蛋白质检测与图像分析、蛋白质鉴定及信息查询。本文就蛋白质组学概念及主要技术进行综述。 【关键词】蛋白质组,蛋白质组学 1蛋白质组学的概念 随着人类基因组测序计划的完成,人们对生命科学的研究重点由结构基因组转向功能基因组,1994年Wilkins和Williams首先提出蛋白质组一词[1],蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。从基因到蛋白质存在转录水平、翻译水平及翻译后水平的调控,组织中mRNA丰度与蛋白质丰度不完全符合[2]。蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等也无法从DNA/mRNA水平来判断。因此,只有将功能基因组学与蛋白质组学相结合,才能精确阐明生命的生理及病理机制。 蛋白质组学是以蛋白质组为研究对象,对组织、细胞的整体蛋白进行检测,包括蛋白质表达水平、氨基酸序列、翻译后加工和蛋白质的相互作用,在蛋白质水平上了解细胞各项功能、各种生理、生化过程及疾病的病理过程等[3,4]。蛋白质组学有两种研究策略。一种是高通量研究技术,把生物体内所有的蛋白质作为对象进行研究,并建立蛋白质数据库,从大规模、系统性的角度来看待蛋白质组学,更符合蛋白质组学的本质。但是,由于剪切变异和翻译后修饰,蛋白质数量极其庞大,且表达随空间和时间不断变化,所以分析生物体内所有的蛋白质是一个耗时费力,难以实现的理想目标。另一种策略是研究不同状态或不同时期细胞或组织蛋白质组成的变化,主要目标是研究有差异蛋白质及其功能,如正常组织与肿瘤组织间的差异蛋白质,寻找肿瘤等疾病标记物并为其诊断治疗提供依据。 2蛋白质组学的常用技术 2.1样品的制备和蛋白质的分离技术 2.1.1样品的制备样品制备包括细胞裂解与蛋白质溶解,以及去除核酸等非蛋白质成分。 激光捕获显微切割(Laser-captured microdissection, LCM)[5]技术可大量获得足够用于蛋白质组学研究的单一细胞成分,避免其他蛋白成分对电泳结果的干扰。尤其是肿瘤的蛋白质组学研究常用LCM技术来获取单一的肿瘤细胞。 2.1.2蛋白质的分离技术 ①双向凝胶电泳(Two-dimensional electrophoresis, 2-DE):双向电泳方法于 l975年由O'Farrell[6]首先提出,根据蛋白质等电点和分子量的差异,连续进行成垂直方向的两次电泳将其分离。 第一向为等电聚焦(Isoelectric focusing,IEF)电泳,其基本原理是利用蛋白质分子的等电点不同进行蛋白质的分离。较早出现的IEF是载体两性电解质pH梯度,即在电场中通过两性缓冲离子建立pH梯度;20世纪80年代初建立起来的固相pH梯度(Immobilized pH gradients,IPG)IEF,是利用一系列具有弱酸或弱碱性质的丙烯酰胺衍生物形成pH梯度并参与丙烯酰胺的共价聚合,形成固定的、不随环境电场条件变化的pH梯度。IPG胶实验的重复

高中生物1.1.3 蛋白质工程 教案(1)(中图版选修3)

蛋白质工程 一、教学目标 1.举例说出蛋白质工程崛起的缘由。 2.简述蛋白质工程的原理。 3.尝试运用逆向思维分析和解决问题。 二、教学重点和难点 1.教学重点 (1)为什么要开展蛋白质工程的研究? (2)蛋白质工程的原理。 2.教学难点 蛋白质工程的原理。 三、教学策略 1.建议采用“问题—探究—新问题—再探究”的教学模式。 本节内容是基因工程的延伸和发展。由于蛋白质工程刚刚起步,学习内容较少。如何学得充实,又让学生悟出些终身学习的道理,建议采用“问题—探究—新问题—再探究”的教学模式。 新课一开始,可以带领学生回忆原有知识:要想让一种生物的性状在另一种生物中表达,在种内可以用常规杂交育种的办法实现,但要使有生殖隔离的种间生物实现基因交流,就显得力不从心了。基因工程的诞生,为克服这一远缘杂交的障碍问题,带来了新的希望。于是取得了丰硕成果:大肠杆菌为人类生产出了胰岛素,牛的乳腺生物反应器为人类制造出了蛋白质类药物,烟草植物体内含有了某种药物蛋白……至此,人们也只是实现了世界上现有基因在转基因生物中的表达。但一个新问题出现了,生物产生的天然蛋白质是在长期进化过程中形成的,它的结构、性能不能完全满足人类生产和生活的需要。为了加深这一点的认识,可调动学生从书中找实例(干扰素例子、工业用酶的例子)加以佐证。于是要对现有蛋白质进行改造,制造出目前从天然蛋白质中找不到的蛋白质。这样人们又开始了新一轮的探索,蛋白质工程应运而生了。 2.建议加强与已有知识的联系,用逆向思维的方法解决新问题。 学生在必修课中已学习过中心法则及蛋白质具有复杂的空间结构等知识。中心法则告诉我们遗传信息的流动方向如图1-4所示。 图1-4 遗传信息的流动方向 这是学习新知识的基础。既然蛋白质的功能是由DNA决定的,那么要制造出新的蛋白质,就要改造DNA。所以蛋白质工程的原理应该是中心法则的逆推。结合课本中插图,可以较明确地说明这一点。 还有两点教学建议需要说明。第一,蛋白质工程的诞生是有其理论与技术条件支撑的,正如课本中开头描述的,它是随着分子生物学、晶体学以及计算机技术的迅猛发展而诞生的,也与基因组学、蛋白质组学、生物信息学的发展等因素有关(本书“前沿动态”中有简要介绍)。第二,说明蛋白质工程目前的现状:成功的例子不多,主要是因为蛋白质发挥其功能需要依赖于正确的空间结构,而科学家目前对大多数蛋白质的空间结构了解很少。这样学习,可以

蛋白质工程

蛋白质工程的应用与发展前景 摘要:蛋白质工程是生物工程中五大工程之一,本文对蛋白质工程作了简要概述,介绍了蛋白质工程的特点,并从蛋白质结构分析结构、功能的设计和预测、蛋白的创造和改造等方面对蛋白质工程研究内容进行详细论述,并以实力作了蛋白工程应用。 关键词:蛋白质工程研究内容应用 蛋白质是一切生命的基础,是生命的几乎体现着,离开了蛋白质,生命将不复存在。在一切生物学过程中都起着关键的作用。1983年,美国生物学家厄尔默首先提出了“蛋白质工程”的概念n],随即被广泛接受和采用。蛋白质工程是以蛋白质结构与功能关系的知识为基础,通过周密的分子设计,把蛋白质改造为舍乎人类需要的新的蛋白质。人们利用分子遗传学的知识和对蛋白质结构的了解,在实验室条件下,设计出垒新的优良蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 目前,蛋白质工程尚未有统一的定义。一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白

质或设计合成具有特定功能的新蛋白质。 1、蛋白质工程的由来 蛋白质工程是在基因工程冲击下应运而生的。基因工程的研究与开发是以遗传基因,即脱氧核糖核酸为内容的。这种生物大分子的研究与开发诱发了另一个生物大分子蛋白质的研究与开发。这就是蛋白质工程的由来。它是以蛋白质的结构及其功能为基础,通过基因修饰和基因合成对现存蛋白质加以改造,组建成新型蛋白质的现代生物技术。这种新型蛋白质必须是更符合人类的需要。因此,有学者称,蛋白质工程是第二代基因工程。其基本实施目标是运用基因工程的DNA重组技术,将克隆后的基因编码加以改造,或者人工组装成新的基因,再将上述基因通过载体引入挑选的宿主系统内进行表达,从而产生符合人类设计需要的“突变型”蛋白质分子。这种蛋白质分子只有表达了人类需要的性状,才算是实现了蛋白质工程的目标。 2蛋白质工程原理和基本操作 2.1分子设计 由于基因工程的发展,人们已经可以运用基因重组等理论和方法去设计并制造出预想的各种性能的蛋白质。这种改变蛋白质的操作可以在蛋白质水平上,也可以在基因水平上。如基因水平的改变,是在功能基因开发的基础上,对编码蛋白质的基因进行改造,小到可改变一个核苷酸,大到可以加入或消除某一结构的编码序列。蛋白质水平的改变则主要是对制造出的蛋白质进行加工、修饰,如磷酸化、糖基化等。蛋白质的化学修饰条件剧烈,无专一性,而基因操作则比较方便,在

蛋白质工程

选修3 专题一 基因工程和蛋白质工程 1、基因工程的概念:基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA 重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA 分子水平上进行设计和施工的,又叫做DNA 重组技术。 (1)供体:提供目的基因(2)操作环境:体外(3)操作水平:分子水平(4)原理:基因重组(5)受体:表达目的基因(6)本质:性状在受体体内表达(7)优点:克服远缘杂交不亲和的障碍,定向改造生物的遗传性状。 2、限制酶是一类酶,而不是一种酶。 3、限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 4、将一个基因从DNA 分子上切割下来,需要切两处,同时产生4个黏性末端。 5、不同DNA 分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA 分子用不同的限制酶切割,产生的黏性末端一般不相同。 6、限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 7、基因工程中的载体与细胞膜上物质运输的载体不同。基因工程中的载体是DNA 分子,能将目的基因导入受体细胞内;膜载体是蛋白质,与细胞膜的通透性有关。 8、基因工程中有3种工具,但工具酶只有2种。 9、基因工程的操作步骤 (1) 获取目的基因—????? ①从基因文库中获取②利用PCR 技术扩增③通过化学方法人工合成 (2) 基因表达载体的构建(核心)—组成 (目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时,使目的基因能够表达和发挥作用。) (3) 将目的基因导入受体细胞—方法 ①植物: ②动物: ③微生物:感受态细胞法 (4) 目的基因的检测与鉴定 10、目的基因的插入位点不是随意的 基因表达需要启动子与终止子的调控,所以目的基因应插入到启动子与终止子之间的部位。 11、基因工程操作过程中只有第三步(将目的基因导入受体细胞)没有碱基互补配对现象 第一步存在逆转录法获得DNA ,第二步存在黏性末端连接现象,第四步检测存在分子水平杂交方法。 12 13、原核生物作为受体细胞的优点:繁殖快、多为单细胞、遗传物质相对较少。 14、一般情况下,用同一种限制酶切割质粒和含有目的基因的片段,但有时可用两种限制酶分别切割质粒和目的基因,这样可避免质粒和质粒之间、目的基因和目的基因之间的连接。

第六章 生物合成技术

生物合成技术 生物技术,又称生物工程或生物工程技术,就是生物科学与工程技术相结合而形成的新学科。生物技术主要包括基因工程、蛋白质工程、细胞工程、酶工程与发酵工程。基因工程又称为重组DNA技术,就是通过人工操作,在分子水平上进行基因重组、改造与转移,以获得具有新的遗传特性的细胞,合成人们所需物质的技术过程。酶工程就是酶的生产与应用的技术过程。即就是通过人工操作,获得人们所需的酶,并通过各种方法使酶发挥其催化功能的技术过程。细胞工程就是在细胞水平上改变细胞的遗传特性或通过大规模细胞培养以获得人们所需物质的技术过程。发酵工程又称为微生物工程,就是在人工控制的条件下,通过微生物的生命活动而获得人们所需物质的技术过程。发酵方式主要分为固体发酵与液体发酵两大类。生物技术可以定向改造生物、加工生物材料,有目的地利用生命过程,广泛应用于医药、农林牧渔、生态、轻工食品、化工、能源、材料、海洋开发及环境保护等领域,涉及面广,促进传统产业的改造与新型产业的形成。 实验1 大肠杆菌感受态细胞的制备及转化 一、实验目的 1、学习氯化钙法制备大肠杆菌感受态细胞的方法。 2、学习将外源质粒DNA转入受体菌细胞并筛选转化体的方法。 二、实验原理 转化就是将异源DNA分子引入另一细胞品系,使受体细胞获得新的遗传性状的一种手段,它就是微生物遗传、分子遗传、基因工程等研究领域的基本实验技术之一。 转化过程所用的受体细胞一般就是限制-修饰系统缺陷的变异株,即不含限制性内切酶与甲基化酶的突变株。受体细胞经过一些特殊方法处理后,细胞膜的通透性发生变化,成为能容许外源DNA分子通过感受态细胞。在一定条件下,将外源DNA分子与感受态细胞混合保温,使外源DNA分子进入受体细胞。进入细胞的DNA分子通过复制、表达实现遗传信息的转移,使受体细胞出现新的遗传性状。将经过转化后的细胞在选择性培养基中培养即可筛选出转化体。 本实验以E、coli DH 5α菌株为受体细胞,用氯化钙处理受体菌使其处于感受态,然后在一定条件下与pBR322质粒携带有抗氨苄青霉素与抗四环素的基因,因而使接受了该质粒的受体菌也具有抗氨苄青霉素与抗四环素的特性,常用Amp r,Tet r符号表示。将经过转化后的全部受体细胞经过适当稀释后,在含有氨苄青霉素抗四环素的平板培养基上培养,只有转化体才能存活,而未受转化的受体细胞则因无抵抗氨苄青霉素与四环素的能力都被杀死,所有带有抗药基因的质粒DNA能使受体菌从对抗菌素敏感(Amp s,Tet s)转变为具有抗药性(Amp r,Tet r),即表

蛋白质工程

6 蛋白质工程 学习目的:①初步了解蛋白质结构、以及蛋白质分子设计和蛋白质修饰和表达等的基本原理。 ②了解如何利用蛋白质工程技术和其他相关技术获得更加符合人类需求且比天然蛋白质更优良的蛋白质, 20世纪60年代初,随着生物化学和分子生物学的发展和延伸,人们对生物的遗传物质——DNA结构与功能已经有了比较清楚的认识。1972年,美国斯坦福大学Berg成功地实现了DNA重组实验,从此揭开了基因工程发展的序幕,并逐步形成了以基因工程为核心内容,包括细胞工程、酶工程、发酵工程在内的一系列高新生物技术。这些技术发展到今天,已经形成产业化并成为全球高科技领域发展的主流,广泛地应用于食品、医药、化工、农业、环保、能源、资源再利用和国防等许多部门与行业,并日益显示出不可估量的社会效益和经济效益,将为解决当前世界所面临的蛋白质缺乏、能源不足和高效医药品短缺等系列重大问题提供了基本保证和可行性技术。20世纪80年代初,随着蛋白质晶体学和结构生物学的发展,人类可以通过对蛋白质结构与功能的了解,借助计算机辅助设计,利用基因定位诱变等高新技术改造基因,以达到改进蛋白质某些性质的目的。这些技术的融合,促使了蛋白质工程这一新兴生物技术领域的诞生,为认识和改造蛋白质分子提供了强有力的手段。1982年,Winter等首次报道了通过基因定位诱变获得改性的酪氨酸 tRNA合成酶;1983年,Ulmer 在《科学》杂志上发表了以"Protein Engineering"(蛋白质工程)为题的专论,这标志着人们能按自己的意愿创造出适合人类需求的新基因,并能表达出具有不同功能的蛋白质。这是新一代的基因工程,因而蛋白质工程也被称为第二代基因工程。 蛋白质工程的基本内容和目的可以概括为:以蛋白质结构与功能为基础,通过化学和物理手段,对目标基因按预期设计进行修饰和改造,合成新的蛋白质;对现有的蛋白质加以定向改造、设计、构建和最终生产出比自然界存在的蛋白质功能更优良,更符合人类需求的功能蛋白质。 6.1 蛋白质结构基础. 6.1.1 蛋白质结构的基本构件 在自然界中,构成生命最基本的物质有蛋白质、核算、多糖和脂类等生物大分产,其中蛋白质最为重要,核酸则最为根本。各种生物功能、生命现象和生理活动主往是通过蛋白质来实现的,因此蛋白质不仅是生物体的主要组分,更重要的是它与生命活动有着十分密切的关系。在体内,蛋白质执行着酶催化作用,使新陈代谢能有序地进行,从而表现出各种生命的现象;通过激素的调节代谢作用,以确保动囱正常的生理活动;产生相应的抗体蛋白,使人和动物具有防御疾病和抵抗外界病原侵袭的免疫能力;构建成的各种生物膜,形成生物体内物质和信息交流的通路和能量转换的场所。这一系列功能充分说明了蛋白质在生命活动中的重要作用,说明生命活动是不能离开蛋白质而存在的。 6.1.1.1 蛋白质的化学组成 蛋白质在生命活动过程中之所以有如此重要作用,是由它自身的组成、结构、性质所决定的。从动、植物细胞中提取出来的各种蛋白质,经元素分析,均含有碳、氢、氧、氮及少量的硫元素。这些元素在蛋白质中多以大致一定的比例存在。有些蛋白质还含有微量的过渡金属元素,例如:铁、锌、钼和镍等元素。蛋白质经干燥后,其元素组成平均值约为:碳 50%~55%氢6.0%~7.0%氧 20%~23% 氮 15%~17%硫0.3%~2.5% 通常蛋白质的分子质量均在一万道尔顿以上,变化范围从10000到1 000000道尔顿,

高中生物必修一蛋白质基础知识

高中生物必修一蛋白质基础知识 高中生物必修一蛋白质知识点篇一 1.蛋白质基本含义 蛋白质是由氨基酸以“脱水缩合”的方式组成的多肽链经过盘曲折叠形成的具有一定空间结构的物质。蛋白质中一定含有碳、氢、氧、氮元素。 蛋白质是由α—氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合而成的高分子化合物。蛋白质就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。 2.原子数 由m个氨基酸,n条肽链组成的蛋白质分子,至少含有n个—COOH,至少含有n个—NH2,肽键m-n个,O原子m+n个。 分子质量 设氨基酸的平均相对分子质量为a,蛋白质的相对分子质量=ma-18(m-n) 基因控制 基因中的核苷酸6 信使RNA中的核苷酸3 蛋白质中氨基酸1 3.蛋白质组成及特点 蛋白质是由C(碳)、H(氢)、O(氧)、N(氮)组成,一般蛋白质可能还会含有P(磷)、S(硫)、Fe(铁)、Zn(锌)、Cu(铜)、B(硼)、Mn(锰)、I(碘)、Mo(钼)等。 这些元素在蛋白质中的组成百分比约为:碳50%氢7%氧23%氮16%硫0~3%其他微量。 (1)一切蛋白质都含N元素,且各种蛋白质的含氮量很接近,平均为16%; (2)蛋白质系数:任何生物样品中每1g元N的存在,就表示大约有100/16=6.25g蛋白质的存在,6.25常称为蛋白质常数 (3)蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。 4.蛋白质性质 蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质。 (1)水解反应 蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。 蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂。 (2)胶体性质 有些蛋白质能够溶解在水里(例如鸡蛋白能溶解在水里)形成溶液。 蛋白质的分子直径达到了胶体微粒的大小(10-9~10-7m)时,所以蛋白质具有胶体的性质。 (3)沉淀 原因:加入高浓度的中性盐、加入有机溶剂、加入重金属、加入生物碱或酸类、热变性少量的盐(如硫酸铵、硫酸钠等)能促进蛋白质的溶解。如果向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出,这种作用叫做盐析. 这样盐析出的蛋白质仍旧可以溶解在水中,而不影响原来蛋白质的性质,因此盐析是个可逆过程.利用这个性质,采用分段盐析方法可以分离提纯蛋白质. (4)变性

蛋白质工程的应用及发展

蛋白质工程的研究进展和展望 农业与生物工程学院07级3班向文宝 摘要:蛋白质工程是生物工程中五大工程之一,本文对蛋白质工程作了简要概述,介绍了蛋白质工程的特点,并从蛋白质结构分析结构、功能的设计和预测、蛋白的创造和改造等方面对蛋白质工程研究内容进行详细论述,并以实例作了蛋白工程的应用。 关键词:蛋白质工程特点;研究内容;实际应用;展望 蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。可是,生物体内存在的天然蛋白质,有的往往不尽人意,需要进行改造。由于蛋白质是由许多氨基酸按一定顺序连接而成的,每一种蛋白质有自己独特的氨基酸顺序,所以改变其中关键的氨基酸就能改变蛋白质的性质。而氨基酸是由三联体密码决定的,只要改变构成遗传密码的一个或两个碱基就能达到改造蛋白质的目的。蛋白质工程的一个重要途径就是根据人们的需要,对负责编码某种蛋白质的基因重新进行设计,使合成的蛋白质变得更符合人类的需要。这种通过造成一个或几个碱基定点突变,以达到修饰蛋白质分子结构目的的技术,称为基因定点突变技术。 蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。 目前,蛋白质工程尚未有统一的定义。一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。 1概念 按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。包括在体外改造已有的蛋白质,化学合成新的蛋白质,通过基因工程手段改造已有的或创建新的

高中生物第一单元生物技术与生物工程第一章基因工程和蛋白质工程1.1.3蛋白质工程规范训练中图选修3

第三节蛋白质工程 (时间:30分钟满分:50分) 考查知识点及角度 难度及题号 基础中档稍难 蛋白质的分子设计1、2、4 3 8 蛋白质工程的应用6、7 5、9 一、选择题(共7小题,每小题4分,共28分) 1.蛋白质工程在设计蛋白质结构时的依据是( )。 A.基因功能B.蛋白质功能 C.氨基酸序列D.mRNA密码子序列 答案 B 2.蛋白质工程的基本流程是( )。 ①蛋白质分子结构设计②DNA合成③预期蛋白质功能④根据氨基酸序 列推断出脱氧核苷酸序列 A.①②③④B.④②①③ C.③①④②D.③④①② 解析本题考查蛋白质工程操作程序的基本思路。 答案 C 3.下列选项是基因工程与蛋白质工程主要区别的是( )。 A.合成符合人类需要的蛋白质 B.产物蛋白质是否为自然界原有蛋白质 C.基因的复制与表达 D.产品符合人类需要 解析基因工程和蛋白质工程都是按照人的自身需要合成蛋白质,都需要基因 的复制与表达,蛋白质工程也称第二代基因工程。 答案 B

4.下列关于蛋白质工程的设计思路中说法,不正确的是( )。 A.从蛋白质的功能推测蛋白质应有的结构 B.从蛋白质的结构推测氨基酸的排列顺序 C.从氨基酸的顺序推测基因的核苷酸的排列顺序 D.蛋白质工程完全不遵循中心法则 解析蛋白质工程的基本途径是:从预期的蛋白质功能出发→设计预期的蛋白 质结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸序列(基因)。这是 根据中心法则反推的。 答案 D 5.某种微生物合成的蛋白酶与人体消化液中的蛋白酶的结构功能很相似,只是热稳定性较差,进入人体后容易失效。现要将此酶开发成一种片剂,临床治疗食物的消化不良,最佳方案是( )。 A.对此酶中的少数氨基酸替换,以改善其功能 B.将此酶与人蛋白酶进行拼接,形成新的蛋白酶 C.重新设计与创造一种全新的蛋白酶 D.减少此酶在片剂中的含量 解析微生物合成的酶结构和功能与人消化液中的蛋白酶相似,只是热稳定性 较差,改变它的热稳定性最简单的方案就是对此酶的少数氨基酸替换以提高它 的热稳定性,重新拼接或重新设计都非常困难。减少酶的含量与改变热稳定性 无关。 答案 A 6.利用蛋白质工程改造t-PA,使其增加对血栓溶解的疗效,这是( )。 A.提高蛋白质的稳定性B.改变蛋白质的活性 C.产生融合蛋白质D.设计制造全新的蛋白质 解析利用蛋白质工程改造t-PA,让它不能与血浆中的抑制物结合,增加了 溶解血栓的疗效。这样经蛋白质工程对t-PA的改造改变了它的活性。 答案 B 7.合成人鼠嵌合抗体属于蛋白质分子设计中的( )。 A.对已知蛋白质分子结构进行少数氨基酸替换 B.对不同来源的蛋白质进行拼接组装

蛋白质工程

一、名词解释 自溶法:在一定pH和适当温度下,利用组织细胞内自身的酶系统将细胞破碎的方法。 差速离心:采用不同的离心速度和离心时间,使沉降速度不同的颗粒分步离心的方法。 电泳技术:就是根据各种带电粒子在电场中迁移速度的不同而对物质进行分离的一类实验技术。质谱仪:能够测量真空中离子的质荷比(m/z)的一种仪器。 等电聚焦:缩写为IEF或EF,是利用蛋白质分子或其他两性分子的等电点的不同,在一个稳定的、连续的、线性pH梯度中进行蛋白质分离和分析的电泳技术。 蛋白质组:一个基因组、一种生物或一种细胞/组织所表达的全套蛋白质 蛋白质组学:是以蛋白质组为研究对象,从整体水平上分析一个有机体、细胞或组织的蛋白质组成及其活动规律的科学。 差异凝胶电泳:不同的样品分别被不同的荧光染料标记,混合后在同一块胶上进行2D凝胶电泳,电泳完毕后用具有不同激发波长的荧光扫描仪对凝胶进行扫描,从而获得多套数据。 二、各章知识点 蛋白质的分离纯化 1、蛋白质分离纯化的目的: (1)增加蛋白质含量与生物活性; (2)除去不必要的杂质蛋白; 2、反复冻融法的原理: (1)因突然冷冻,细胞内冰晶的形成及胞内剩余溶剂浓度的突然改变而破坏细胞。 3、盐析沉淀原理、方法 (1) (2)常用中性盐:硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等 4、等电点沉淀的原理、方法 (1)

(2)调整溶液pH,不同蛋白质在各自的pI处依次沉淀 5、液相色谱的优缺点、改进 6、两种主要的电泳支持物 (1)聚丙烯酰胺凝胶 (2)琼脂糖凝胶 7、电泳系统的组成及分类 (1)电泳仪、电泳槽及附属设备三大类 (2)按分离原理分类 1(1)区带电泳;(2)移界电泳;(3)稳态电泳 (3)2.2按有无固体支持物分类 1(1)自由电泳;(2)支持物电泳; (4)2.3按电泳方式分类 1(1)端电极电泳;(2)搭桥电泳;(3)潜水电泳: 8、蛋白质的几种染料、分类、原理 (1)氨基黑类染料 1氨基黑10B、萘黑12B200、萘酚篮黑6B、水牛黑等。 2含有两个磺酸基的酸性重氮化合物,它通过磺酸基与蛋白质的碱性基团形成复合盐(结合阳离子基团)。 (2)考马斯亮蓝(coomassie brilliant blue,简称CBB) 1分为R和G型两类:R为红蓝色,G为蓝绿色 2R250三苯基甲烷每个分子含有两个-SO3H基团,偏酸性,磺酸基与蛋白质的碱性基团结合形成染料-蛋白质复合物,用于蛋白质染色; 3G250为二甲花青亮蓝,是一种甲基取代的三苯基甲烷,用于蛋白质浓度测定; (3)硝酸银染色

相关文档