文档库 最新最全的文档下载
当前位置:文档库 › 指数对数概念及运算公式资料

指数对数概念及运算公式资料

指数对数概念及运算公式资料
指数对数概念及运算公式资料

指数对数概念及运算

公式

指数函数及对数函数重难点

根式的概念:

①定义:若一个数的n 次方等于),1(*

∈>N n n a 且,则这个数称a 的n 次方根.即,若

a x n =,则x 称a 的n 次方根)1*∈>N n n 且,

1)当n 为奇数时,n a 的次方根记作n a ;

2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作

)0(>±a a n .

②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==)

0()

0(||a a a a a a n

幂的有关概念:

①规定:1)∈???=n a a a a n

( N *

, 2))0(10

≠=a a ,

n 个 3)∈=-p a

a

p p

(1

Q ,4)m a a a n m n m

,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s

r s

r

,0(>=?+、∈s Q ),

2)r a a

a s

r s

r ,0()(>=?、∈s Q ),

3)∈>>?=?r b a b a b a r

r

r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用.

例 求值

(1)

3

28

(2)2

125

- (3)()5

21- (4)()

43

8116-

例.用分数指数幂表示下列分式(其中各式字母均为正数)

(1)43a a ? (2)a a a (3)32

)(b a -

(4)43

)(b a + (5)32

2b a ab + (6)42

33

)(b a +

例.化简求值

(1)0

121

32322510002.08

27)()()()(-+--+----

(2)2

11

5

3125.05

25

.231

1.0)32(256)

027.0(??

????+-+-?????

?-- (3)=?÷

?--3133

73

32

9a a a a

(4)21

1511336622263a b a b a b ??????-÷- ??? ???????

=

(5

指数函数的定义:

①定义:函数)1,0(≠>=a a a y x

且称指数函数,

1)函数的定义域为R , 2)函数的值域为),0(+∞,

3)当10<a 时函数为增函数.

提问:在下列的关系式中,哪些不是指数函数,为什么?

(1)2

2

x y += (2)(2)x y =- (3)2x

y =-

(4)x y π= (5)2y x = (6)24y x =

(7)x y x = (8)(1)x

y a =- (a >1,且2a ≠)

例:比较下列各题中的个值的大小

(1)1.72.5 与 1.7

3

( 2 )0.1

0.8

-与0.2

0.8

-

( 3 ) 1.7

0.3

0.93.1

例:已知指数函数()x

f x a =(a >0且a ≠1)的图象过点(3,π),求

(0),(1),(3)f f f -的值.

思考:已知0.7

0.9

0.8

0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c .

例 如图为指数函数x

x

x

x

d y c y b y a y ====)4(,)3(,)2(,)1(,则

d c b a ,,,与1的大小关系为

(A )d c b a <<<<1 (B )c d a b <<<<1

(C )d c b a <<<<1 (D )c d b a <<<<1

1、函数21

21

x x y -=+是( )

A 、奇函数

B 、偶函数

C 、既奇又偶函数

D 、非奇非偶函数 2、函数1

21

x

y =

-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞

3、已知01,1a b <<<-,则函数x

y a b =+的图像必定不经过( )

A 、第一象限

B 、第二象限

C 、第三象限

D 、第四象限

例.求函数x

x y +??

? ??=221的值域和单调区间

例 若不等式3ax

x

22

->(

3

1)x +1

对一切实数x 恒成立,则实数a 的取值范围为______. .f (x )=]()

?????+∞∈--∞∈---,1 231,( 2311x x x x ,则f (x )值域为______. 考查分段函数值域.

【解析】 x ∈(-∞,1]时,x -1≤0,0<3x -1

≤1, ∴-2

x ∈(1,+∞)时,1-x <0,0<31-x <1,∴-2

x

e e e

e f ,则函数)(x f 的值域是_____________

例 点(2,1)与(1,2)在函数()2ax b f x +=的图象上,求()f x 的解析式

例.设函数

11

()2

x x f x +--=,求使()f x ≥的x 取值范围.

例 已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。

(Ⅰ)求,a b 的值;

(Ⅱ)若对任意的t R ∈,不等式2

2

(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围;

对数的概念:

①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b

=,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数.

1)以10为底的对数称常用对数,N 10log 记作N lg ,

2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log 记作N ln ②基本性质:

1)真数N 为正数(负数和零无对数),

2)01log =a , 3)1log =a a , 4)对数恒等式:N a

N

a =log

例 将下列指数式化为对数式,对数式化为指数式.

(1)54

=645 (2)6

12

64-=

(3)1() 5.733

m

= (4)12

log 164=- (5)10log 0.012=- (6)log 10 2.303e =

例:求下列各式中x 的值

(1)642log 3

x =-

(2)log 86x = (3)lg100x = (4)2

ln e x -= 分析:将对数式化为指数式,再利用指数幂的运算性质求出x .

练习:将下列指数式与对数式互化,有x 的求出x 的值 .

(1)12

5

-=

(2)x = (3)1327

x =

(4)1()644

x

= (5)lg 0.0001x = (6)5

ln e x =

例 利用对数恒等式N a N log a =,求下列各式的值:

(1)5log 4log 3log 354)3

1()51()41(-+

(2)2

log 2

log 4

log 7

101.03

17

10

3

-+

(3)6

lg 3log 2log 100492575-+

(4)3

1log 27

log 12

log 25

945

3

2

+-

③运算性质:如果,0,0,0,0>>≠>N M a a 则

1)N M MN a a a log log )(log +=; 2)N M N

M

a a a

log log log -=; 3)∈=n M n M a n

a (log log R ).

④换底公式:),0,1,0,0,0(log log log >≠>≠>=

N m m a a a

N

N m m a 1)1log log =?a b b a , 2).log log b m

n

b a n a m =

对数函数的运算规律

例.用log a x ,log a y ,log a z 表示下列各式:

(1)log a xy

z ; (2)23

log a x y z

. 解:(1)log a xy

z

log ()log a a xy z =-

log log log a a a x y z =+-;

例.求下列各式的值:

(1)()

752log 42?; (2)5lg 100 .

解:(1)原式=7

5

22log 4log 2+=227log 45log 2725119+=?+?=; (2)原式=2

1

22lg10lg105

55

=

= 例.计算:(1)lg14-21g

18lg 7lg 3

7

-+; (2)9lg 243lg ;

(3)

(4)lg2·lg50+(lg5)

2

(5)lg25+lg2·lg50+(lg2)2

(2)23

log a

x y

z

3log ()log a a x y z =-23log log log a a a x y z =+11

2log log log 23

a a a x y z

=+-.

解:(1)18lg 7lg 3

7

lg

214lg -+-2lg(27)2(lg 7lg3)lg 7lg(32)=?--+-? lg 2lg72lg72lg3lg72lg3lg 20=+-++--=;

(2)2

53lg 23lg 53lg 3lg 9lg 243lg 25===;

例.计算:(1) 0.21log 3

5-; (2)4492log 3log 2log 32?+.

解:(1)原式 =

0.25

1log 3log 3

55

5

151553

=

=

=; (2) 原式 = 2

3

45412log 452log 213log 21232=+=+?.

例.求值:(1)

(2)

(3) (3).

例.求值

(1) log 89·log 2732 (2)

(3)

(4)(log 2125+log 425+log 85)(log 1258+log 254+log 52)

对数函数性质典型例题

例.比较下列各组数中两个值的大小:

(1)2log 3.4,2log 8.5; (2)0.3log 1.8,0.3log 2.7; 解:(1)对数函数2log y x =在(0,)+∞上是增函数,

于是2log 3.4<2log 8.5;

(2)对数函数0.3log y x =在(0,)+∞上是减函数,

于是0.3log 1.8>0.3log 2.7;

2、比较大小 (1)2

12

log _________)1(log 2

2++a a (2)πa log ________)1(,log >a e a

3若02log )1(log 2

<<+a a a a ,则a 的取值范围是 ( )

(A ))1,0( (B ))21,0( (C ))1,2

1( (D )),1(+∞ 4 已知7.01.17.01.1,8.0log ,

8.0log ===c b a ,则c b a ,,的大小关系是( )

(A )c b a << (B )c a b << (C )b a c << (D )a c b << 例 比较下列各组数中的两个值大小: (1)log 23.4,log 28.5 (2)log 0.31.8,log 0.32.7

(3)log a 5.1,log a 5.9(a >0且a ≠1)

例 如何确定图中各函数的底数a ,b ,c ,d 与1的大小关系?

提示:作一直线y =1,该直线与四个函数图象交点的横坐标即为它们相应的底数.∴0<c <d <1<a <b

例 求下列函数的定义域.

(1) y= (2) y=ln(a x -k ·2x )(a >0且a ≠1,k ∈R).

例.求函数)32(log 2

2

1--=x x y 的单调区间

解:设u y 2

1log =,322--=x x u ,由0>u 得0322

>--x x ,知定义域为

),3()1,(+∞?--∞又4)1(2--=x u ,则当)1,(--∞∈x 时,u 是减函数;当

),3(+∞∈x 时,u 是增函数,而u y 2

1log =在+R 上是减函数

)

33(2

1

2

log --=∴x x y 的单调增区间为)1,(--∞,单调减区间为),3(+∞

例 函数2

0.50.5log log 2y x x =-+的单调减区间是________。

例 已知y =log 4(2x +3-x 2

).

(1)求定义域;

(2)求f (x )的单调区间;

(3)求y 的最大值,并求取最大值时x 值. 考点 考查对数函数、二次函数的单调性、最值.

【解】 (1)由2x +3-x 2

>0,解得-1

∴f (x )定义域为{x |-1

(2)令u =2x +3-x 2

,则u >0,y =log 4u

由于u =2x +3-x 2=-(x -1)2

+4

再考虑定义域可知,其增区间是(-1,1),减区间是[1,)3 又y =log 4u 为(0,+∞)增函数,

故该函数单调递增区间为(-1,1],减区间为[1,3)

(3)∵u =2x +3-x 2=-(x -1)2

+4≤4 ∴y =log 4u ≤log 44=1

故当x =1时,u 取最大值4时,y 取最大值1.

例 求函数)106(log 23++=x x y 的最小值.

变式.求函数)78lg()(2

-+-=x x x f 的定义域及值域.

例 已知函数y =f (2x

)定义域为[1,2],则y =f (log 2x )的定义域为( )

A.[1,2]

B.[4,16]

C.[0,1]

D.(-∞,0]

考查函数定义域的理解.

【解析】 由1≤x ≤2?2≤2x

≤4, ∴y =f (x )定义域为[2,4] 由2≤log 2x ≤4,得4≤x ≤16 【答案】 B

例 作出下列函数的图像,并指出其单调区间.

(1)y=lg(-x), (2)y=log 2|x +1|

(3)y =|log (x 1)|(4)y log (1x)12

2-,=-.

例 已知函数f (t ) =log 2t ,]8,2[∈t . (1)求f (t )的值域G ;

(2)若对于G 内的所有实数x ,不等式-x 2+2mx -m 2

+2m ≤1恒成立,求实数m 的取值范围.

例 已知函数f (x )=1

421lg 2+-?++a a a

x x , 其中a 为常数,若当x ∈(-∞, 1]时, f (x )有意

义,求实数a 的取值范围.

分析:参数深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元(x )的依存关系,利用新的函数关系,常可使原问题“柳暗花明”.

解:1

4212+-?++a a a x x >0, 且a 2

-a +1=(a -21)2+43>0,

∴ 1+2x

+4x

·a >0, a >)21

41(

x x +-, 当x ∈(-∞, 1]时, y =x 41与y =x 2

1

都是减函数,

∴ y =)2141(x x +-在(-∞, 1]上是增函数,)2

1

41(x x +-max =-43,

∴ a >-43, 故a 的取值范围是(-4

3

, +∞).

例 已知a>0 且a ≠1 ,f (log a x ) = 1

2-a a (x -x 1

)

(1)求f(x);

(2)判断f(x)的奇偶性与单调性;

(3)对于f(x) ,当x ∈(-1 , 1)时 , 有f( 1-m ) +f (1- m 2

) < 0 ,求m 的集合M . 解:(1)令t=log a x(t ∈R),则

).(),(1

)(),(1)(,2

2R x a a a a x f a a a a t f a x x x t

t t ∈--=∴--=

=-- ,

101,.)(,10,)(,

01

,1.)(,),()(1)()2(22<<><<-=>->∴∈-=--=

---a a x f a a a x u a a a x f R x x f a a a a x f x x x x 或无论综上为增函数类似可判断时当为增函数时当为奇函数且 f(x)在R 上都是增函数.

)

1,1().1()1(,)(,0)1()1()3(22-∈-<-∴<-+-x m f m f R x f m f m f 又上是增函数是奇函数且在 .211111111122<

?

??-<-<-<-<-<-∴m m m m m

例 已知函数x x x x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性.

例、已知函数)0(,1

1

lg

)(>∈--=k R k x kx x f 且. (Ⅰ)求函数)(x f 的定义域;(Ⅱ)若函数)(x f 在[10,+∞)上单调递增,求k 的取值范围.

1.函数)13lg(13)(2++-=x x

x x f 的定义域是

( )

A .),3

1(+∞- B . )1,3

1(-

C . ]1(,1

3

-

D . )3

1,(--∞

2..已知函数f (x )=lg (2x

-b )(b 为常数),若x ∈[1,+∞]时,f (x )≥0恒成立,则 ( ) A .b ≤1 B .b <1 C .b ≥1 D .b =1 3.函数 y =322-+x x 的单调递减区间为

( )

A .(-∞,-3)

B .(-∞,-1)

C .[1,+∞]

D .[-3,-1]

4.设f (x )是定义在A 上的减函数,且f (x )>0,则下列函数:y =3-2f

(x ),y =1+)

(2x f ,y =f 2

(x ),y =1-)(x f ,其中增函数的个数为

( )

A .1

B .2

C .3

D .4

5、.若集合M={y|y=2—x

}, P={y|y=1x -}, M ∩P= ( )

A .{y|y>1}

B .{y|y ≥1}

C .{y|y>0 }

D .{y|y ≥0}

6、设 1.5

0.90.4812314,8,2y y y -??

=== ?

??

,则 ( )

A 、312y y y >>

B 、213y y y >>

C 、132y y y >>

D 、123y y y >> 7、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a <<

8、已知函数??

?<+≥-=10

)]

5([103

)(n n f f n n n f ,其中*

∈N n ,则)8(f 的值为( )

)(A 2 )(B 4 )(C 6 )(D 7

9、 函数x

xa y x

=(01)a <<的图象的大致形状是

( )

10.当a >0且a ≠1,x >0,y >0,n ∈N*,下列各式不恒等...的是

( )

A .log a n

x =n

1log a x

B .log a x =nlog a n x

C .x

a x

log =x

D .log a x n

+log a y n

=n (log a x +log a y )

11

3

log 9

log 28的值是( ) A .32 B .1 C .2

3 D .2

12 函数f(x )=ln x -

2

x

零点所在的大致区间是 A (1,2) B (2,3) C (e ,+∞) D ()11,3,4e ?? ???

13.若关于x 的不等式m x x ≥-42

对任意]1,0[∈x 恒成立,则实数m 的取值范围是

A . 03≥-≤m m 或

B .03≤≤-m

C .3-≥m

D .3-≤m

14.函数2

12

log (231)y x x =-+的递减区间为

A.(1,+∞)

B.(-∞

43] C.(21,+∞) D.(-∞,2

1]

15.如果()f x 是定义在R 上的偶函数,它在),0[+∞上是减函数,那么下述式子中正确的是 A .)1()43(2

+-≤-a a f f

B .)1()43(2

+-≥-a a f f

C .)1()4

3(2

+-=-a a f f

D .以上关系均不确定

16.函数()f x 、(2)f x +均为偶函数,且当x ∈[0,2]时,()f x 是减函数,设

),2

1

(log 8f a =(7.5)b f =,(5)c f =-,则a 、b 、c 的大小是

A .a b c >>

B .a c b >>

C .b a c >>

D .c a b >>

17、如果方程2

lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg7

B 、lg35

C 、35

D 、

35

1 18、已知732log [log (log )]0x =,那么1

2

x -等于( )

A 、

1

3 B D 19.三个数0.76

0.76,0.7,log 6的大小顺序是 ( ) (A )60.70.70.7log 66<<(B )60.7

0.70.76log 6<<

(C )0.7

60.7log 660.7<<(D )60.70.7log 60.76<<

20、函数1

21

x

y =

-的值域是( ) A 、(),1-∞ B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n (ΛN * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5 )= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为

【高中数学专项突破】专题25 对数的概念及运算(含答案)

【高中数学专项突破】 专题25 对数的概念及运算 题组1 对数的概念 1.在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A.a >5或a <2 B.2 且1a ≠ B.102 a << C.0a >且1a ≠ D.12 a < 3.使对数()log 21a a -+有意义的a 的取值范围为( ) A.()1,11,2??+∞ ??? B.10,2?? ??? C.()()0,11,+∞ D.1,2? ?-∞ ?? ? 题组2 对数式与指数式的互化 4.下列指数式与对数式互化不正确的一组是( ) A.0 1e =与ln10= B.1 3 1 8 2 - = 与811log 23=- C.3log 92=与12 93= D.7log 71=与177= 5.若1 log 2 m n =,则下列各式正确的是( ) A.1 2 n m = B.2m n = C.2n m = D.2n m = 6.将指数式bc a N =转化为对数式,其中正确的是( ) A.log c a b N = B.log ab c N = C.log c a b N = D.log b a c N = 7.若7 log x y z =,则( ) A.7z y x = B.7z y x = C.7z y x = D.7x y z = 8.若实数a ,b 满足3412a b ==,则11 a b +=( ) A.1 2 B.15 C.16 D.1

100道指数和对数运算

指数和对数运算 一、选择题 1.log ( ). A .-12 D .12 2.已知 3log 2 a =,那么 33log 82log 6 -用a 表示是( ) A .52a - B .2a - C .2 3(1)a a -+ D . 2 31a a -- 3.1 2lg 2lg 25 -的值为 A .1 B .2 C .3 D .4 4.已知4213 5 3 2,4,25a b c ===,则( ) A. c a b << B. a b c << C.b a c << D. b c a << 5.设3 .02.03.03.0,3.0,2.0===z y x ,则z y x ,,的大小关系为( ) A.x z y << B. y x z << C. y z x << D. z y x << 6.设0.2 1.6 0.2 2,2,0.4a b c ===,则,,a b c 的大小关系是() A c a b <<. B .c b a << C .a b c << D .b a c << 二、填空题 7.7 33log 8lg 125lg ++= . 8.2 log 510+log 50.25=_________. 9.22log 12log 3-= . 10.若lg2 = a ,lg3 = b ,则lg 54=_____________. 11.若2log 31x =,则3x 的值为 。 12.化简2 log 2 lg5lg2lg2+-的结果为__________. 13.计算=÷--21 100)25lg 41 (lg _______. 三、解答题 14.(本小题满分12分)计算 (Ⅰ)2 221 log log 6log 282 -; (Ⅱ)213 4 270.00818-?? -+ ? ?? 15. lg(x 2 +1)-2lg(x+3)+lg2=0

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

第4讲 对数概念及其运算 [讲义]

432211log (4443)x x x x x =++++例.当时,求的值. 912162()q p q R log p log q log p q p +∈==+=例.设,且有,则. 23()(2)(1)2()2f x x lga x lgb f f x x x R a b =+++-=-≥∈+=例.已知,且,又对一切都成立,则. 124()(2)()(01)()2(18)x f x f x f x x f x f log +=-∈=例.已知奇函数满足,且当,时,,则的值为 . 21234541515()lgx lgx lgx lgx lgx lgx lgx lgx x

111211(2)[()(]4 lg log --+.化简: . 7.已知函数()( )1(4)21(4)x x f x f x x ???≥? ?=????+,1y >,且2log 2log 30x y y x -+=,求224T x y =-的最小值。

方根、指数、幂、对数基本运算公式及全部推导公式

方根、指数、幂、对数基本运算公式及全部推导公式 1.根式运算法则: (1) , , ; (2) , , (m a =≥0) a =≥0,P ≠0) (5) , 0),,a m n N =≥∈其中 2.指数运算法则: , , , , , , (7)1 (0)m m a a a -=≠, (8)1 n a = (9)m n a =(10) d b d b a c a c =?= 3.对数运算法则: i 性质:若a >0且a≠1,则 , , (3)零与负数没有对数, (4)log log 1a b b a ?= ⑥, (7)log log log 1a b c b c a ??= ii 运算法则: 若a >0且a≠1,M >0,N >0,b >0且b≠1,n ∈R 则 , ,

, log log (,01)m n a a n b b a b m =>≠且 (4) , log log n n a a m m =, 1log log n a a m m n = (5)换底公式 , a>0 a ≠1, b>0 b ≠1, N>0, (6)倒数公式 1 log ,0,1log a b b a a a = >≠, b>0 b ≠1 (7) 十进制对数 10log lg N N = , l g 10x N x N =?= (8)自然对数 log e N InN = , x InN x e N =?= , 1lim(1) 2.71828...n n e n →∞ =+≈ 4.指数与对数式的恒等变形: ; 。 5、指数方程和对数方程解题: ()(1)()log ,log ()()(f x b a a a b f x b f x b f x a =?==?=定义法) ()()(2)()(),log ()log ()()()0(f x g x a a a a f x g x f x g x f x g x =?==?=>转化法) ()()(3)b ()log ()log ,f x g x m m a f x a g x b =?=(取对数法) ()(4)log log ()log ()log ()/log ,f x a b a a a g x f x g x b =?=(换底法) 6、理解对数 ①两种log a b 理解方法 1、表示a 的“指数”,这个指数能让a 变成b 。 2、表示a 的多少次方等于b 。 ② log log (...)n a a m M M M =??? n 个 log log ...log a a a M M M =+++ n 个 log a n M =

对数公式的运算

对数公式的运用 1.对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即a b=N,那么数b叫做以a为底N的对数,记作:log a N=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③log a1=0,log a a=1,a logaN=N(对数恒等式),log a a b=b。 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN; 以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作log e N,简记为lnN. 2.对数式与指数式的互化 式子名称a b=N 指数式a b=N(底数)(指数)(幂值) 对数式log a N=b(底数) (真数) (对数) 3.对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)log a(MN)=log a M+log a N. (2)log a(M/N)=log a M-log a N. (3)log a M n=nlog a M(n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②log a a n=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子a b=N,log a N=b名称:a—幂的底数b—N— a—对数的底数b—N— 运算性质: a m·a n=a m+n a m÷a n= a m-n (a>0且a≠1,n∈R) log a MN=log a M+log a N log a MN= log a M n= (n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①a<0,则N的某些值不存在,例如log-28=? ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数? ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数? 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数?

对数的概念与运算性质

《对数与对数运算》(第一课时) (人教A版普通高中课程标准实验教科书数学必修1第二章第二节) 一、教学内容解析 《对数与对数运算》选自人教A版高中数学必修一第二章,共分两小节,第一小节主要内容是对数的概念、对数式与指数式的互化,第二小节内容是对数的运算性质,本课时为第一小节内容. 16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成为当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数. 与传统教科书相比,教材从具体问题引进对数概念,加强了对数的实际应用与数学文化背景,强调“对数源于指数”以及指数运算与对数运算的互逆关系,将对数安排在指数运算及指数函数之后进行学习,实现对数与原有知识体系的对接,有利于学生学习时发现与论证对数的运算性质. 基于以上分析,本课时的教学重点是:对数概念的理解以及指数式与对数式的互化. 二、教学目标设置 1.感受引入对数的必要性,理解对数的概念; 2.能够说出对数与指数的关系,能根据定义进行互化和求值; 3.感受数学符号的抽象美、简洁美. 本课时落实以上三个教学目标: 通过“推断化石年代”和“解指数方程”两个实例,认识到引入对数,研究对数是基于实际需求的。根据底数、指数与幂之间的关系,通过“知二求一”的分析,引导学生借助指数函数图象,分析问题中幂指数的存在性,以及为了表示指数的准确值,引入了对数符号,从而引出对数概念. 通过图示连线,对指数式和对数式中各字母进行对比分析,来认识对数与指数的相互联系;利用指数式与对数式的互化,来帮助学生理解对数概念,体会转化思想在对数计算中的作用.对数源于指数,本课时中,对数问题往往回归本源,转化为指数问题来解决,因而要在理解对数概念的基础上学会互化和求值. 恰当的数学符号,对数学发展起着巨大的推动作用,对数符号抽象而简洁,学生需要在不断的学习中逐渐体验对数符号的重要性.

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

对数的基本概念及运算

第十讲 对数的基本概念及运算 一:问题思考 问题1:一尺之棰,日取其半,万世不竭。 (1)取5次,还有多长? (2)取多少次,还有0.125尺? (1)为同学们熟悉的指数函数的模型,易得 (2)可设取x 次,则有 二:新知引入 1. 对数的概念:一般地,如果,那么数叫做以为底的对 数,记作: ,其中叫做对数的底数, 叫做真数。 注意:①是否是所有的实数都有对数呢? 负数和零没有对数 ②底数的限制:a>0且a ≠1。 思考:为什么对数的定义中要求底数a>0且a ≠1? 对数的书写格式 2、对数式与指数式的互化 N x N a a x log =?= 幂底数 ← a → 对数底数 指数(指数函数的自变量) ← b → 对数 幂(指数函数的函数值) ← N → 真数

3、对数的形式 ①常用对数:以10为底的对数 ,简记为: lgN ②自然对数:以无理数e=2.71828…为底的对数的对数 简记为: lnN . (在科学技术中,常常使用以e 为底的对数) ③一般对数:(含有常用对数和自然对数) 注意:对数的书写 课堂练习 1 将下列指数式写成对数式: (1) (2) (3) (4) 2 将下列对数式写成指数式: (1) (2) (3) 3 求下列各式的值: (1) (2) 2. 对数运算 (1) 基本性质 ①0和负数没有对数,即N>0 ②1的对数是0,即01log =a ③底数的对数等于1,即1log =a a ④对数恒等式:N a N a =log (2) 运算法则 如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=; 3 ) ∈=n M n M a n a (log log R )。(例题 p111,例 4 ,计

指数、对数函数公式及练习

高加索教育指数函数和对数函数总结练习典藏版 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,log 在a >1及 01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的 反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的认识。 图象特征与函数性质: 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10 22 2--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,

如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ?13也由关于y 轴的对 称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以 a 为底N 的对数,记作 b N a =log (a 是底数,N 是真 数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零或负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算:() 3 13 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+, ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1 3、对数函数: 定义:指数函数y a a a x =>≠()01且的反函数 y x a =log x ∈+∞(,)0叫做对数函数。 1、对三个对数函数y x y x ==log log 212 ,, y x =lg 的图象的认识。 图象特征与函数性质: (1)所有对数函数的图象都过点(1,0),但是y x =log 2与y x =lg 在点(1,0)曲线是交叉的,即当x >0时, y x =log 2的图象在y x =lg 的图象上方;而01<;log .lg .20101<。 (2)y x =log 2的图象与y x =log 12 的图象关于x 轴对称。

指数对数基本运算

2016-2017学年度???学校9月月考卷 1.计算:________. 2.已知666log log log 6a b c ++=,其中*,,a b c N ∈,若,,a b c 是递增的等比数列,又b a -为一完全平方数,则a b c ++=___________. 3.已知3log 21x =,则42x x -=________. 4.lg83lg5+的值是 . 5.lg0.01+log 216=_____________. 6= . 7.已知,53m b a ==且,则m 的值为 . 8.已知y x y x y x lg lg 2lg )2lg()lg(++=++-,则 9,0a b c <<<,0)()()(;③c d <;④c d >.其中可能成立的是 (填序号) 10. 11 12.如果22log log 4,那么m n m n +=+的最小值是 . 13.若log 21a <,则a 的取值范围是 14的定义域为 . 15.32-,三个数中最大数的是 . 16.若log 4(3a +4b)=log a +b 的最小值是 .

参考答案 1.1 【解析】=lg10=1. 2.111 【解析】 试题分析:66666log log log log 6,6a b c abc abc ++===, 2b ac =,所以366,36b b ==.46ac =,因为b a -为一完全平方数,所以27,48,111a c a b c ==++=. 考点:1.对数运算;2.数列. 【思路点晴】本题涉及很多知识点,一个是对数加法运算,用的是公式 log log log a a a b c bc +=.然后,,a b c 是递增的等比数列,可得2b ac =,接下来因为b a -为一完全平方数,比36小的完全平方数只有25,16,9,故可以猜想27a =,通过计算可得27,48,111a c a b c ==++=.有关几个知识点结合起来的题目,只需要对每个知识点逐个击破即可. 3.6 【解析】 试题分析:由条件可知2log 3x =,故222log 3log 34222936x x -=-=-=. 考点:对数运算的基本性质. 4.3 【解析】 试题分析:3lg83lg5lg8lg5lg10003+=+==。 考点:对数运算法则的应用。 5.2 【解析】lg0.01+log 216=-2+4=2 考点:本题考查对数的概念、对数运算的基础知识,考查基本运算能力. 6【解析】 考点:指数和对数的运算法则。 7【解析】略 8.2 【解析】略

对数指数函数公式全集

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 14 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但 y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210,,的图象的 认识。 图象特征与函数性质:

对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及10222--<。 ②y x =2与y x =?? ? ? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ? ? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的 示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中间,且过点()01,,从而y x =?? ? ? ? 13也由 关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =l o g (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0 故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求lo g .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x ,再改写为指数式就比较好办。 解:设log .032524?? ? ? ?=x

对数公式总结

1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am?an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28 ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1

对数函数公式.pdf

指数函数和对数函数 y a a a x =>≠01且定义域为R ,底数是常数,指数是自变量。a 必须a a >≠01且。 如果 a N a a =>≠()01且,那么数 b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对 数式。)由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在 求35x =中的x ,化为对数式x =log 35即成。 对数恒等式:由a N b N b a ==()log ()12a N a N log =对数的性质:①负数和零没有对数; ②1的对数是 零; ③底数的对数等于1。对数的运算法则: ()() log log log a a a MN M N M N R =+∈+ , ()log log log a a a M N M N M N R =?∈+,()() log log a n a N n N N R =∈+ () log log a n a N n N N R =∈+1 3、对数函数:定义:指数函数y a a a x =>≠()01且的反函数y x a =log x ∈+∞(,)0叫做对数函数。 1、对三个对数函数y x y x ==log log 212 ,,y x =lg 的图象的认识。:

4、对数换底公式: log log log log (.)log b a a n e g N N b L N N e N L N N = ===其中…称为的自然对数称为常数对数 27182810 由换底公式可得: L N N e N N n = ==lg lg lg ..lg 04343 2303 由换底公式推出一些常用的结论: (1) log log log log a b a b b a b a = =11或· (2)log log a m a n b m n b = (3)log log a n a n b b = (4)

对数概念及其运算

对数概念及其运算 知识点1 对数 1.对数的定义 如果()1,0≠>a a a 的b 次幂等于N ,那么数b 叫做以a 为底N 的对数,记作,log b N a =其中a 叫做对数的底数,N 叫做真数。在对数函数b N a =log 中,a 的取值范围是 ()1,0≠>a a 且,N 的取值范围是0>N ,b 的取值范围是R b ∈。 【注意】根据对数的定义可知 (1)零和负数没有对数,真数为正数,即0>N (2)在对数中必须强调底数0>a 且1≠a 2.常用对数 (1)定义:以10为底的对数叫做常用对数,N 10log 记做N lg 。 (2)常用对数的性质 10的整数指数幂的对数就是幂的指数,即() 是整数n n n =10lg 3.自然对数 (1)定义:以Λ71828.2=e 为底的对数叫做自然对数,N e log 通常记为InN 。 (2)自然对数与常用对数之间的关系:依据对数换底公式,可以得到自然对数与常用对数之间的关系:4343 .0lg lg lg N e N InN == ,即N InN lg 303.2=。 4.指数式与对数式的互化 (1)符号N a log 既是一个数值,也是一个算式,即已知底数和在某一个指数下的幂,求其 指数的算式。对数式b N a =log 的a 、N 、b 在指数式N a b =中分别是底数、指数和幂。 (2)充分利用指数式和对数式的互换,讲述四条规则: ①在b N a =log 中,必须0>N ,这是由于在实数范围内,正数任何次幂都是正数,因而 N a b =中的N 总是正数,须强调零和负数没有对数。 ②因为10 =a ,所以01log =a 。 ③因为,1 a a =所以1log =a a 。 ④因为N a b =,所以b N a =log ,所以N a N g l a =0。 【例1】下列说法错误的是() (A)负数和零没有对数 (B )任何一个指数式都可以化为对数式 (C )以10为底的对数叫做常用对数 (D )以e 为底的对数叫做自然对数

指数式与对数式的运算

指数式与对数式的运算 指数与指数幂的运算 教学目标:理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握根式与分数指数幂的互化,掌握有理数指数幂的运算. 知识点回顾: 1. 若n x a =,则x 叫做a 的n 次方根,记为n a ,其中n >1,且n N *∈.(n 叫做根指数,a 叫做被开方数)n 次方根具有如下性质: (1)在实数范围内,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零. (2)n 次方根(*1,n n N >∈且)有如下恒等式: ()n n a a =;,||,n n a n a a n ?=?? 为奇数为偶数;np n mp m a a =,(a ≥0). 2.规定正数的分数指数幂:m n m n a a = (0,,,1a m n N n *>∈>且); 注意口诀:(根指 数化为分母,幂指数化为分子), 11 ()()(0,,,m m m n n n a a m n N a a -+==>∈且1)n >. 注意口诀:底数取倒数,指数取相反数.0的负分数指数幂没有意义。 3.指数幂的运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 范例解析 例1求下列各式的值: (1)3n n π-()(*1,n n N >∈且); (2)2()x y -. 解:(1)当n 为奇数时,33n n ππ-=-(); 当n 为偶数时,3|3|3n n πππ-=-=-(). (2)2()||x y x y -=-. 当x y ≥时,2()x y x y -=-;当x y <时,2()x y y x -=-. 例2已知221n a =+,求33n n n n a a a a --++的值. 解:332222()(1)1121122121 n n n n n n n n n n n n a a a a a a a a a a a a ------++-+==-+=+-+=-+++. 例3化简:(1)2 115113366 22(2)(6)(3)a b a b a b -÷-; (2)3322 114 4 23 ()a b ab b a b a ?(a >0,b >0); (3)24 3 819?.

相关文档