文档库 最新最全的文档下载
当前位置:文档库 › 柯西不等式

柯西不等式

柯西不等式
柯西不等式

()()2222221212n n a a a b b b ++++++≥()22211n n b a b a b a +++ ()n i R b a i i 2,1,=∈

等号当且仅当021====n a a a 或i i ka b =时成立(k 为常数,n i 2,1=)

1、求函数的最大值 .

⑴设a ,b ,c 均为正数且9a b c ++=,则

c

b a 1694++之最小值为 ⑵设a , b,

c 均为正数,且232=++c b a ,则c b a 321++之最小值为 ⑶设,且,求的最大值及最小值 ⑷已知,,求的最大值及最小值 , .

2、设2x+3y+5z=29,求函数的最大值 . ⑴设x, y, z ∈R ,若332=+-z y x ,则222)1(z y x +-+之最小值为 ,又此时=y .

⑵设x ,y ,z ∈ R 且14

)3(5)2(16)1(2

22=-+++-z y x ,求x y z ++的最值 .

3、设、、为正数且各不相等,求证:

. ⑴,为非负数,+=1,,求证:. ⑵若>>,求证:. ⑶若不等式a

c c b b a -+-+-λ11>0对于满足条件a >b >c 的实数a 、b 、c 恒成立,则实数λ的取值范围是 .

4、,求证:.

⑴设a ,b,c 为正数,求证:

. ⑵设a ,b,c 为正数,求证:.

⑶已知正数满足 证明.

⑷已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=试求a 的最值.

6、设正数,,x y z 满足3x y z ++=.

⑴证明:()33x y y z z x xy yz zx ++≤++≤;

⑵求

x y z y z x ++的最小值.

7、已知,a b 是非负实数,求证:

22111a b a b ab b a ++≥+++.

柯西不等式的应用(整理篇)

柯西不等式的证明及相关应用 摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。 关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy )不等式: ()2 2211n n b a b a b a +++Λ()()2 222122221n n b b b a a a ++++++≤ΛΛ()n i R b a i i Λ2,1,,=∈ 等号当且仅当021====n a a a Λ或i i ka b =时成立(k 为常数,n i Λ2,1=) 现将它的证明介绍如下: 方法1 证明:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++=Λ =()()() 2 222122112222212n n n n b b b x b a b a b a x a a a +++++++++++ΛΛΛ 由构造知 ()0≥x f 恒成立 又22120n n a a a +++≥Q L ()()() 0442 2221222212 2211≤++++++-+++=?∴n n n n b b b a a a b a b a b a ΛΛΛ 即()()() 22221222212 2211n n n n b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当且仅当()n i b x a i i Λ2,10==+ 即12 12n n a a a b b b ===L 时等号成立 方法2 证明:数学归纳法 (1) 当1n =时 左式=()211a b 右式=()2 11a b 显然 左式=右式 当2=n 时 右式 ( )()()()2 2 22 22222212 1211222112a a b b a b a b a b a b =++=+++ ()()()2 22 1122121212222a b a b a a b b a b a b ≥++=+=左式 故1,2n =时 不等式成立 (2)假设n k =(),2k k ∈N ≥时,不等式成立 即 ()()() 22 221222212 2211k k k k b b b a a a b a b a b a ++++++≤+++ΛΛΛ 当 i i ma b =,m 为常数,k i Λ2,1= 或120k a a a ====L 时等号成立 设A=22221k a a a +++Λ B=2 2221k b b b +++Λ 1122k k C a b a b a b =+++L 2 C AB ≥∴

柯西不等式求最值

柯西不等式求最值 1. 设a 、b 、c为正数,求4936 ()()a b c a b c ++++的最小值 【答案】121 2.设x ,y,z ∈ R,且满足x 2 + y 2 + z 2 = 5,则x + 2y + 3z 之最大值为 解(x + 2y + 3z)2 ≤ (x 2 + y 2 + z 2 )(12 + 22 + 32) = 5.14 = 70 ∴ x + 2y + 3z 最大值为70 3.设x,y,z ∈ R ,若x 2 + y 2 + z 2 = 4,则x - 2y + 2z 之最小值为 时,(x,y ,z) = 解(x - 2y + 2z)2 ≤ (x 2 + y2 + z 2)[12 + ( - 2) 2 + 22 ] = 4.9 = 36 ∴ x - 2y + 2z 最小值为 - 6 此时 3 22)2(26221222-=+-+-==-=z y x ∴ 32-= x ,34=y ,3 4 -=z 4.设,,x y z R ∈,2 2 2 25x y z ++=,试求22x y z -+的最大值M 与最小值m。 答:根据柯西不等式 )](2)2(1[)221(2 2 2 2 2 2 2 z y x z y x +++-+≤?+?-? 即259)22(2 ?≤+-z y x 而有152215≤+-≤-z y x 故z y x 22+-的最大值为15,最小值为–15。 5.设622 , , ,=--∈z y x z y x R ,试求2 22z y x ++之最小值 )]()2()1(2[])2()1(2[2222222z y x z y x ++-+-+≤-+-+即 )(9)22(2222z y x z y x ++≤-- 将622=--z y x 代入其中,得 )(9362 22z y x ++≤ 而有 42 22≥++z y x 故2 2 2 z y x ++之最小值为4。 变形:.设x,y,z ∈ R ,2x + 2y + z + 8 = 0,则(x - 1)2 + (y + 2)2 + (z - 3)2 之最小值为 [2(x - 1) + 2(y + 2) + (z - 3)]2 ≤ [(x - 1)2 + (y + 2) 2 + (z - 3) 2].(22 + 22 + 12) ? (x - 1)2 + (y + 2) 2 + (z - 3) 2 ≥ 9 )9(2 -= 9 6.设x, y, z ∈R ,若332=+-z y x ,则2 2 2 )1(z y x +-+之最小值为________,又此时=y ________ 1436])1([)332(]1)3(2][)1([2222222222≥ +-+++-≥+-++-+z y x z y x z y x ∴最小值7 18 1, 233,2(2)3(31)3231x y z t x y z t t t -===-+=∴--++=- ∴73=t ∴7 2 -=y 7.设a, b, c 均为正数,且232=++c b a ,则 c b a 3 21++之最小值为________,此时=a ________。 解: 22222 22)321(])3()2()1][()3()2()[(++≥++++c b a c b a

高中数学教学论文 柯西不等式的证明与应用

柯西不等式的证明及其应用 摘要:柯西不等式是一个非常重要的不等式,本文用六种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 Summar y: Cauchy's inequality is a very important inequality, this article use six different methods to prove the Cauchy inequality, and gives some Cauchy inequality in inequality, solving the most value, solving equations, trigonometry and geometry problems in the areas of application, the last used it proved that point to the straight line distance formula, better explains the Cauchy inequality. Keywords :Cauchy inequality, proof application 不等式是数学的重要组成部分,它遍及数学的每一个分支。本文主要介绍著名不等式——柯西不等式的证明方法及其在初等数学解体中 的应用。柯西不等式是一个非常重要的不等式,本文用几种不同的方法证明了柯西不等式,并给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用。

可用柯西不等式的基本不等式训练题(含详解)

可用柯西不等式的基本不等式训练题(含详解) 柯西不等式()(a+b )c d +≥+ 条件a,b,c,d 为正 当且仅当c d a b =取=号 1.已知a >0,b >0,a+b=2,则 的最小值是( ) A . B .4 C . D .5 2.若直线 ()10,0x y a b a b +=>>过点()1,2,则2a b +的最小值是( ) A .8 B .9 C .10 D .12 3.已知直线210kx y k -+-=恒过定点A ,点A 也在直线10mx ny ++=上,其 中m n 、均为正数,则12m n +的最小值为( ) A .2 B .4 C .6 D .8 4.已知正数,x y 满足 811x y +=,则2x y +的最小值是( ) A .18 B .16 C .8 D .10 5.如图,在ABC 中,23 BD BC =,E 为线段AD 上的动点,且CE xCA yCB =+,则13x y +的最小值为( ) A .16 B .15 C .12 D .10 6.若对0x >、0y >,有()212x y m x y ??++≥ ???恒成立,则实数m 的取值范围是( ) A .8m ≤ B .8m > C .0m < D .4m ≤ 7.圆222610x y x y ++-+=关于直线30(0,0)ax by a b -+=>>对称,则 13a b +的最小值是( )

A . B .263 C .4 D .153 8.若直线 1x y a b +=(0a >,0b >)过点()1,2,则2+a b 的最小值等于( ) A .9 B .8 C .3+ D .4+ 9.若直线 1(00)x y a b a b +=>,>过点(1,2),则2a+b 的最小值为______. 10.若直线1(00)x y a b a b +=>,>过点(1,2),则2a b +的最小值为________. 11.已知x ,y 是正数,且141x y +=,则x y +的最小值是______. 12.已知()222log log log x y x y +=+,则 11x y +=______2x y +的最小值为 ______.

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc ≥ =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

高中数学:柯西不等式的几种用法

高中数学:柯西不等式的几种用法 1、熟记模型,直接应用 ()+21212 11,2111i n n a R i n a a a n a a a ∈=?? ++++++≥ ???例 ,求证 2、灵活变通,巧妙应用 22x y R x y x y ∈≤+≤例2、已知 ,,且3+26, 求证: 12 22223,3,,,2365,2. a b c d a b c d R a b c d a + ++=?∈ ?+++=?≤≤例、,且满足:求证:1 35,2 x ≤≤<例4、设求证: 3、以n 为目标,在“1”上下功夫 22212 12 n n i a a a a a a a R n ++++++∈≤例5、 +441,,18 a b R a b a b ∈+=≥例6、若 求证:+ ()12122 22221212,1111.n n n n a a a a a a n a a a a a a n ++++??????++++++≥ ? ? ???????例7、已知 ,,都是正数,且=1, 求证: 4、以分式的各项分母为目标,配对约分为桥梁。 ()22212a b c a b c R a b c a b c b a c + ∈++≥+++++例8、若、、,证明: ()()()333 111132 a b c abc a b c b a c c a b =≥+++例9设、、为正实数,且满足, 证明:++(IMO32届赛题) 5、 去伪存真,再寻对策

11111223421231 n n n n n n ∈≥->-+例10、 设N 且 2 求证:1-+-++ 6、综合中寻机应用,技高一筹 ,,,0,1, 131313131 a b c d abcd a b c d b c d a >≥+++≥++++例11、已知求证: (){}()() 1212222111,, ,2,,,1,1,1.2015n n n n n i i i i i i i a a a n a a n a εεεε===≥∈-??????+≤+ ? ? ??????? ∑∑∑例12、已知是实数,证明:可以选取使得:年全国联赛二试

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

(完整word版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

一般形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【一般形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α ,β 为平面上的两个向量,则αβαβ? ≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 问题2:你会用柯西不等式证明下面的两个不等式吗? (1)222a b ab +≥ (2)2221()2 a b a b ++≥ 解析: (1)2222222222))()(2),)(2)a b a b ab ab ab a b ab +++=+∵((≥∴(≥

柯西不等式与排序不等式及其应用经典例题透析

经典例题透析 类型一:利用柯西不等式求最值 1.求函数的最大值. 思路点拨:利用不等式解决最值问题,通常设法在不等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。 解析: 法一:∵且, ∴函数的定义域为,且, 当且仅当时,等号成立, 即时函数取最大值,最大值为 法二:∵且, ∴函数的定义域为 由, 得 即,解得 ∴时函数取最大值,最大值为. 总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键. 举一反三: 【变式1】(2011辽宁,24)已知函数f(x)=|x-2|-|x-5|。 (I)证明:-3≤f(x)≤3; (II)求不等式f(x)≥x2-8x+15的解集。 【答案】

(Ⅰ) 当时,. 所以.…………5分 (Ⅱ)由(Ⅰ)可知, 当时,的解集为空集; 当时,的解集为; 当时,的解集为. 综上,不等式的解集为.……10分 【变式2】已知,,求的最值. 【答案】 法一: 由柯西不等式 于是的最大值为,最小值为. 法二: 由柯西不等式 于是的最大值为,最小值为. 【变式3】设2x+3y+5z=29,求函数的最大值.【答案】 根据柯西不等式 ,

故。 当且仅当2x+1=3y+4=5z+6,即时等号成立, 此时, 评注:根据所求最值的目标函数的形式对已知条件进行配凑. 类型二:利用柯西不等式证明不等式 利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。如常数的巧拆、结构的巧变、巧设数组等。 (1)巧拆常数: 2.设、、为正数且各不相等,求证: 思路点拨:∵、、均为正,∴为证结论正确只需证: 而,又,故可利用柯西不等式证明之。 证明: 又、、各不相等,故等号不能成立 ∴。 (2)重新安排某些项的次序: 3.、为非负数,+=1,,求证: 思路点拨:不等号左边为两个二项式积,,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。 证明:∵+=1

柯西不等式的最大值问题 文本内容

柯西不等式的问题(2)——最大值 内容概述 柯西不等式的最大值问题,高考时通常出现在不等式选讲部分. 用到的公式是柯西不等式二维形式的变形. 先来看柯西不等式的二维形式: ()()()22222a b c d ac bd ++≥+当且仅当a b c d =时取等号。 该不等式的证明方法有很多,此处以作差法为例. ()()()2 2222a b c d ac bd ++-+ () 2222222222222()(2) 0a c a d b c b d a c abcd b d ad bc =+++-++=-≥ 并从向量的角度对柯西不等式的二维形式作出解释. 设向量(,)u a b = ,向量(,)v c d = ,向量u 与v 的夹角为θ, 则根据cos u v u v θ?= ,有u v u v u v -≤?≤ ,所以() 222u v u v ≥? , 又u v ? 故有()()()22222a b c d ac bd ++≥+,当且仅当a b =时取等号. 体现的方法:公式法或配凑法,要充分关注柯西不等式的结构特征以及注意等号成立的条件,类似于基本不等式的“一正二定三相等”. 柯西不等式,有时可用于求函数的最值。而构造柯西不等式求最值,有利于培养学生的数学建模能力。当然,与此同时,也提高了逻辑思维和分析解决问题的能力。 关注其结构特征,注意等号成立条件。接下来通过具体的例题来看柯西不等式的应用。 例题示范 (柯西不等式二维形式的变形,求证最大值) 【例1】(2017年江苏高考题第21(D )题) 已知,, ,a b c d 为实数,且22224,16a b c d +=+=,证明:8ac bd +≤ . 证明:由柯西不等式得ac bd +≤ 即ac bd +≤

柯西不等式及排序不等式及其应用经典例题透析

经典例题透析类型一:利用柯西不等式求最值1.求函数 的最大值.思路点拨:利用不等式解决最值问题,通常设法在不 等式一边得到一个常数,并寻找不等式取等号的条件.这个函数的解析式是两部分的和,若能化为ac+bd的形式就能利用柯西不等式求其最大值.也可以利用导数求解。 解析:法一:∵且, ∴函数的定义域为,且, 当且仅当时,等号成立, 即时函数取最大值,最大值为法二:∵且, ∴函数的定义域为 由, 得 即,解得∴时函数取最大值,最大值 为. 总结升华:当函数解析式中含有根号时常利用柯西不等式求解.不等式中的等号能否取得是求最值问题的关键. 举一反三: 【变式1】(2011,24)已知函数f(x)=|x-2|-|x-5|。 (I)证明:-3≤f(x)≤3; (II)求不等式f(x)≥x2-8x+15的解集。 【答案】 (Ⅰ) 当时,. 所以.…………5分

(Ⅱ)由(Ⅰ)可知, 当时,的解集为空集; 当时,的解集为; 当时,的解集为. 综上,不等式的解集为.……10分 【变式2】已知,,求的最值. 【答案】法一: 由柯西不等式 于 是的最大值为,最小值为. 法二: 由柯西不等式 于是的最大值为,最小值为. 【变式3】设2x+3y+5z=29,求函数的最大值. 【答案】 根据柯西不等式 , 故。 当且仅当2x+1=3y+4=5z+6,即时等号成立, 此时,评注:根据所求最值的目标函数的形式对已知条件进行配凑. 类型二:利用柯西不等式证明不等式

利用柯西不等式证明某些不等式显得特别方便,而利用柯西不等式的技巧也有很多。如常数的巧拆、结构的巧变、巧设数组等。 (1)巧拆常数:2.设、、为正数且各不相等,求证: 思路点拨:∵、、均为正,∴为证结论正确只需证: 而,又,故可利用柯西不等式证明之。 证明: 又、、各不相等,故等号不能成立 ∴。 (2)重新安排某些项的次序:3.、为非负数,+=1,,求证: 思路点拨:不等号左边为两个二项式积, ,直接利用柯西不等式,得不到结论,但当把第二个小括号的两项前后调换一下位置,就能证明结论了。 证明:∵+=1 ∴ 即(3)改变结构:4、若>>,求证: 思路点拨:初见并不能使用柯西不等式,改造结构后便可使用柯西不等式了。 ,,∴,∴所证结论改为证

柯西不等式的证明及其应用

柯西不等式的证明及其应用 赵增林 (青海民族大学,数学学院,青海,西宁,810007) 摘要:柯西不等式是一个非常重要的不等式,本文用五种不同的方法证明了柯西不等式,并 给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 柯西不等式 定理:如果1212,,,;,,,n n a a a b b b …………为两组实数,则 2222222 11221212()()()n n n n a b a b a b a a a b b b +++≤++++++……………… (*) 当且仅当12211331110n n a b a b a b a b a b a b -=-==-=……时等号成立。 若120,0,,0n b b b ≠≠≠……,则不等式的等号成立的条件是 12 12n n a a a b b b ===……。 我们称不等式(*)为柯西不等式。 柯西不等式的证明: 一)两个实数的柯西不等式的证明: 对于实数1212,,,a a b b ,恒有22222 11221212()()()a b a b a a b b +≤++,当且仅当 12210a b a b -=时等号成立。如果120,0b b ≠≠则等式成立的条件是12 12 a a b b =。 证明:对于任意实数1212,,,a a b b ,恒有 2222 22121211221221()()()()a a b b a b a b a b a b ++=++-,而21221()0a b a b -≥, 故2222211221212()()()a b a b a a b b +≤++。 当且仅当12210a b a b -=时等号成立。 不等式的几何意义如图1所示,在直角坐标系中有 异于原点O 的两点12(,)P a a ,12(,)Q b b ,由距离公式 得:|OP |=,|OQ |=

柯西不等式各种形式的证明及其应用培训资料

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角 度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:()()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==??==???= ?=?????当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 2 22 111n n n k k k k k k k a b a b ===??≥ ??? ∑∑∑

一般形式的柯西不等式全面版

课 题:§3.2一般形式的柯西不等式 教学目标:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并 应用其解决一些不等式的问题.. 教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习引入: 1. 提问:二维形式的柯西不等式、三角不等式? 几何意义? 答案:22222()()()a b c d ac bd ++≥+2. 思考:如何将二维形式的柯西不等式拓广到三维?四维呢? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++。。。。。。 二、讲授新课: 1. 一般形式的柯西不等式: ① 提问:由平面向量的柯西不等式||||||αβαβ?≤ ,如何得到空间向量的三维形式的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈ ,则 222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++ 讨论:什么时候取等号? 联想:设1122n n B a b a b a b =+++,222 12n A a a a =++ ,22212n C b b b =+++ ,则有 20B AC -≥,可联想到一些什么? ③ 讨论:如何构造二次函数证明n 维形式的柯西不等式?(注意分类) 要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+()(222 12()n b b b +++???+ ,则 22 21122 ()()())0n n f x a x b a x b a x b =++++???+≥+(. 又222120n a a a ++???+>,从而结合二次函数的图像可知, []2 2221122122()4()n n n a b a b a b a a a ?=+++-++? 22212()n b b b +++ ≤0 即有要证明的结论成立. ④分析什么时候等号成立? 二次函数f x ()有唯一零点时,判别式0?=,这时不等式取等号; 00i i a x b ?=?+=0i b ?=或i i a kb =(1,2,,i n = ) 定理4:(一般形式的柯西不等式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任意实数,则: 21 1 2 1 2)(∑∑∑===≥n i i i n i i n i i b a b a ,当且仅当0=i b (=i 1,2,…,n )或存在 一个数k ,使得i i a kb =(1,2,,i n = )时等号成立。 ⑤探究:一般形式的三角不等式是怎样的?(可以让学生课后去探究) 利用一般形式的柯西不等式,容易推导出一般形式的三角不等式: (,,1,2,,)i i x y R i n ∈= 具体证法为:展开2 ,然后由柯西不等式推出展开式中的,进而完成全部证明。教学中可由学生探究具体证明过程,以加强其对一般形式柯西不等式与一般形式三角不等式之间联系的认识。 ⑤ 变式:222212121()n n a a a a a a n ++≥++???+ . (讨论如何证明) 2. 柯西不等式的应用:

二维形式的柯西不等式知识点梳理

课题:二维形式的柯西不等式 备课教师:沈良宏参与教师:郭晓芳、龙新荣审定教师:刘德清 1、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 2、教学难点:二维形式柯西不等式的应用. 3、学生必须掌握的内容: 1.二维形式的柯西不等式 若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立. 2.柯西不等式的向量形式 设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立. 3.二维形式的三角不等式 设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(x1-x2)2+(y1-y2)2. 注意: 1.二维柯西不等式的三种形式及其关系 定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式. 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示. 2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当存在实数k,α=kβ或β=0时取等号. (3)三角形式中当P1,P2,O三点共线且P1,P2在原点O两旁时取等号. 3.掌握二维柯西不等式的常用变式 (1) a2+b2·c2+d2≥|ac+bd|. (2) a2+b2·c2+d2≥|ac|+|bd|. (3) a2+b2·c2+d2≥ac+bd. (4)(a+b)(c+d)≥(ac+bd)2. 4.基本不等式与二维柯西不等式的对比 (1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式. (2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效. 4、容易出现的问题: 在二维形式的柯西不等式相关要点中,对式子(a2+b2)(c2+d2)≥(ac+bd)2取等号的条件容易忽略,由于式子过长容易弄错各个数据之间的对应关系,使用公式时容易混淆公式中数据之间的关系,数据位置易出错。 5、解决方法:

高中数学-公式-柯西不等式

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则22||m a b =+,2||n c d =+. ∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d ≥. 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3. 如何利用二维柯西不等式求函数y =? 要点:利用变式2 22||ac bd c d ++. 二、讲授新课: 1. 教学最大(小)值: ① 出示例1:求函数y = 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式:y = → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点:2222111111()()] 22x y x y x y +=++=++≥…

柯西不等式的几何意义

柯西不等式的几何意义和推广 3. 柯西不等式的几何意义 柯西不等式的代数形式十分简单,但却非常重要。数学当中没有巧遇,凡是重要的结果都应该有一个解释,一旦掌握了它,就使这个结果变得不言而喻了。而一个代数结果最简单的解释,通常驻要借助于几何背景。现在就对柯西不等式的二维、三维情况做出几何解释。 (1)二维形式 2222()()()a b c d a c b d ++ ≥+ y x Q (c ,d ) P (a ,b ) O 图3-1 如图,可知线段OP ,OQ 及PQ 的长度分别由下面的式子给出: OP OQ PQ ===θ表示OP 与OQ 的夹角。由余弦定理,我们有 2 2 2 2cos PQ OP OQ OP OQ θ=+-? 将OP ,OQ ,PQ 的值代入,化简得到cos θ= 而2 0cos 1θ≤≤,故有2 2 2222 ()cos 1()() ac bd a b c d θ+=≤++ 于是 2222()()()a b c d a c b d ++≥ + 这就是柯西不等式的二维形式。 我们可以看到当且仅当2cos 1θ=,即当且仅当θ是零或平角,亦即当且仅当

,,O P Q 在同一条直线上是时等号成立。在这种情形,斜率之间必定存在一个等 式;换句话说,除非0c d ==,我们们总有 a b c d =. (2)三维形式 2222 22 12312311 2233()()()a a a b b b a b a b a b ++++ ≥++ 对于三维情形,设123123(,,),(,,)P a a a Q b b b 是不同于原点(0,0,0)O 的两个点,则OP 与OQ 之间的夹角θ的余弦有 2 3c o s θ= 又由2cos 1θ≤,得到柯西不等式的三维形式: 2222 2 2 12312311 2233()()()a a a b b b a b a b a b +++ + ≥++ 当且仅当,,O P Q 三点共线时,等号成立;此时只要这里的123,,b b b 都不是零,就有 3 12123 a a a b b b == 4. 柯西不等式的推广 前面的柯西不等式都是限制在实数范围内的,在复数范围内同样也有柯西不等式成立。 定理:若12(,,)n a a a a =???和12(,,,)n b b b b =???是两个复数序列,则有 2 2 2 1 1 1 ()()n n n k k k k k k k a b a b ===≤∑∑∑, 当且仅当数列a 和b 成比例时等式成立。 证明:设λ是复数,有恒等式 2 22 2 1 1 1 1 1 ()()2Re()n n n n n k k k k k k k k k k k k k k a b a b a b a b a b λλλλ λ=====-=--=+-∑∑∑∑∑ 若12 1n k k k n k k a b b λ=== ∑∑(其中0b ≠),则有 22 2 1 2 1 1 1 0n k k n n k k k k n k k k k a b a b a b λ====-=- ≥∑∑∑∑ 由此推出了复数形式的柯西不等式。

相关文档
相关文档 最新文档