文档库 最新最全的文档下载
当前位置:文档库 › 卫星同步时钟方案

卫星同步时钟方案

卫星同步时钟方案
卫星同步时钟方案

随着计算机网络的迅猛发展,网络应用已经非常普遍,如电力、金融、通信、交通、广电、安防、石化、冶金、水利、国防、医疗、教育、政府机关、IT等领域的网络系统需要在大范围保持计算机的时间同步和时间准确,因此有一个好的标准时间校时器是非常必要的。为了适应这些领域对于时间越来越精密的要求,锐呈公司精心设计、自主研发了K系列NTP网络时间服务器.该装置以美国全球定位系统(GPS)为时间基准,内嵌国际流行的NTP-SERVER服务,以NTP/SNTP协议同步网络中的所有计算机、控制器等设备,实现网络授时。

K805卫星同步时钟(GPS时间服务器、NTP时间服务器、时间服务器、GPS网络同步时钟、网络时钟、GPS网络时钟、GPS网络时间服务器、NTP网络时间服务器)采用表面贴装技术生产,以高速芯片进行控制,无硬盘和风扇设计,具有精度高、稳定性好、功能强、无积累误差、不受地域气候等环境条件限制、性价比高、操作简单、免维护等特点,适合无人值守。该产品可以为计算机网络、计算机应用系统、流程控制管理系统、电子商务系统、网上B2B系统以及数据库的保存维护等系统提供精密的标准时间信号和时间戳服务。

K805卫星同步时钟采用全模块化结构设计,其输入、输出、电源等均可灵活配置,并具有丰富的各类模块及板卡供选择(特殊需求可提供定制服务),对时信号的种类和数量都可根据需要灵活选择配置。装置有标准RS232、RS422/485、脉冲、IRIG-B、DCF77、PTP、NTP/SNTP协议时间输出等接口形式,可以适应各种不同设备的对时需要。装置输出1~7路NTP/SNTP网络对时信号。

装置的特点

1.精度高,同步快。

2.模块化结构,NTP端口数量可灵活配置,最多配置7路NTP/SNTP网络对时信号。3.双CPU同时工作,32位CPU双核处理器,性能极大提高。

4.支持单星授时模式,适用于收星效果不佳的情况(订货时须说明),有屋顶和贴窗天线可供选择。

5.自保持能力强,装置收不到卫星信号后,自保持能力优于0.6μS/min。

6.具有多个物理隔离的相互独立的10/100M网口(每个端口具有独立的MAC地址),多个端口可以灵活的配置使用,可以用在不断增长变化的网络环境中;还可用于不同的子网或不同的物理隔离的网络中。另外,还可用来作为NTP网管来使用,使多个物理隔离的网络共享时间服务器资源。

7.可同时为几十万台客户端、服务器、工作站提供时间服务。

8.支持WINDOWS9X/NT/2000/XP/2003、LINUX、UNIX、SUN SOLARIS、IBM AIX、HP-UX等操作系统及支持NTP协议的路由器、交换机、智能控制器等网络设备。

9.多种配置方法,易于管理和升级。

10.支持电源中断、GPS失歩干接点信号告警。

11.专用嵌入式系统,无硬盘和风扇设计,防震设计,系统稳定可靠。

12.机箱经防磁处理,抗干扰能力强。

13.高品质的工业级元件,高水准的电气设计,高密度集成的电路结构,使装置拥有优异的电气隔离和电磁屏蔽表现,整机无可调节器件,极大提高了装置抗干扰性能与可靠性保障。14.采用双电源冗余供电,并选用高性能、宽范围开关电源,工作稳定可靠,装置电源供电自适应。(按订货技术协议配置,缺省为单电源。)

15.GPS接收天线重点考虑了防雷设计、稳定性设计、抗干扰设计,信号接收可靠性高,不受地域条件和环境的限制。

16.装置具有自复位能力,在因干扰造成装置程序出错时,能自动恢复正常工作。

17.装置提供一路可编程的TTL脉冲信号(1PPS/1PPM/1PPH)供时钟的准确度指标测试。18.装置前面板有“电源指示”灯、“秒脉冲指示”灯、“锁定指示”灯多种工作状态指示,便于运行值班人员的日常巡视。

19.装置采用全模块化即插即用结构设计,支持板卡热插拔,配置灵活,维护方便,同时为将来现场网络改造扩建时增加对时端口提供了方便。

20.装置不仅实现了板卡全兼容,还提供了丰富的信号接口资源和开放式特殊接口设计平台,具备优异的兼容能力。装置可提供多路脉冲信号(1PPS、1PPM、1PPH、事件,空接点、差分、TTL、24V/110V/220V有源、光)、IRIB-B信号(TTL、422、232、AC、光)、DCF77信号(有源、无源)、时间报文(RS232、RS422/485、光)、PTP、NTP/SNTP网络时间信号,可以满足不同设备的对时接口要求。

21.装置具有多种串行信息输出与交互方式,以满足不同用户的需求。

22.脉冲、串口信号输出可编程,按键设置,操作方便。

23.装置可通过数码管在线显示当前收星个数,直观反映装置的同步状况。

24.架装式结构,2U、19”标准机箱,安装方便。

装置的技术指标

1.运行条件

1)装置环境条件

工作温度:-200C~+700C;

贮存温度:-400C~+850C;

湿度:<95%。

2)电源

交流供电:220V±20%或110V±20% , 47Hz~63Hz ;

直流供电:220V±20%或110V±20%;

装置电源供电自适应。

3)抗干扰

在雷击过电压、一次回路操作、开关场故障、二次回路操作及其它强干扰作用下,装置不误动作。

装置快速瞬变干扰试验、高频干扰试验、辐射电磁场干扰试验、阻尼震荡波干扰试验、冲击电压试验和绝缘试验符合标准GB/T15153.1-1998(远动设备及系统第2部分:工作条件第1篇:电源和电磁兼容),并达到Ⅲ级及以上标准。

2.技术参数

1)GPS接收天线

天线环境要求:

工作温度:-45℃~85℃;

贮存温度:-50℃~90℃;

湿度:100%,结露;

体积:φ96×126mm。

2)GPS接收器

接收频率:1575.42MHz(L1信号)。

接收灵敏度:捕获〈-130dBm,跟踪〈-133dBm。

同时跟踪:正常状态下可同时跟踪8~12颗GPS卫星;

装置冷起动时不小于4颗卫星;

装置热起动时不小于1颗卫星。

捕获时间:装置冷起动时小于5min,装置热起动时小于1min。

内部电池:电池类型:锂电池;

电池寿命:≦25000h。

3)功耗:≤20W。

4)平均无故障间隔时间(MTBF)≥70000小时;平均维修时间(MTTR):一般不大于30分,使用寿命不少于10年。正常使用条件下无须维护。

5)输出时间与协调世界时(UTC)时间同步准确度:≤0.1μS。

6)时间同步信号接口:

1PPS/PPM/PPH脉冲信号:(TTL电平)准时沿:下降沿,下降时间≤10nS;

下降沿的时间准确度≤0.2μS;

脉冲宽度:200mS;

输出阻抗:50Ω;

时间报文:

A.通讯波特率: 1200、2400、4800、9600可选。

B.数据格式:信息位8位,一位起始位,一位停止位,异或非校验,校验帧头之后校验字节之前的时间数据,ASCⅡ码。

C.信息格式: 每秒发送一次,格式为:

<S><T> D D D D D D D D D D D D D D D<A>

↑ ↑ ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ ↑

桢桢时时分分秒秒日日月月年年年年校标

头头十个十个十个十个十个千百十个验准

位位位位位位位位位位位位位位字时

节结

其中,与秒脉冲(PPS)的前沿对齐。例如:现在是2002年6月13号18点45分36秒,则发送信息格式为:ST18453613062002 A。

如果装置刚上电或装置失去同步, 则装置的信息格式里将不出现<S>码,即以<T>为桢头的格式表示输出的信息未经同步,以<S><T>为桢头的格式表示输出的信息为同步后的标准时间。

另外,可根据客户要求订制特殊规约。

D.串行输出接口引脚如图所示:

RS-232C接口 RS-422/485接口

图 K805串行输出接口

E.准确度:≤10μS(波特率为9600时)。

NTP协议时间:

支持协议:NTP,SNTP,ARP,UDP,TCP,Telent,ICMP,SNMP,DHCP和TFTP ;

网络接口:10/100M自适应以太网接口,RJ-45 ;

吞吐量:满足每秒2400次时间请求;

授时记录:保存最新300条;

时间准确度:

7)重量:4.3kg。

8)外形尺寸:本装置为架装式结构,高度2U、宽度19”标准机箱,具体外形尺寸如图所示:

图K805外形尺寸图

网络对时方案

装置以接收到的GPS信息(串口+1PPS)为时间源,通过NTP/SNTP协议同步网络中的所有计算机、路由器、交换机、智能控制器等设备,实现网络授时。大部分操作系统都自带NTP 服务,只需做一下设置即可。我公司也提供NTP客户端软件,安装运行也可实现同步。

嵌入式硬盘录像机有两种对时方式可选(由硬盘录像机厂家、型号决定):1、硬盘录像机支持NTP/SNTP协议对时,可作为客户端直接访问GPS时间服务器,获取标准时间。2、硬盘录像机不支持NTP/SNTP协议对时,硬盘录像机后台管理PC机访问GPS时间服务器,获取标准时间,然后通过录像机厂家时间同步程序把标准时间下发到硬盘录像机。

时间显示钟可通过RS485信号或NTP/SNTP信号获取时间基准。通过RS485信号方式对时,需把信号从GPS时钟源引到各个显示钟处,成本低,但施工麻烦。通过NTP/SNTP协议对时,只需把显示钟就近接到局域网中,成本高,施工简单。

图 NTP网络授时示意图方案配置及报

单联显示钟RC1-3/4/5/8/10

二联显示钟RC2-3+5 3+5寸显示钟

显示钟报价

注:子钟显示时区可选。

上海锐呈电气有限公司

2011年10月11日

网络时钟系统方案

时钟系统 技术方案 烟台北极星高基时间同步技术有限公司 2012 年 3 月 第一部分:时钟系统技术方案 一、时钟系统概述 1. 1 概述 根据办公楼的实际情况,特制定如下施工设计方案: 时钟系统主要由GPS接收装置、中心母钟、二级母钟(中继器)、全功能数 字显示子钟、、传输通道和监测系统计算机组成。 系统中心母钟设在中心机房内,其他楼各设备间设置二级母钟,在各有关场所安装全功能数字显示子钟。 系统中心母钟接收来自GPS的标准时间信号,通过传输通道传给二级母钟,由 二级母钟按标准时间信号指挥子钟统一显示时间;系统中心母钟还通过传输系统将标准时间信号直接传给各个子钟,为楼宇工作人员提供统一的标准时间 二、时钟系统功能 根据本工程对时钟系统的要求,时钟系统的功能规格如下: 时钟系统由GPS校时接收装置(含防雷保护器)、中心母钟、扩容接口箱、二级 母钟、数字式子钟、监控终端(也称监测系统计算机)及传输通道构成。其主要功

能为: 。显示统一的标准时间信息。 。向其它需要统一时间的系统及通信各子系统网管终端提供标准时间信息。 2.1 中心母钟 系统中心母钟设置在控制中心设备室内,主要功能是作为基础主时钟,自动接 收GPS勺标准时间信号,将自身的精度校准,并分配精确时间信号给子钟,二级母钟和其它需要标准时间的设备,并且通过监控计算机对时钟系统的主要设备进行监控。 中心母钟主要由以下几部分组成: 。标准时间信号接收单元 。主备母钟(信号处理单元) 。分路输出接口箱 。电源 中心母钟外观示意图见(附图) 2.1.1 标准时间信号接收单元 标准时间信号接收单元是为了向时间系统提供高精度的时间基准而设置的,用以实现时间系统的无累积误差运行。 在正常情况下,标准时间信号接收单元接收来自GPS的卫星时标信号,经解码、 比对后,经由RS422接口传输给系统中心母钟,以实现对母钟精度的校准。

【CN109785587A】一种基于北斗卫星定位的监测装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910184431.0 (22)申请日 2019.03.12 (71)申请人 湖南联智桥隧技术有限公司 地址 410019 湖南省长沙市望城经开区沿 河路二段168号 (72)发明人 梁晓东 邱志勇 杨振武 周雨峰  丁磊  (74)专利代理机构 长沙七源专利代理事务所 (普通合伙) 43214 代理人 郑隽 吴婷 (51)Int.Cl. G08B 21/10(2006.01) G01B 21/02(2006.01) G01S 19/14(2010.01) (54)发明名称 一种基于北斗卫星定位的监测装置 (57)摘要 本发明提供了一种基于北斗卫星定位的监 测装置,包括监控装置、数据处理箱以及反馈装 置,其中监控装置和数据处理箱连接,数据处理 箱和反馈装置连接;所述监控装置用于监测滑坡 位移;所述数据处理箱根据监控装置所监测到的 滑坡位移的情况控制反馈装置进行动作,实现滑 坡监测。应用本发明的技术方案,效果是:可以实 时对坡体进行监测,经过将滑坡位移进行放大处 理使得微小的滑坡量也可以直接监测出来,监测 的精度高,同时将监测的数据及时的传送给监测 人员以便及时采取相应的处理措施,起到保护人 们生命和财产安全的作用。权利要求书1页 说明书5页 附图1页CN 109785587 A 2019.05.21 C N 109785587 A

权 利 要 求 书1/1页CN 109785587 A 1.一种基于北斗卫星定位的监测装置,其特征在于,包括监控装置、数据处理箱以及反馈装置,其中监控装置和数据处理箱连接,数据处理箱和反馈装置连接;所述监控装置用于监测滑坡的位移;所述数据处理箱根据监控装置所监测到的滑坡位移的情况控制反馈装置进行动作,实现滑坡监测。 2.根据权利要求1所述的基于北斗卫星定位的监测装置,其特征在于,所述数据处理箱包括拉力传感器模块(31)、处理模块(32)、控制模块(33)以及输出模块(34)且各模块之间电连接;所述拉力传感器模块(31)用于接收监控装置的滑坡位移信号,所述处理模块(32)用于放大滑坡位移信号,所述控制模块用于根据放大信号控制输出模块(34)动作,所述输出模块通过牵引绳(4)连接所述反馈装置实现反馈装置根据放大信号动作。 3.根据权利要求2所述的基于北斗卫星定位的监测装置,其特征在于,所述反馈装置包括电机(5)、安装箱(6)、北斗定位天线(7)以及安装座(8);所述安装座(8)上设有用于安装电机(5)的型腔,所述电机设置于型腔内,所述安装箱(6)设置于电机(5)上,所述北斗定位天线(7)由电机(5)驱动进行运动;所述安装箱(6)内相对设置第一导体(61)和第二导体(62),其中第一导体(61)与电机(5)电连接,第二导体通过弹簧设置于所述安装箱上,所述牵引绳(4)和第二导体连接实现牵引绳(4)带着第二导体与第一导体贴合或者分开,从而实现电机通电或断电,进而实现电机(5)带着北斗定位天线(7)运动,所述北斗定位天线将运动前和运动后的位置信息传输给监测人员,从而实现滑坡检测。 4.根据权利要求3所述的基于北斗卫星定位的监测装置,其特征在于,所述反馈装置还包括传送带(9)和支架(10),所述传送带(9)两端均设置转轴且其中的一个转轴与电机(5)的输出轴连接,从而实现电机驱动传送带(9)运动;所述支架(10)设置于安装座(8)上,用于支撑所述传送带和转轴;所述北斗定位天线(7)设置于传送带上且跟随所述传送带运动。 5.根据权利要求3或4所述的基于北斗卫星定位的监测装置,其特征在于,所述安装电机(5)的型腔的侧面设有检修口(51)。 6.根据权利要求2所述的基于北斗卫星定位的监测装置,其特征在于,所述监控装置包括用于监测滑坡位移的定位器(1),所述定位器的顶部设有信号发射头(11),侧面设有拉环(12);所述拉环(12)通过拉绳(2)与所述拉力传感器模块(31)连接实现将监测到的滑坡位移传递给数据处理箱。 7.根据权利要求6所述的基于北斗卫星定位的监测装置,其特征在于,所述拉绳(2)包括拉绳本体和安装套(21),所述拉绳本体设置于安装套内且所述拉绳本体可以相对于安装套运动。 8.根据权利要求7所述的基于北斗卫星定位的监测装置,其特征在于,所述拉绳精度为毫米级别。 2

GPS时钟技术方案

GPS时钟系统 目录 5、GPS时钟系统 (2) 5.1系统功能 (2) 5.1.1卫星接收转换系统 (2) 5.1.2 中心母钟 (2) 5.1.2.1高精度石英基准时钟 (2) 5.1.2.2信号处理切换 (2) 5.1.2.3中心监控及故障报警 (3) 5.1.2.4系统信息显示 (3) 5.1.2.5中心传输接口 (3) 5.1.2.6内部在线不间断电源 (3) 5.1.3监控计算机(软件名称:UNITIME) (3) 5.1.3.1硬件要求 (4) 5.1.3.2系统监控软件 (4) 5.1.4子钟 (4) 5.1.4.1指针式子钟 (4) 5.1.4.2数显式子钟的功能 (5) 5.2 系统组成 (5) 5.2.1卫星接收转换器 (5) 5.2.2中心母钟 (6) 5.2.3监控计算机(软件名称:UNITIME) (7) 5.2.4数字式日历子钟 (7) 5.2.5指针式子钟 (8) 5.3系统部署 (8) 5.4系统连接 (8)

5、GPS时钟系统 5.1系统功能 5.1.1卫星接收转换系统 卫星接收转换系统为整个时钟系统提供绝对准确的时间基准,其核心是全球卫星定位系统(GPS)信号接收天线和信号接收转换器,自动接收并以GPS时间信号作为系统标准时间信号。 GPS接收转换系统是以目前形成的全球卫星定位系统(GPS)的卫星信号传输网络为基础,接收并分析卫星信号进而获得时间信息。GPS时间信号的特点是覆盖全球、精度高、无累积误差,是全球统一的时间标准。经GPS 接收转换系统处理后,时间信号以两种方式向时钟系统及其它应用设备发送信号,两种方式的信号在设备上均采用: 1、标准秒脉冲信号:精度为110nS,信号无累积误差; 2、全时标信号:信号含年、月、日、时、分、秒数字信号。 5.1.2 中心母钟 中心母钟是整个时钟系统的核心,通过GPS卫星时间接收器接收标准时间,并传输给系统内各级时钟设备,使整个时钟系统保持同步并监测管理系统的运行状况。如果系统需要,可以采用主备冗余设计,在系统需要时,自动切换。 5.1.2.1高精度石英基准时钟 由高精度的石英振荡器通过分频及译码电路产生高精度时间信息,作为中心母钟的自身时间基准。当GPS时间信号不能完整获得时,系统将采用中心母钟自身的时间基准同步系统。中心母钟的自身时间基准精度高于0.1秒/天。 5.1.2.2信号处理切换 信号处理切换单元接收来自卫星接收转换系统的标准时间信号,用以同步自身时间精度,并将同步信号通过系统接口传送给子钟、监控计算机和其它系统,同时与之相关联设备的工作信息、指令也需经信号处理单元处理后再进行相应的馈送、显示、动作等。 当GPS接收转换系统的标准时间信号无法完整获得时,时间信号处理

时间同步系统在线监测可行性研究报告

附件4 甘肃电网智能调度技术支持系统 时间同步系统在线监测 技术改造(设备大修)项目 可行性研究报告模板项目名称: 项目单位: 编制: 审核: 批准: 编制单位: 设计、勘测证书号:

年月日

1.总论 时间同步系统在线监测功能,将时钟、被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。时间同步系统在线监测的数据来源分为两大类:设备状态自检数据和对时状态测量数据。设备状态自检主要是被监测设备自身基于可预见故障设置的策略,快速侦测自身的故障点。对时状态测量则是从被监测设备外部对其自身不可预见的故障产生的结果进行侦测,这两种方法较为完整的保证了时间同步系统监测的性能和可靠性。 1.1设计依据 2013年4月,国调中心专门下发了〔2013〕82号文《国调中心关于加强电力系统时间同步运行管理工作的通知》 1.2主要设计原则 通过在原系统上建立一套通讯技术及软件来实现系统级的时间同步状态在线监测功能。采用低建设成本、低管理成本、低技术风险的手段,解决当前自动化系统时间同步体系处于开环状态,缺乏反馈,无法获知工作状态紧迫现状,使时钟和被对时设备形成闭环监测,减少因对时错误引起的事件顺序记录无效,甚至导致设备死机等运行事故,并在此前提下尽可能的提高监测性能,减少复杂度。

1.3设计水平年 系统模块使用年限10年。 1.4设计范围及建设规模 智能调度技术支持系统(主站)针对时钟同步检测功能修改主要涉及前置应用,前置应用以104 或476 规约与变电站自动化系进行过乒乓原理对时,根据对时结果来检测各变电站时钟对时的准确性,从而保证全网时钟同步的准确性。同时,以告警直传方式接收变电站时间同步监测结果,包含设备状态自检数据和对时状态测量数据。 1.5主要技术经济指标 1.6经济分析 2.项目必要性 2.1工程概况 智能电网调度技术支持系统及各变电站都以天文时钟作为自己的时间源,正常情况下实现了全网时间的一致。 2.2存在主要问题 近期,电力系统时间同步装置在运行中发现的时钟异常跳变、时钟源切换策略不合理及电磁干扰环境下性能下降等问题,反映出电力系统时间同步在运行管理、技术性能、检验检测管理、在线监测手段及相关标准等方面仍需进一步完善和加强。

网络时钟系统方案

网络时钟系统方案

时钟系统 技术方案 烟台北极星高基时间同步技术有限公司 3月

第一部分:时钟系统技术方案 一、时钟系统概述 1.1概述 根据办公楼的实际情况,特制定如下施工设计方案: 时钟系统主要由GPS接收装置、中心母钟、二级母钟(中继器)、全功能数字显示子钟、、传输通道和监测系统计算机组成。 系统中心母钟设在中心机房内,其它楼各设备间设置二级母钟,在各有关场所安装全功能数字显示子钟。 系统中心母钟接收来自GPS的标准时间信号,经过传输通道传给二级母钟,由二级母钟按标准时间信号指挥子钟统一显示时间;系统中心母钟还经过传输系统将标准时间信号直接传给各个子钟,为楼宇工作人员提供统一的标准时间 二、时钟系统功能 根据本工程对时钟系统的要求,时钟系统的功能规格如下: 时钟系统由GPS校时接收装置(含防雷保护器)、中心母钟、扩容接口箱、二级母钟、数字式子钟、监控终端(也称监测系统计算机)及传输通道构成。其主要功能为: ☉显示统一的标准时间信息。 ☉向其它需要统一时间的系统及通信各子系统网管终端提供标准时间信息。

2.1 中心母钟 系统中心母钟设置在控制中心设备室内,主要功能是作为基础主时钟,自动接收GPS的标准时间信号,将自身的精度校准,并分配精确时间信号给子钟,二级母钟和其它需要标准时间的设备,而且经过监控计算机对时钟系统的主要设备进行监控。 中心母钟主要由以下几部分组成: ☉标准时间信号接收单元 ☉主备母钟(信号处理单元) ☉分路输出接口箱 ☉电源 中心母钟外观示意图见(附图) 2.1.1标准时间信号接收单元 标准时间信号接收单元是为了向时间系统提供高精度的时间基准而设置的,用以实现时间系统的无累积误差运行。 在正常情况下,标准时间信号接收单元接收来自GPS的卫星时标信号,经解码、比对后,经由RS422接口传输给系统中心母钟,以实现对母钟精度的校准。 系统经过信号接收单元不断接收GPS发送的时间码及其相关代码,并对接收到的数据进行分析,判断这些数据是否真实可靠。如果数据可靠即对母钟进行校对。如果数据不可靠便放弃,下次继续接收。 2.1.2主备母钟

基于北斗卫星导航定位系统的气象水文信息系统

基于北斗卫星导航定位系统的气象水文信息系统 【摘要】气象水文信息与工农业生产、百姓生活、军事活动、科学试验息息相关,构建一个科学合理、运行高效的气象水文信息系统,提高气象水文信息传输的实时性、信息处理的准确性、决策参考的科学性,从而使气象水文信息保障优质、高效。本文构建一个基于北斗卫星导航定位系统的气象水文信息系统,主要介绍系统组成、主要功能和应用情况。 【关键词】北斗卫星导航系统;气象水文信息系统;信息采集 气象水文信息与工农业生产、百姓生活、军事活动、科学试验息息相关,构建一个科学合理、运行高效的气象水文信息系统,提高气象水文信息传输的实时性、信息处理的准确性、决策参考的科学性,为优质、高效的气象水文信息保障提供有力的支持。北斗卫星导航定位系统是我国自主研发的卫星导航定位系统,集定位、短报文通信和授时三大功能于一体,基于北斗卫星导航定位系统的气象水文信息系统能较好地担当气象水文信息保障职责。 一、系统组成 气象水文信息系统主要由气象水文信息自动采集系统、信息传输系统、信息综合应用系统组成。 1.气象水文信息自动采集系统 气象水文信息自动采集系统由气象水文监测室及其所辖自动气象水文监测站、卫星遥测站、移动式气象水文数据采集终端、固定式气象水文数据采集终端和测量船等自动气象要素终端采集设备组成。 2.信息传输系统 数据传输系统由北斗卫星及定位总站组成。北斗卫星接收到采集终端发来的数据后,将其发送给定位总站。总站进行分拣后将数据通过北斗卫星发送到相应气象水文监测室的指挥型用户机;同时将所有数据通过地面链路发送到指控中心。定位总站通过逆向流程将指控中心发出的远程终端配置指令通过卫星发送到相应普通型用户机,由普通型用户机发送数据采集终端,进行系统识别码、采集频率等参数的修改。 3.信息综合应用系统 信息综合应用系统由信息分析处理机、信息显示设备、信息存储设备、信息应用工作站、网络互联设备、网络安全设备、信息交换处理机等组成。 二、系统功能

卫星时钟服务器简述

卫星时钟服务器简述 一、卫星时钟服务器原理及构成 卫星时钟服务器主要是由接收单元、时钟单元和输出单元3部分组成。接收单元以接收的无线和有线时间基准信号作为外部时间基准(例如GPS、北斗卫星信号和IRIG-B 码等),接收单元含内部时钟源(晶体钟或原子钟)。时钟单元从接收单元获取时间源,并按照优先级选择一路时间源为当前使用的时间源。时钟单元使用选中的时间源对内部时钟对时。使内部时钟源与外部源同步,然后以内部时钟控制输出单元输出信号。输出单元输出各类时间同步信号和时间信息。 卫星时钟同步系统利用RS232接口接收gps卫星传来的信号,然后经过CPU中央处理单位的规约转换,将当地的时间转换成满足各种要求的接口标准。譬如 (RS232/RS422/RS485)和时间编码输出(IRIG-B码,ASCII码等)。现行的gps卫星和时钟同步系统支持硬件对时(脉冲节点PPS、PPM、PPH)、软件对时(串口报文)、编码对时(IRIG-B码)和网络NTP对时,满足国内外不同设备的对时接口要求。 卫星时钟服务器,从字面意思来了解就是从卫星上获取时间,通过内部的科技手段处理后,从设备上输出多路网口,多路路串口时间信息和经纬度位置信息。 其中1路网口通过NTP/SNTP协议可以在同一时间给不同的物理隔离的局域网进行授时。同时也可以进行跨网段授时,互不影响,也可以互为冗余备份。 每路串口有标准的GPS时间信息,输出的方式为标准GPS语句和经纬度位置信息。 目前,世界上主要的卫星导航授时系统且技术相对成熟的有美国的GPS、俄罗斯的GLONASS、欧洲的Galileo和我国的北斗卫星导航授时系统。这些卫星授时系统可以提供10纳秒级的授时精度。 二、卫星时钟服务器厂家现状 国内从事卫星时钟服务器的厂家不是很多,其中专注时间频率研究生产销售的厂家更是少之又少。这些单位有三大类:专门代理销售国际高端授时产品的公司、中途转行捎带做授时产品的公司以及自成立之日起就一直专注于时间频率产品的厂家。 代理销售国际高端授时产品的这些公司,别的不说,在价格上就要高出市场很多。毕竟,这些产品不属于他们。他们也只能得到一小部分利润。再者,如果设备出现问题,他们也提供不了大力的技术支持。产品的核心科技依然掌握在人家那些原本公司手中。 有些公司因为自身就是做电力相关的产品,为了配套使用会代理或研发出自己的授

XP系统时间同步解决方案

XP系统时间同步不成功_Windows time服务无法启动解决 同步时间的服务器是:210.72.145.44 xp自带的时间同步服务器老是会连不上,而且时间还会差一秒。 这里就教大家换成中科院国家授时中心的服务器,同步就方便多了。 1.双击右下角的时间。 2.把服务器改成210.72.145.44 3.按同步就可以了,一般不会出错。即使是高峰时期,三次之内闭成功,比美国的服务器好多了。 另外系统默认的时间同步间隔只是7天,我们无法自由选择,使得这个功能在灵活性方面大打折扣。其实,我们也可以通过修改注册表来手动修改它的自动同步间隔。 1. 在“开始”菜单→“运行”项下输入“Regedit”进入注册表编辑器 2. 展开[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\Nt pClient ] 分支,并双击SpecialPollInterval 键值,将对话框中的“基数栏”选择到“十进制”上 3. 而这时在对话框中显示的数字正是自动对时的间隔(以秒为单位),比如默认的604800就是由7(天)×24(时)×60(分)×60(秒)计算来的,看明白了吧,如果您想让XP以多长时间自动对时,只要按这个公式算出具体的秒数,再填进去就好了。比如我填了3天,就是259200。 Windows time服务用于和Internet同步系统时间,如果时间无法同步有可能是服务没有随系统启动,可以在运行处输入"services.msc"打开服务控制台,找到"windows time"服务设置为自动并启动即可。 如果启动该服务时提示: 错误1058:无法启动服务,原因可能是已被禁用与其相关联的设备没有启动。 原因是windows time服务失效。 修复: 1.运行cmd 进入命令行,然后键入 w32tm /register 正确的响应为:W32Time 成功注册。 如果提示w32tm命令不内部或外部命令……,是因为系统盘下的system32目录不存在w32tm.exe和w32time.dll这两个文件,到网上下载一个或者到其他电脑复制过来放下这个目录下再运行 2.如果上一步正确,在cmd命令行或运行里用net start "windows time" 或net start w32time 启动服务。 如果无法启动Windows Time服务,同时提示:系统提示“错误1083:配置成在该可执行

胸痛中心时钟统一方案

丹阳市人民医院胸痛中心的时间管理方案 一、时钟同步系统 时钟同步系统对于医院系统可以说是一个不可缺少的重要组成部分,其主要作用是为相关医医疗机构工作人员提供一个标准统一的时间信息,同时为各相关单位科室提供统一的标准时间系统同步,从而实现各相关单位及相关设备的时间标准统一。这对医院的服务质量起到了重要的作用。时钟同步系统工作原理是相关责任人手持移动终端接收3G基站时间信息来实现统一;所有相关设备均以此为标准校对,从而实现全系统统一的时间标准。并每周校对一次。 二、计时点及方法 1.发病时间:患者出现胸痛、胸闷、上腹不适等系列症状开始的时间 ·计时方法:主要是通过问诊方式获得 2.呼救时间:首次拨打120呼救或拨打医院急救电话求救 ·计时方法:120记录、本院胸痛中心记录或其他急救机构记录,已接听电话的时刻为准。 3.到达现场时间:院前急救人员、社区医生或其他医疗机构到达现场时间 计时方法:要求院前人员、网络医院、其他医疗机构准确计时 4.首份心电图时间:完成第一份12或18导联心电图的时间 计时方法:开始接触医疗人员到完成第一份心电图最后一个导联记录为准。在完成心电图操作后,应将准确时间记录在心电图上,包括年、月、日、时、分5.确诊STEMl时问:完成首份心电图后,由受过胸痛专科培训的医生或分诊护士确认为STEMI时间;或由我院医师使用胸痛中心微信群诊断为STEMI的时间。 6.抽血时间:首次抽血查Tnl、CKMB等的时间 计时方法:以抽血护士完成标本采集时刻为计时点。 7.开始转运时间:在确诊为ACS并离开现场/医院的时间。 . 计时方法:由转运医护人员在接到病人启动车辆时计时 8. 给药时间:在确定为ACS患者,排除各类用药禁忌症后,给予服用肠溶阿司

基于北斗卫星导航定位系统的水利监控管理系统

基于北斗卫星导航定位系统水利监控管理方案 北京长缨神舟科技有限公司

目录 1引言 (6) 1.1 概述 (6) 1.2 项目必要性 (7) 1.3 设计依据 (9) 1.3.1 参考资料 (9) 1.3.2 可行性分析 (10) 2任务与功能 (12) 2.1 实现任务 (12) 2.2 功能需求 (14) 2.2.1 气象水文数据的实时采集 (14) 2.2.2 水利水情信息实时查询 (15) 2.2.3数据的实时传输 (15) 2.2.4电子地图 (15) 2.2.5 路线规划 (16) 2.2.6 修改远端测站参数 (16) 2.2.7终端设备安装、维护简易 (16) 2.2.8接收报警信息 (16) 2.2.9 通信回执 (16) 2.2.10 实时通信 (17) 2.2.11数据库查询 (17) 2.2.12历史数据回放 (17)

2.2.13数据分发和共享 (17) 2.2.14 短信通信 (17) 3性能指标要求 (18) 3.1中心基本技术要求 (18) 3.1.1 功能要求 (18) 3.1.2 其它技术要求 (19) 3.2 接口技术要求 (20) 4系统总体设计 (21) 4.1系统的设计目的、思路与原则 (21) 4.1.1 设计目的 (21) 4.1.2 研制思路与关键技术策略 (21) 4.1.3 设计原则 (22) 4.2系统组成结构 (23) 4.2.1 系统总体结构 (23) 4.2.2 子系统的组成及配置 (25) 4.2.2.1气象水文数据自动采集子系统 (25) 4.2.2.2 数据传输子系统 (30) 4.2.2.3 数据综合应用子系统 (32) 4.3系统工作原理 (35) 4.3.1 系统工作模式 (35) 4.3.2北斗信号上行工作原理 (36) 4.3.3北斗信号上行工作原理 (37)

全厂网络时钟同步方案

全厂网络时钟同步方案 陈银桃,陆卫军,张清,章维 浙江中控技术股份有限公司,浙江杭州,310053 摘要:当前工控领域石化项目如乙烯、炼油日益趋向大型化、一体化和智能化。一个大型石化项目往往集成多套独立系统如DCS、SIS、CCS等,同时要求所有系统使用同一套网络时钟同步系统。本文提供了几种全厂网络时间同步方案,并分析了每个方案的优缺点和适用场合。 关键词:全厂网络时钟同步,SNTP,二级网络时钟同步方案,Private VLAN,ACL,路由,NAT Ways to Implement The Network Time Synchronization In The Plant Chen Yintao Zhejiang SUPCON Co., Ltd., Hangzhou, Zhejiang, 310053 Abstract:The petrochemical projects in the industrial control area run to large, integrative and intelligentized.A large petrochemical project always need to be integrated with many systems like DCS, SIS, CCS and so on .The network of these systems must be independent,while they should use the same network time synchronizer to achieve time synchronization.This article propose several implements of the network time synchronization in the whole plant. Keywords:Network Time Synchronization, NTP, Private VLAN, ACL, Route, NAT. 引言 随着国民经济发展,工控领域也随之蓬勃发展,石化项目如乙烯、炼油等日益趋向大型化、一体化和智能化。大型化体现在项目规模的剧增,典型项目如百万吨乙烯、千万吨炼油。一体化体现在一个大型石化项目往往集成多套系统如DCS、SIS、CCS,这些系统在功能、网络上分别独立,但需要实现全厂统一的时钟同步,以保持全厂所有系统的时钟同步。 普通的网络时钟同步服务器提供的网口较少,一般都在4个以下,同时可支持1-4个网络的系统时钟同步。当需要同步的子系统较多时,则需要配置可同时支持二三十个网络的特殊网络时钟同步服务器。但是在企业建设初期,往往很难准确预计将来的网络发展规模,这就需要事先规划设计

GPS时钟操作说明

InnoClock 系列 GPS母钟功能及操作指南 功能特点: 独有特色 ?支持农历 ?双机热备份功能(选项) ?支持远程操作维护(选项) ?服务器校时软件支持SNTP协议 12通道GPS卫星接收,锁定迅速; 可设置时区; 可设置延时,用于补偿传输延时,或与CCTV时间对齐,范围前后±99.99s; 1U 19”标准机箱,年、月、日、星期、农历、时、分、秒显示; 国标内嵌时码电视信号输出; 输出时间信号包括公历(年、月、日、星期、时、分、秒),农历(月,日); 内置高稳温补晶振,年漂移小于1ppm,提供极高的自守时精度(选项); 输出接口RS-232或RS422,可用于子钟校时、计算机网络校时,传输距离几百米至几千米; 可以提供多种方便灵活的传输方式,包括无线及电力线等; 提供计算机网络校时软件,支持标准SNTP协议; 大容量蓄电池,在主电源掉电的情况下,还可输出时码480小时(选项)。 操作指南 1)开机说明 设备通电前,接入GPS接收天线,设备方可正常运行。 2)时区调整 时区调整功能通过面板右侧的按键完成。 操作分为三步:1、按一下设置键,观察左侧小数码管显示 “01”右侧大数码管显示时区,系统默 认设置为“东八区”; 2、通过增加和减少键调整时区,若

需调整为“西几区”则一直按“减少键”; 3、时区调整完,按确认键进行参数保存。 3)延时调整 延时调整功能通过面板右侧的按键实现。 操作分为三步: 1、按两下设置键,观察左侧小数码管显示 “02”右侧大数码管显示延时参数,系 统默认设置为“00 00”; 2、通过增加和减少键调整延时,当右侧大 数码管显示“00 00”时,按增加键系统 将进行“正延时”调整。按减少键系统 将进行“负延时”调整。最小调整单位 为“10毫秒延时调整范围:“+99.99秒”; 3、延时调整完,按确认键进行参数保存。 4)右侧三个指示灯的功能说明 红灯:电源指示灯。 设备采用交流电和电池两种方式供电,在交流电断电时,由电池提供电源(此时面板日期时间不 显示)。交流断电时电源指示灯熄灭。若电池不能正常工作,则指示灯闪烁。 绿灯:运行指示灯。 用于双机热备份时时码输出指示。单机工作 时长亮。 当设备输出时码时,绿灯亮,没有时码输出时, 绿灯灭。 黄灯:GPS信号锁定灯; 当GPS信号锁定时,黄灯亮。未锁定时,黄等灭。 软件安装说明 如果该设备用于计算机网络校时,则需要在服务器安装校时软件,该软件随设备赠送。 1)软件功能说明: 随设备光盘包含两个软件:Clock.exe和 NetTime-2b1a.exe。其中Clock.exe用于从串口取 GPS母钟时间对本地计算机进行校时;

GPS时钟同步原理简介

GPS时钟同步原理 1.有关时间的一些基本概念 时间(周期)与频率 互为倒数关系,两者密不可分,时间标准的基础是频率标准,所以有人把晶体振荡器叫‘时基振荡器’。钟是由频标加上分频电路和钟面显示装置构成的。 四种实用的时间频率标准源(简称钟) ◆晶体钟 ◆铷原子钟 ◆氢原子钟 ◆铯原子钟 常用的时间坐标系 时间的概念包含时刻(点)和时间间隔(段)。时系(时间坐标系)是由时间起点和时间尺度单位--秒定义(又分地球秒与原子秒)所构成。常用的时间坐标系: ◆世界时(UT) ◆地方时 ◆原子时(AT) ◆协调世界时(UTC) ◆ GPS时 定时、时间同步与守时

◆定时:是指根据参考时间标准对本地钟进行校准的过程);授时(指采用适当的手段 发播标准时间的过程); ◆时间同步:是指在母钟与子钟之间时间一致的过程,又称时间统一或简称时统); ◆守时:是指将本地钟已校准的标准时间保持下去的过程,国内外守时中心一般都采 用由多台铯原子钟和氢原子钟组成的守时钟组来进行守时,守时钟组钟长期运行性能表现最好的一台被定主钟(MC)。 2.GPS时间是怎样建立的 为了得到精密的GPS时间,使它的准确度达到<100ns(相对于UTC(USNO/MC)): ◆每个GPS卫星上都装有铯子钟作星载钟; ◆ GPS全部卫星与地面测控站构成一个闭环的自动修正系统; ◆采用UTC(USNO/MC)为参考基准。 3.GPS定位、定时和校频的原理 GPS定位原理 是基于精确测定GPS信号的传输时延(Δt),以得到GPS卫星到用户间的距离(R)R=C×Δt ----------------------- [1](式中C为光速)同时捕获4颗GPS卫星,解算4个联立方程,可给出用户实时时刻(t)和对应的位置参数(x、y、z)共4个参数。R={(Xs- Xu)2+(Ys-Yu)2+(Zs-Zu)}1/2 ---- [2](式中Xs、Ys、Zs为卫星的位置参数;Xu、Yu、Zu为用户的的位置参数)。 GPS定时原理 基于在用户端精确测定和扣除GPS时间信号的传输时延(Δt),以达到对本地钟的定时与校准。GPS定时准确度取决于信号发射端、信号在传输过程中和接收端所引入的误差,主要误差有:

最新轨道交通时钟系统解决方案复习过程

轨道交通时钟系统解决方案 轨道交通时钟系统解决方案 地铁通信系统一般包括: 时钟系统是轨道交通重要的组成部分之一,而其在地铁站的主要作用是为上班族、来往的游客工作人员提供准确的时间信息,同时时

钟系统要为其他监控系统、控制系统等弱电子系统提供统一的时钟信号,使各系统的定时集中同步,在整个地铁系统中使用相同的定时标准。站厅及站台位置的时钟可以为旅客提供准确的时间信息;各车站办公室内及其它停车场内的时钟可以为工作人员提供准确的时间信息;向其它地铁通信子系统提供的时钟信息为地铁运行提供了标准的时间,保证了轻轨系统运行的准时,安全。 时钟子系统能够向地铁全部通信子系统提供准确的时钟信号。时钟信号以卫星自动定位系统所发的格林威治标准世界时间为准辅以铷原子钟或石英钟。时钟系统的控制中心向各分站或车场二级母钟发送时钟信号,再由二级母钟向其对应的子钟发送时钟信号;同时每站的各路时钟信号均需上传至时钟系统的监控中心,使之可以完成对全路各站所有时钟工作状态的监测和控制,并可在相应的管理客户机上完成各种需要的管理及配置功能。

设计区域:换乘大厅、进出口、监控室、控制室控制中心调度大厅和各车站的站厅、站台、车站控制室、公安安全室、票务室、变电所控制室及其它与行车有关的处所,并在车辆段/停车场信号楼运转室、值班员室、停车列检库、联合检修库等有关地点设置子钟。

相关产品 第一章教育和教育学 1 教育的发展 一、教育的概念 考点:教育是培养人的一种社会活动,是传承社会文化、传递生产经验的和社会生活经验的基本途径。 考点广义:凡是增进人们的知识和技能,影响人们思想观念的活动,都具有教育作用。 狭义:主要指学校教育。 学校教育是教育者根据一定的教育要求,有目的、有计划、有组织的通过学校的教育工作,对受教育者的身心施加影响,促使他

网络时钟施工方案设计

实用文档 网络时钟施工方案

目录 一、工程概况 1.工程简述 2.系统说明 二、主要工程量和主要实物工程量 1.主要工程量 2.主要实物工程量 三、安装调试 1. 安装要求 2.系统调试时需具备的条件 3.验收测试方法及测试标准

一、项目概况 1.工程简述 根据XXX综合楼项目弱电系统设计要求,本工程设置集中监控时钟系统。 时钟系统供应商-烟台持久钟表集团有限公司在本工程时钟系统建设中,本着“国际领先、国内一流”的投标目标,使医院智能化楼宇工程时钟系统完全符合相关国家及行业规范和标准,并严格按照医院智能化楼宇工程对时钟系统的各种特殊要求,将之建成一个技术先进、智能化高、功能齐全完善的时钟系统,实现整个医院内时间标准的统一,以便于整个医院内工作人员和患者随时掌握准确、统一的时间信息,使各业务部门、职能部门工作井然有序、协调一致地进行工作,为各功能部门之间有机协调、密切配合提供标准的时间依据,确保适应医院智能化楼宇各种相关业务高速运转的需求。 医院时钟系统是一个大型联网计时系统。该系统采用分布式系统结构,系统母钟与各子钟之间采用以太网接口方式,扩展方便。该系统的信号接收单元具有接收GPS标准时间信号的功能,为整个系统提供校时信号,消除计时系统的积累误差。该系统还采用了母钟热备份、自动切换保护、反馈控制、抗干扰及冗余等技术,是一个高精度、高可靠性的多子母钟系统。 烟台持久钟表有限公司自主开发生产的大区域时钟系统已被成功应用于苏州大学附属第二医院、东莞康华医院、天津泰达医院、青岛东部医院、首都国际机场T3航站楼、上海浦东国际机场、成都双流国际机场、宁波栎社机场、沈阳桃仙国际机场、深圳宝安国际机场、大连周水子国际机场、重庆江北机场改扩建工程、昆明火车站改扩建工程、海南海口美兰机场、长春龙嘉

基于北斗卫星通信的电力公司弱信号地区电能量数据采集系统解决方案

基于北斗卫星通信的 电力公司弱信号地区电能量数据采集系统 解决方案 2017年3月

目录 1项目背景 (3) 1.1项目需求 (3) 1.2北斗通信应用概况 (4) 2北斗卫星通讯系统技术特点 (6) 3系统解决方案 (7) 3.1系统架构 (7) 3.1.1系统构成 (7) 3.1.2厂站端子系统功能 (7) 3.1.3主站端接入系统功能 (8) 3.2电力集抄协议与北斗通信协议规约转换 (10) 3.3长报文传输 (10) 3.4拆、组包原理 (11) 3.5系统技术特点 (11) 3.5.1现场施工方便、便于维护 (11) 3.5.2不占用其它网络资源 (12) 3.5.3北斗通信通道免费、后期维护成本低 (12) 3.5.4通信带宽 (12) 4系统组成 (13) 4.1设备配置清单 (13) 4.2附件 (13) 详见北斗一体机终端规格书 (13) 详见北斗指挥机终端规格书 (13) 详见北斗多卡机终端规格书 (13)

1项目背景 1.1项目需求 在2011年,国网公司对各网省电力公司提出了对居民用电信息,各厂站电能量数据实现“全覆盖、全采集”的要求。 根据国网公司的要求,各网省公司需逐步加强对各类厂站的管控力度,对其发、售电量,供电可靠性等实时数据信息都急需了解,以利于全面掌握电力公司的经营情况。 目前电网行业的数据通信应用方式中,主要采用光纤、微波或手机公网(GPRS、3G等)通道进行通信,而对于广大人烟稀少山区、牧区、深山中的峡谷水电站等,其既无光纤通路,也尚无法保证稳定的公网信号覆盖,这种地区上述通信方式则显得无能为力,而新建设通信通道存在着成本高昂、通信架构受限、建设与维护等问题。 据初步调研的两个案例如下: 案例一:四川省内共有小型水电站3000余座,其中弱信号(无线公网信号较弱或未覆盖地区)的电站有800余座,主要分布在雅安、阿坝、凉山、攀枝花、甘孜等地区,地理位置较为偏僻。另外,在这些地区(以及在其它地区若干地点),尚有涉及电能量采集业务的其它应用方式同样存在弱信号的情况,影响了省公司对发电、用电信息的及时掌控。 案例二:青海省内共有600多个自然村庄因通信手段匮乏无法完成自动抄表,需依靠每月一次的人工方式进行走抄,有些村庄甚至开车进去,当天无法往返。这种方式下不仅数据的实时性不强,还极大的浪费了人力物力。 以上的案例描述几乎是中国1/3地区的共同需求,其它省份如云南、贵州、新疆、西藏、甘肃等。因此,如何获得一种行之有效的通信通道来解决众多项目的主要通信需求。 这样的地区信号非常弱或根本没有信号,而且长期得不到解决,导致两个问题:一是远方采集设备不能正常工作,数据采集成功率很低,仍然需要人工现场补充抄取,不能满足营销运营管理的要求;二是现有采集设备由于通信通道的瓶颈得不到

跨时钟域信同步方法种

跨时钟域信号同步方法6种 ASIC中心 1 引言 基于FPGA的数字系统设计中大都推荐采用同步时序的设计,也就是单时钟系统。但是实际的工程中,纯粹单时钟系统设计的情况很少,特别是设计模块与外围芯片的通信中,跨时钟域的情况经常不可避免。如果对跨时钟域带来的亚稳态、采样丢失、潜在逻辑错误等等一系列问题处理不当,将导致系统无法运行。本文总结出了几种同步策略来解决跨时钟域问题。 2 异步设计中的亚稳态 触发器是FPGA设计中最常用的基本器件。触发器工作过程中存在数据的建立(setup)和保持(hold)时间。对于使用上升沿触发的触发器来说,建立时间就是在时钟上升沿到来之前,触发器数据端数据保持稳定的最小时间。而保持时间是时钟上升沿到来之后,触发器数据端数据还应该继续保持稳定的最小时间。我们把这段时间成为setup-hold时间(如图1所示)。在这个时间参数内,输入信号在时钟的上升沿是不允许发生变化的。如果输入信号在这段时间内发生了变化,输出结果将是不可知的,即亚稳态 (Metastability) 图1 一个信号在过渡到另一个时钟域时,如果仅仅用一个触发器将其锁存,那么采样的结果将可能是亚稳态。这也就是信号在跨时钟域时应该注意的问题。如图2所示。 信号dat经过一个锁存器的输出数据为a_dat。用时钟b_clk进行采样的时候,如果a_dat正好在b_clk的setup-hold时间内发生变化,此时b_ dat就既不是逻辑"1",也不是逻辑"0",而是处于中间状态。经过一段时间之后,有可能回升到高电平,也有可能降低到低电平。输出信号处于中间状态到恢复为逻辑"1"或逻辑"0"的这段时间,我们

(完整版)北斗卫星导航系统常识简介

北斗卫星导航系统常识简介 一、北斗卫星导航系统现状 中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 北斗卫星导航系统空间段由5颗静止轨道卫星(又称24小时轨道,指轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性空间中的自转周期,且方向亦与之一致,即卫星与地面的位置相对保持不变,故这种轨道又称为静止卫星轨道。一般用作通讯、气象等方面)和30颗非静止轨道卫星组成,2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。中国正在实施北斗卫星导航系统建设,截止2016年10月已成功发射16颗北斗导航卫星。 2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。北斗导航系统是覆

盖中国本土的区域导航系统,覆盖范围东经约70°-140°,北纬5°-55°。北斗卫星系统已经对东南亚实现全覆盖。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。 北斗产业应用前景广阔,预计到2020年,仅北斗卫星导航市场将达到年产值4000亿元人民币,年复合增长率达到40%以上。”中国科学院院士、中国工程院院士、著名测量与遥感学家李德仁介绍说 二、卫星定位原理 北斗卫星导航系统35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。

相关文档