文档库 最新最全的文档下载
当前位置:文档库 › 有限元分析在汽车工程方面的应用

有限元分析在汽车工程方面的应用

有限元分析在汽车工程方面的应用
有限元分析在汽车工程方面的应用

有限元分析在汽车工程方面的应用

姓名XXX

学校XXXXXXX

专业班级XXXXXXX

摘要:计算机辅助工程(CAE)作为一项跨学科的数值模拟分析技术,越来越受到科技界和工程界的重视,在汽车工业研究中的应用也越来越广泛。在汽车产品的研发过程中,CAE已经成为设计链中必须的条件,没有CAE分析的设计就不能进入下一个技术流程。新产品开涉及到的疲劳、寿命、振动、噪声等强度和刚度问题,可成熟地在设计阶段解决,这样就可以大幅度提高设计质量,缩短产品开发周期,节省大量开发费用。本文通过对有限元分析在汽车工程方面的应用的描述和分析,阐述了以有限元分析为代表的CAE技术在汽车工程的重要作用和影响,得出了CAE在汽车工业发展更加重要,影响未来汽车的发展趋势!

关键词:有限元分析汽车CAE技术碰撞安全性

1. 前言

在汽车发展历史上,至今还没有什么技术能与CAE技术相比,为汽车企业带来巨大的回报。统计结果表明,应用CAE 技术后,新车开发期的费用占开发成本的比例从80%~90%下降到8%~12%。例如:美国福特汽车公司2000年应用CAE 后,其新车型开发周期从36个月降低到12~18个月;开发后期设计修改率减少50%;原型车制造和试验成本减少50%;投资收益提高50%。汽车行业是一个高速发展的行业,其竞争也日趋激烈,在这种情况下,新产品推出的速度也越来越快,这也对行业的CAE应用提出了越来越高的要求。CAE技术为汽车行业的高速发展提供具有中心价值地位的技术保障,可以为企业带来巨大的技术经济效益。

2. 正文

汽车工业代表着一个国家制造业发展的水平,它不仅是带动面最广泛的工业,而且是高新技术的最大载体,一般航空、航天领域的高精尖技术只有通过汽车工业才能转化为规模产业,所以汽车工业是或曾是几乎所有发达国家的支柱产业。作为制造业的中坚,汽车工业一直是CAE应用的先锋。CAE技术的应用,有效地推动了汽车制造业的前进;汽车业的需求也极大地带动了CAE。多年来,汽车业的选型趋向一直是CAE技术发展的晴雨表,也是业内人士关注的焦点。CAE 分析贯穿了汽车开发的全过程,小到螺栓预紧力分析,大到整车碰撞模拟和整车NVH(噪声、振动和声振粗糙度)分析,CAE分析都发挥了无可替代的优势和作用。CAE分析范围覆盖了结构、流体力学、多体动力学、被动安全、工艺、整机合整车性能等方方面面。概括起来,目前汽车开发过程中的CAE分析主要包括以

下几个方面。

2.1结构强度、刚度和模态分析及结构优化设计

车身是轿车的关键总成,车身结构必须有足够的强度以保证气疲劳寿命,足够的静刚度以保证其装配和使用要求,同时应有合理的动态特性达到控制振动与噪声的目的。有限元分析的方法能够有效地满足上述车身设计的要求。汽车结构有限元分析的应用体现于:一是在汽车设计中对所有的结构件、主要机械零部件的刚度、强度和稳定性进行分析;二是在汽车的计算机辅助设计和优化设计中,用有限元法作为结构分析的工具;三是在汽车结构分析中普遍采用有限元法来进行各构件的模态分析,同时在计算机屏幕上直观形象地再现各构件的振动模态,进一步计算出各构件的动态响应,较真实地描绘出动态过程,为结构的动态设计了提供方便。有限元分析在汽车结构上的应用实践证明可以从根本上提到车身设计水平,并降低研制周期和成本。[3]

2.2噪声、振动与不平顺性(NVH)的有限元分析

NVH是评价车辆舒适性的重要指标,直接关系到产品的市场形象。NVH分析有助于匹配产品结构重各子系统的振动频率特性,以消除振动过程中耦合现象,从而改善产品的振动特性。噪音、振动分析包括动力总成的缸体模态、点的传递函数、静负荷强度及动态响应、BIW动态稳定性、整车各子系统的刚度频率匹配等。虽然NVH的CAE技术起步较晚,NVH的建模方法以及计算还处在摸索阶段。但随着计算机的能力及容量的越来越强大,计算结果的精度越来越准确,计算方法越来越科学性,CAE在汽车的NVH开发设计当中所发挥的作用也越来越大。在汽车开发设计的初期,就以及开始了NVH的各项规划,甚至在样车完成之前或设计图纸完成之前,通过对现有车型的对比,就可以预先得到新开发车型的NVH 性能指标,并在此基础上,对设计及制造的各个环节加以优化及完善。无论是从设计成本上,还是从开发周期上考虑,都为车厂更快、更好地开发出新一代车型来提供了强有力的保障。可以预测,NVH的CAE技术,在汽车设计开发及改进领域内的应用会越来越广泛,而其本身也会越来越成熟,成为人们进行汽车设计开发所不可或缺的工具。[4]

2.3碰撞与安全性分析

私家汽车给人们带来了便利,让人们更充分的享受生活。随着全世界汽车数量的迅速增加,汽车质量、驾驶技术问题及道路状况等多种因素合力作用结果,汽车交通事故已成为严重问题。联合国世界卫生组织(WHO)提交的最新报告显示:近几年全球每年因交通事故造成死亡的人数多达约120万,另外还有数百万人在汽车事故中受伤致残。面对这个严重的问题,各国的工程技术人员都在不遗余力的提高汽车的安全性能。

早期的被动安全性研究主要是通过大量的试验来进行,采用同样的碰撞过程反复进行,收集数据。这样的试验方法需要相当长的时间。发达国家每次汽车安

全性能的试验都需要手工打造几十辆新车,人力、物力、财力都需要很大的消耗。伴随着计算机技术的发展,原来不可能完成的大量参数有限元计算成为可能。有限元计算分析方法运用到汽车的碰撞模拟仿真中,极大地降低了汽车的设计成本和研发周期,并且获得更为精确的数据对汽车结构进行下一步优化。

汽车模拟碰撞分析的目的就是为了提高汽车被动安全性能。对于汽车被动安全性能的要求,一是在碰撞时,车身结构、驾驶系统、座位等能吸收较高能量,缓和冲击;二是发生事故时,确保车内乘员生存空间、安全气囊、座椅安全带等对乘员的保护功能,以保证乘员安全并在碰撞后容易进行车外救助和脱险。在汽车碰撞发生的极短时间内,车身发生巨大的形变。这种形变伴随着大位移、大转动所引起的几何非线性,又有各种材料发生大应变时所表现的物理非线性(材料非线性)。所以很难通过常规的数学方法对其进行求解,进行实体碰撞试验的数据很难进行采集。本文论述了采用拉格朗日描述对物体的移动建立数学模型。通过有限元方法将整车按区域进行建模。并且将建立的整车有限元模型进行整车偏置碰撞的模拟仿真,模拟了碰撞过程后车身的变形结果,得到了碰撞过程中模型的能量与速度变化曲线。从而直观地掌握了汽车在碰撞过程中能量等参数的变化情况。将有限元方法运用在汽车碰撞问题的分析中,对汽车结构安全性的改进有一定指导意义。

2.4整车性能的分析评价与预测(黑体小4#)

在IDEAS CAE模块中建立整车模型,通过强度、刚度计算,可以发现各个部件之间、各个系统的力的传动关系,检验与设计目标是否相符;通过模态分析,可以发现各个系统之间的频率分布,指导NVH设计。结合Nastran SOL200 可以同时考虑模态、整体刚度、关键部位强度对各个部件的设计灵敏度等进行计算,在保证强度的前提下,进行减重设计、部件优化。

2.5 结论

至今为止,世界上许多大的汽车公司都采用了CAE技术。通过在开发过程中开展CAE工作,提高了产品开发质量、缩短了产品开发周期、节约了产品开发经费。概括起来,采用CAE的优点如下:

1、采用计算机辅助工程(CAE)手段,可以在样品、样车之前,模拟零部件甚至整车的性能和工作状况,避免传统上的设计-试制-测试-改进设计-再试制的重复过程。减少了时间上的浪费、缩短了开发周期,减少了人力、物力和财力上的消耗而减低开发费用。

2、国内设计部门随着三维设计的普及,为开展CAE工作奠定了基础,使开展同时工程成为可能;同时,在开发过程中应用CAE技术,也改变了CAD在开发中只进行几何模型定义,在开发同时进行功能设计、性能设计。

3、在产品开发过程中开展CAE工作,改变了传统设计中的依靠经验进行定性分析、缺少定量数据的设计方法,使产品减重、性能优化成为可能;同时,采

用CAE计算能在短时间内尝试和比较更多的设计方案,因而有可能获得较佳甚至最优的设计而提高开发质量

参考文献

[1] 兰凤崇陈吉清承载式车身结构的强度刚度及模态的有限元分析华南理工大学汽车工程学院机械科学与技术,2006.03

[2] 温文源韩祖行客车车身结构的有限元分析及优化设计研究东南大学机械工程系东南大学学报,1989.05

[3] 屈求真轿车车身结构的有限元分析与评价湖北汽车工业学校汽车工程1996年第三期

[4] 王嫣韩永胜CAE技术在汽车碰撞中的研究与应用日照职业技术学院基础部科技信息2009年第1期

[5] 刘显臣刘亚彬CAE在汽车NVH设计开发及优化中的应用北京希艾益科技有限公司第四届中国CAE工程分析技术年会论文

[6] 徐志刚吴锦汽车设计开发中的CAE技术吉利汽车研究院有限公司第三届中国汽车车身开发与模具制造技术论文集

传动轴有限元分析

汽车结构有限元分析 研究报告 姓名: 班级: 学号: 盐城工学院汽车工程学院

传动轴有限元分析研究报告 盐城工学院汽车工程学院车辆工程专业江苏,盐城226000 摘要: ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如,Alogor, I-DEAS,CAD等。ANSYS 有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。传动轴是最常件的零件,该零件结构较为简单,操作方便,加工精度高,价格低廉,因此得到了广泛的使用。目前很多传动轴都做了适当的改进,使其适用性得到了更大的提高。 本设计是基于 ANSYS软件来汽车曲柄连杆机构行分析。与传统的计算相比,借助于计算机有限元分析方法能更加快捷和精确的得到结果。设置正确的模型、划分合适的网格,并合理设置求解过程,能够准确的获得分析模型各个部位的应力、变形等结果。对零件的设计和优化有很大的参考作用。 关键词:三维建模,曲柄连杆机构,有限元,ANSYS,动静态分析 引言 随着发动机强化指标的不断提高,曲柄连杆机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证曲柄连杆机构中的主要部件曲轴具有足够的疲劳强度和刚度及良好的动静态力学特性成为机构设计中的关键性问题[3]。由于在实际工况中曲轴承受活塞、连杆传递的爆发压力的交变载荷作用,受力情况极其复杂。采用传统的单纯有限元分析方法,很难完成对曲轴运行过程中动态变化边界条件的描述[4-5]。为了真实全面地了解曲轴在实际运行工况下的力学特性,本课题通过运用CAD软件建立曲柄连杆机构各组成零件的几何模型,确定机构的质量特性参数,通过有限元分析软件Hyperworks和MSC.Nastran的联合仿真,对曲轴和连杆进行自由模态分析,输出振型和频率,将生成的模态中性文件导入ADAMS/View中建立曲柄连杆机构的多柔体动力学模型,应用durability 模块仿真分析曲轴和连杆在爆发压力和惯性力作用下的疲劳应力,由此可以清楚地了解曲轴和连杆在工作过程中各部分的应力,应变,迅速找到危险部位,为机构的优化设计奠定基础。

连杆工艺设计及有限元分析

本科毕业设计论文 题目 连杆工艺设计及有限元分析 专业名称机械设计及其自动化 学生姓名梁乐 指导教师李郁 毕业时间二零一四年六月

目录 摘要........................................................................................................................... - 3 - ABSTRACT .............................................................................................................. - 4 - 第一章绪论 ............................................................................................................ - 5 - 1.1课题研究的意义......................................................................................... - 5 - 1.2国内外现状................................................................................................. - 5 - 1.3论文的章节安排......................................................................................... - 6 - 第二章连杆零件的分析 ........................................................................................ - 7 - 2.1连杆的作用................................................................................................. - 7 - 2.2连杆的结构特点......................................................................................... - 7 - 2.3连杆的工艺分析......................................................................................... - 7 - 2.4连杆的材料和毛坯..................................................................................... - 9 - 第三章连杆零件的工艺编制 .............................................................................. - 10 - 3.1连杆机械加工工艺过程........................................................................... - 10 - 3.2连杆工艺过程的安排.................................................... 错误!未定义书签。 3.3连杆工艺设计存在的问题....................................................................... - 15 - 3.3.1工序安排.......................................................................................... - 15 - 3.3.2定位基准.......................................................................................... - 15 - 3.3.3夹具使用.......................................................................................... - 15 - 3.3.4切削用量的选择原则...................................................................... - 15 - 3.4连杆机械加工工序卡片........................................................................... - 11 - 第四章连杆受载荷情况下的有限元分析 ..................... 错误!未定义书签。 4.1 连杆的有限元分析过程和结果................................... 错误!未定义书签。第五章总结与展望 ............................................................................................ - 16 - 5.1 论文总结.................................................................................................. - 26 - 致谢..................................................................................................................... - 27 - 参考文献................................................................................................................. - 28 - 毕业设计小结......................................................................................................... - 29 -

有限元法在汽车行业中的应用

有限元法在汽车行业中的应用 【摘要】:汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。 【关键词】:汽车;技术;应用 在当前的工程技术领域中有越来越多的复杂结构,包括复杂的几何形状、复杂的载荷作用和复杂的支撑约束等。当对这些复杂问题进行静、动态力学性能分析时, 往往可以很方便地写出基本方程和边界条件, 但却求不出解析解。这是因为大量的工程实际问题非常复杂, 有些构件的形状甚至不可能用简单的数学表达式表达, 所以就更谈不上解析解了。 对于这类工程实际问题, 通常有两种分析和研究途径: 一是对复杂问题进行简化, 提出种种假设, 最终简化为一个能够处理的问题。这种方法由于太多的假设和简化, 将导致不准确乃至错误的答案。另一种方法是尽可能保留问题的各种实际工况, 寻求近似的数值解。在众多的近似分析方法中, 有限元法是最为成功和运用最广的方法。 1. 汽车结构有限元分析 汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。由于要完成各自独特的功能, 它们的结构各不相同, 并且都比较复杂。一些结构件的工作条件比较恶劣, 长期在振动和冲击载荷下工作。寻求有关这些结构件正确而可靠的设计和计算方法, 是提高汽车的工作性能及可靠性的主要途径之一。 在汽车结构分析中, 有限元法由于其能够解决结构形状和边界条件都非常任意的力学问题的独特优点而被广泛使用。各种汽车结构件都可应用有限元法进行静态分析、固有特性分析和动态分析; 并且从原来对工程实际问题的静态分析为主转化为要求以模态分析和动态分析为主。也可根据工程实际结构的特点要求进行非线性分析。具体地说, 汽车结构有限元分析的应用体现于: 一是在汽车设计中对所有的结构件、主要机械零部件的刚度、强度、稳定性分析; 二是在汽车的计算机辅助设计和优化设计中, 用有限元法作为结构分析的工具; 三是在汽车结构分析中普遍采用有限元法来进行各构件的模态分析,同时在计算机屏幕上直观形象地再现各构件的振动模态, 进一步计算出各构件的动态响应, 较真实地描绘出动态过程, 为结构的动态设计提供方便有效的工具。 有限元法分析汽车结构的一般过程如下:

逆向工程及其应用

逆向工程及其应用 一、什么是逆向工程 随着科技的发展和人们生活水平的提高,产品的性能和外形发生了很大的改变,原来粗大笨重的产品,正在被小巧玲珑,造型别致的产品所代替,工业产品设计正在成为一种热门的行业,根据人机工程学和美学原理设计的各种使用方便、线条流畅的产品,如轿车、家用电器等,随处可见,这些产品一般都是由一些空间自由曲面组成的,用传统的方法很难设计、制造出来;为了设计、制造这类产品和相应的工装具,必须使用CAD/CAM,多轴加工中心等先进技术,现代逆向工程技术就是在这祥的背景下产生的。 逆向工程RE (Reverse Engineering,也称反求工程),是对产品设计过程的一种描述。在工程技术人员的一般概念中,产品设计过程是一个从无到有的过程,即设计人员首先在大脑中构思产品的外形、性能和大致的技术参数等,然后通过绘制图纸建立产品的三维数字化模型,最终将这个模型转人到制造流程中,完成产品的整个设计制造周期。这样的产晶设计过程珊们欢去“正向设计”过程。 逆向工程产品设计过程如图一所示,可以认为是一个“从有到无”的过程。简单地说,逆向工程产品设计就是根据已经存在的产品模型,反向推出产品设计数据(包括设计图纸或数字模型)的过程;它针对现有的工件(样品或模型)利用3D数字化量测仪器准确、快速的测量出工件的轮廓坐标,并加以编辑、修改、建构曲面后,传至一般的CAD/CAM系统.再由CAM软件产生刀具的NC加工路径送至CNC加工机床,制作出所需模具,或者送到快速原型成型机,将样品模型制作出来。逆向工程在某些方面很像我们常说的“仿制”;可以说,在我国正在成为世界制造中心的今天,逆向工程将大有用武之地。

汽车尺寸参数

1、外形尺寸 外形尺寸包括车长、车宽和车高三方面尺寸。车长即沿汽车长度方向前后两极端之间的距离(mm);车宽即沿汽车宽度方向两侧极端之间的距离(mm);车高是指汽车最高点至地面间的距离(mm),如图中的b、g、h所示。 汽车尺寸参数示意图 a-轴距;b-车长;c-前悬;d-后悬;e-前轮距; f-后轮距;g-车宽;h-车高;j-离地间隙。 2、轴距 轴距是指汽车两轴中心线之间的距离(mm),如上图中的a。对多轴汽车,轴距应从前至后分别注明相邻两轴间距离,总轴距为各轴距之和。 3、轮距 轮距是指汽车同一轴上左右两轮中心面之间的距离(mm),如上图中的e、f。若为双轮胎时,则为同一轴左右双轮中心面之间的距离。 4、前后悬

前悬是指汽车最前端至通过前轴轴线的垂面间的距离(mm),如上图中c;后悬是指汽车最后端至通过后轴轴线的垂面间的距离(mm),如上图中d。 5、最小离地间隙 最小离地间隙是指汽车满载时,汽车最低点至地面的距离(mm),如上图中j 。 汽车主要技术参数反映汽车的技术性能以及适用范围,主要有以下几项: 1、整车参数 1) 外形尺寸:长×高×宽 2) 重量参数:整车自重(千克)、总质量(千克)、载质量(千克)、空载轴荷分配等。 3) 通过性及机动性参数:最小离地间隙(一般为驱动桥壳最底点与地面之间的距离)、前悬、后悬、接近角、离去角、轴距、轮距、最小转弯半径。 4) 容量参数:载质量、座位数、货厢容积、行李厢容积、燃油箱容积等。 5) 性能参数:有最高转速、最大爬坡度、起步加速时间、各挡加速时间、百公里油耗量、制动距离等。 2、发动机参数 1) 发动机型号与生产厂家。 2) 发动机形式:包括冲程数、缸数、汽缸排列方式(直列用"l"表示,v型排列用"v"表示)、汽油机还是柴油机等。 3) 冷却方式:是风冷还是水冷。 4) 性能参数:包括最大功率、最大扭矩以及最低燃料消耗率等。还给出最大功率和最大扭矩时对应发动机转速。 5) 尺寸参数:包括发动机排量、压缩比、缸径×行程、外形尺寸与重量等。 6) 燃油供给方式:是化油器式还是燃油喷射方式。 7) 废气排放控制装置。 3、底盘参数 1) 传动系

基于ansys的连杆机构的有限元分析

目录 摘要 ............................................................................................ 错误!未定义书签。Abstract (2) 第一章分析方法和研究对象 ........................................... 错误!未定义书签。 1.1 有限单元法的概述....................................................... 错误!未定义书签。 1.1.1 有限单元法的历史 (4) 1.1.2 有限单元法的基本概念 (4) 1.2 ANSYS软件简介 (4) 1.2.1 ANSYS主要应用领域 (4) 1.2.2 ANSYS操作界面 (5) 1.2.3 ANSYS的主要功能 (6) 1.2.4 ANSYS主要特点 (7) 1.3 曲柄滑块机构简介 (7) 1.3.1 曲柄滑块定义 (8) 1.3.2 曲柄滑块机构特性应用以及分类 (8) 第二章曲柄滑块机构的求解 (10) 2.1 曲柄滑块机构的问题描述 (10) 2.2 曲柄滑块机构问题的图解法 (10) 2.2.1 图解法准备工作 (11) 2.2.2 图解法操作步骤 (11) 第三章有限元瞬态动力学概述 (14) 3.1 有限元瞬态动力学定义 (14) 3.2 瞬态动力学问题求解方法........................................... 错误!未定义书签。 3.2.1 完全法 (14) 3.2.2 模态分析法 (14) 3.2.2 缩减法 (15) 3.1 有限元结构静力学分析基本概念 (15) 3.1 有限元结构静力学分析步骤 (16) 第四章曲柄滑块的有限元瞬态动力学分析 (17) 4.1 曲柄滑块机构瞬态简要概述 (17) 4.2曲柄滑块有限元瞬态动力学分析步骤 (18)

汽车结构有限元分析

汽车结构的常规有限元分析 本文介绍了与产品研发同步的5个有限元分析阶段,阐述了有限元模型建立过程中应注意的问题,简单介绍了汽车产品的4种常规分析方法,建立汽车设计标准的方法,以及3个强度分析范例。范例1说明了有限元分析应注意的内容,范例2和3介绍了“应力幅值法”在解决汽车车轮轮辐开裂和汽车发动机汽缸体水套底板开裂问题的应用。 汽车是艺术和技术的结合。一辆好车的主要特点是造型美观、有时代感、结构设计合理、轻量化、材料利用率高,车辆性能先进并且满足国家法规、标准和环保的要求,质量可靠、保养方便、低成本、用户满意、满足市场需求等。在竞争日益激烈的汽车市场,汽车性价比已经成为市场竞争的焦点。采用有限元的常规分析技术,用计算机辅助设计代替经验设计,预测结构性能、实现结构优化,提高产品研发水平、降低产品成本,加快新产品上市。 1. 与产品研发同步的5个有限元分析阶段 在汽车产品研发流程中,一般有如下5个同步的有限元分析阶段: 第0阶段:对样车进行试验和分析; 第1阶段:概念设计阶段的分析; 第2阶段:详细设计阶段的分析; 第3阶段:确认设计阶段的分析; 第4阶段:产品批量生产后改进设计的分析。 有限元分析在产品研发的不同阶段有不同的分析目的和分析内容。有限元分析和试验分析是互相结合和验证的。在详细设计阶段,有些汽车公司对白车身和成品车车身都进行有限元分析,有些汽车公司只对白车身进行有限元分析。 2. 有限元分析的关键环节――建立合理的有限元模型 有限元模型的建立是有限元分析的关键环节。通过力学分析,把实际工程问题简化为有限元分析的问题,提出建立有限元模型的具体意见和方法,确定载荷和位移边界条件,使得有限元分析有较好的模拟(仿真)效果。 前处理自动生成的网格可能存在问题。建立有限元模型的好坏直接影响计算结果的误差和分析结论的正确性。在结构的几何图形上,划分有限元网格是建立有限元模型的主要内容之一。在用有限元分析的前处理自动生成网格时,特别是用常应变单元自动生成有限元网格时要非常注意,有可能存在问题,应引起注意,必要时加以改进。要想用有限元分析前处理自动生成出好的有限元网格也要付出辛勤地劳动。即使在方案比较的情况下,应力和变形的分布规律也不能离谱,计算结果的误差也应在给定的范围之内,建立好的有限元模型与分析经验有关。 在没有有限元分析指南的情况下,用力学分析和试验结果对有限元模型的确认和对计算结

逆向工程及其在产品设计中的应用

逆向工程及其在产品设计中的应用 摘要 逆向工程作为一种先进的数字化制造技术,相对于传统的产品设计方法具有明显的优势,近年来逆向工程在产品的设计开发领域取得了广泛地应用和长足地发展,本文主要介绍了逆向工程的原理和关键技术以及其在产品设计中的应用和未来的发展趋势。 关键词:数字化开发,逆向工程,产品设计。 引言 产品数字化开发技术是现代产品开发的核心技术之一。逆向工程是实现产品数字化设计与开发的重要方法,是当今研究的热点,它极大地缩短了产品的开发周期,提高了产品精度,是消化、吸收先进技术进而创造和开发各种新产品的重要手段。 逆向工程是20世纪80年代初分别由美国3M公司、日本名古屋工业研究所以及美国UVP公司提出并研究开发成功的。进入20世纪90年代,逆向工程技术被放大到大幅度缩短新产品开发周期和增强企业竞争能力的重要位置上[1]。逆向工程已经成为新产品快速开发的核心技术,作为支持产品再创造工程的重要技术之一,逆向工程已经成为先进制造技术的研究热点,并取得了重大的经济效应。如CHRYSLOR汽车公司采用该技术开发新的发动机机体,节约了6个月的开发时间;福特汽车公司采用该技术,沟通了与零件制造上之间的里联系,大大节约了开支;最典型的例子是日本,日本在20世纪60年代初提出科技立国的方针:“一代引进,二代国产化,三代改进出口,四代占领国际市场”,为国产化的改进,迫切需要对别国产品进行消化、吸收、改进和挖掘。后来逆向工程的大量应用为日本经济振兴进而创造和开发各种新产品奠定了良好的基础。据统计,70%以上的技术来源与国外,逆向工程作为掌握技术的一种手段,可使新产品的研发周期缩短40%以上,极大地提高了生产效率[2]。随着现代计算机、数控机床和激光测量技术的飞速发展,对逆向工程相关操作软件的需求也越来越广泛。 1.逆向工程的概述 1.1逆向工程的定义 逆向工程(Reverse Engineering,RE)也称反求工程,是针对现有的工件(样品或模型,尤其是复杂不规则的自由曲面),利用3D 数字化测量仪器准确、快速地测量出工件轮廓的坐标值,通过数据处理,重构曲线曲面、编辑、修改后,将图档转换成一般的CAD/CAM系统,再有加工机制做所需模型,或者用快速成型机将样品模型制作出来。逆向工程是对已有产品原型消化吸收,并挖掘蕴含在产品中的设计产品设计、制造和管理等技术,它是分析方法和技术的综合,是对已有设计的再设计。 1.2逆向工程的数据测量技术 数据测量是通过特定的测量设备和测量方法获取产品表面离散点的几何坐标数据,将产品的几何形状数字化。现有的数据采集方法主要分为两类:接触式数据采集方法和非接触式数据采集方法。 (1)接触式数据采集方法,最初的三维数字化仪是探针式的, 它一般由3 ~ 6 个自由度的杆式机构和末端的探针组成, 通过运动学计算得到末端探针触点的三坐标信息, 其技术已比较成熟。数据处理过程中采用了数字信号处理(DSP)技

汽车车身名词解释

汽车名词解释——车身参数 长×宽×高所谓的长宽高就是一部汽车的外型尺寸,通常使用的单位是毫米(mm),具体的测量方法是这样的: 车身长度定义为:汽车长度方向两个极端点间的距离,即从车前保险杆最凸出的位置量起,到车后保险杆最凸出的位置,这两点间的距离。 车身宽度定义为:汽车宽度方向两个极端点间的距离,也就是车身左、右最凸出位置之间的距离。根据业界通用的规则,车身宽度是不包含左、右后视镜伸出的宽度,即后视镜折 叠后的宽度的。 车身高度定义为:从地面算起,到汽车最高点的距离。而所谓最高点,也就是车身顶部 最高的位置,但不包括车顶天线的长度。 轴距汽车的轴距是同侧相邻前后两个车轮的中心点间的距离,即:从前轮中心点到后 轮中心点之间的距离,就是前轮轴与后轮轴之间的距离,简称轴距,单位为毫米(mm)。 根据轴距对汽车进行分类 轴距是反应一部汽车内部空间最重要的参数,根据轴距的大小,国际通用的把轿车分为 如下几类: 微型车:通常指轴距在2400mm以下的车型称为微型车,例如:奇瑞QQ3、长安奔奔、 ,轴距只有1867mm。吉利熊猫等,这些车的轴距都是2340mm左右,更小的有SMART FORTWO 小型车:通常指轴距在2400-2550mm之间的车型称为小型车,例如:本田飞度、丰田威驰、福特嘉年华等。 紧凑型车:通常指轴距在2550-2700mm之间的车型称为紧凑型车,这个级别车型是家用 轿车的主流车型,例如:大众速腾、丰田卡罗拉、福特福克斯、本田思域等。 中型车:通常指轴距在2700-2850mm之间的车型称为中型车,这个级别车型通常是家用 和商务兼用的车型,例如:本田雅阁、丰田凯美瑞、大众迈腾、马自达6睿翼等。 中大型车:通常指轴距在2850-3000mm之间的车型称为中大型车,这个级别车型通常是 商务用车的主流车型,例如:奥迪A6、宝马5系、奔驰E级、沃尔沃S80等。需要说明的是:通常的中大型车轴距都在2900mm左右,不过由于中国人比较喜欢大车,所以很多车型 到中国来都进行了加长,轴距都达到了2950mm以上,个别车型轴距达到了3000mm以上,例如宝马5系的轴距为3028mm,所以在国内,我们到很难见到不加长的中大型车了。

汽车结构有限元分析--第六讲_汽车结构有限元分析实例

版权所有,仅限于学习交流之用 第六讲汽车结构有限元分析实例 合肥工业大学机械与汽车学院车辆工程系 谭继锦编写 2010年3 月

----------------------汽车结构分析实例 ?1、汽车结构设计准则与目标 ?2、汽车结构有限元模型 ?3、汽车结构强度分析 ?4、汽车结构刚度分析 ?5、汽车结构动态分析 ?6、汽车结构疲劳分析 ?7、汽车结构碰撞分析 ?8、汽车结构有限元优化设计

1、汽车结构设计准则与目标 ?有限元分析方法是汽车数字化设计的一项核心技术; ?在产品设计阶段对汽车结构及性能做出预先评估; ?有限元分析能够提供大量的仿真试验数据和技术参数, 进而可以替代部分试验,有利于设计经验的积累和设计技术的提高。 ------汽车结构分析的目的主要是解决汽车结构的可靠性、安全性、经济性和舒适性等问题,其分析内容十分广泛,而且相互关联,主要涉及以下内容: ?可靠性:研究汽车结构强度、刚度和动态特性,以及疲 劳寿命等; ?安全性:研究结构耐撞性与乘员安全性等; ?经济性:研究结构优化及轻量化等; ?舒适性:进行结构振动噪声分析等。

汽车结构设计准则与目标 ?结构分析可以划分成几个阶段,各阶段有不同的设计 目标。 ?◇概念设计阶段建立相应的设计目标; ?◇详细设计阶段达到相应的设计目标; ?◇样车制作阶段验证整车的性能并且分析设计中存在 问题; ?◇产品制造阶段验证设计和改进产品。 ------以下概略汇总了汽车结构分析中在概念设计阶 段和详细设计阶段汽车结构部分分析内容及设计目标,这些内容与目标是动态发展的,需要结合工程实际不断调整并发展。

史上最全的汽车前挡玻璃尺寸讲解

史上最全的汽车前挡玻璃尺寸 前挡尺寸 A奥迪 奥迪TT135*60cm 奥迪A1140*70cm 奥迪A4L145*80cm 奥迪A3140*75cm 奥迪A6L150*75cm 奥迪A5145*80cm 奥迪Q3145*80cm 奥迪Q5150*80cm 奥迪Q5150*80cm 奥迪A8150*75cm B奔驰 奔驰B级140*70cm smart140*70cm 奔驰C级140*70cm 奔驰E级145*80cm 奔驰S级145*80cm 奔驰R级150*80cm

B宝马宝马MINI135*60cm 宝马3系140*70cm 宝马7系150*75cm 宝马5系150*75cm 宝马1系140*70cm 宝马X1145*80cm M3140*75cm 1系M145*80cm 宝马X3150*80cm 宝马6系150*75cm 宝马X5150*80cm 宝马M系150*75cm M5150*75cm 宝马X6150*80cm B宝骏宝骏630140*70cm B北汽骑士150*80cm E系列140*70cm 路霸150*80cm B比亚迪比亚迪F3135*60cm 比亚迪F0135*60cm 比亚迪G3135*60cm 比亚迪G4135*60cm 比亚迪F6140*75cm

比亚迪G6140*75cm 比亚迪L3140*75cm 比亚迪M6145*80cm 比亚迪S8140*75cm 比亚迪E6150*75cm 比亚迪M6145*80cm 速锐140*75cm 思锐145*80cm 比亚迪S6145*80cm D大众捷达135*60cm 老宝来140*70cm 速腾140*70cm 新领驭140*70cm 桑塔纳140*70cm POLO140*70cm 高尔夫6140*75cm 09宝来140*75cm 朗逸140*75cm 迈腾140*75cm Eos140*75cm 帕萨特145*80cm 途观145*80cm 途锐150*80cm

逆向工程技术的应用和发展

逆向工程技术及其发展现状 【摘要】本文介绍了逆向工程的基本概念,重点分析的逆向工程技术过程,阐述了现代制造业中逆向工程的的发展前景以及逆向工程技术的重要应用领域。本文对于我们正确认识逆向工程技术有一定的意义。 【关键词】逆向工程 CAD/CAM solidworks surfacer 反向 一、引言 在国外,逆向工程已经作为一种先进的设计方法被引入到新产品的设计开发工作中。我国也有许多企业应用逆向工程技术,对竞争对手的产品进行改进,以避开艰苦的原型设计阶段,这是一种产品的再设计过程。所谓产品再设计,就是通过观察和测试某一种产品,对其进行初始化,然后拆开产品,逐一分析单个零件的组成、功能、装配公差和制造过程。这些工作的目的就是要充分理解产品的制造过程,并以此为基础在子系统和零件层面上,优化设计出一种更好的产品。美国的许多工程学院开设了逆向工程课程,教授学生用再设计代替原型设计,作为解决设计问题的一种方法。近年来,在汽车、电子产品等领域人们越来越多地采用逆向工程技术,来部分替代使用多年的原型设计方法。 二、逆向工程的概念 逆向工程(Reverse Engineering,RE)是对产品设计过程的一种描述。在工程技术人员的一般概念中,产品设计过程是一个从无到有的过程:设计人员首先构思产品的外形、性能和大致的技术参数等,然后利用CAD技术建立产品的三维数字化模型,最终将这个模型转入制造流程,完成产品的整个设计制造周期。这样的产品设计过程我们可以称之为“正向设计”。逆向工程则是一个“从有到无”的过程。简单地说,逆向工程就是根据已经存在的产品模型,反向推出产品的设计数据(包括设计图纸或数字模型)的过程。 随着计算机技术在制造领域的广泛应用,特别是数字化测量技术的迅猛发展,基于测量数据的产品造型技术成为逆向工程技术关注的主要对象。通过数字化测量设备(如坐标测量机、激光测量设备等)获取的物体表面的空间数据,需要经过逆向工程技术的处理才能获得产品的数字模型,进而输送到CAM系统完成产品的制造。因此,逆向工程技术可以认为是“将产品样件转化为CAD模型的相关数字化技术和几何模型重建技术”的总称。

逆向工程的现状及应用

逆向工程的现状及应用 逆向工程是近年来发展起来的消化、吸收和提高先进技术的一系列分析方法以及应用技术的组合,其主要目的是为了改善技术水平,提高生产率,增强经济竞争力。世界各国在经济技术发展中,应用逆向工程消化吸收先进技术经验,给人们有益的启示。据统计,各国百分之七十以上的技术源于国外,逆向工程作为掌握技术的一种手段,可使产品研制周期缩短百分之四十以上,极大提高了生产率。因此研究逆向工程技术,对我国国民经济的发展和科学技术水平的提高,具有重大的意义。逆向工程的应用领域大致可分为以下几种情况:(1)在产品仿制中的应用 有时,拟合制作的产品没有原始的设计图档,而是由委托单位交付样品或实物模型,请制作单位复制。传统的复制方法是用立体雕刻机或三轴仿形铣床以1: 1的比例制作模具,再生产产品。这种方法属于模拟型复制,其缺点是无法建立工件尺寸图档,因而也无法用现有的CAD软件对其进行修改,故已渐为新型的数字化逆向工程系统所取代。在这种情况下,在对零件原形进行三维反求的基础上形成零件的设计图纸或CAD模型,并以此为依据生成数控加工的NC代码,加工复制出一个相同的零件。 (2)在新产品设计中的应用 随着工业技术的发展以及经济的发展,消费者对产品的要求越来越高。为赢得市场竞争,不仅要求产品的功能先进,而且要求外形美观。而在造型中针对产品外形的美学设计,已不是传统训练下的机械工程师所能胜任的。一些具有美工背景的设计师们可利用CAD技术构想创新的美观外形,再以手工方式塑造出模型,如木模、石膏模、粘土模、胶模、工程塑胶模、玻璃纤维模等,然后再以三维测量的方式建立曲面模型。在美学设计特别重要的领域,例如汽车外型设计广泛采用真实比例的木制或泥塑模型来评估设计的美学效果,而不采用在计算机屏幕上缩小比例的物体投视图的方法,此时需用逆向工程的设计方法。 (3)在旧产品改进中的应用 在对旧产品改进时,有时并没有零件的CAD模型,因此需要利用逆向工程技术建立产品的几何模型,然后再利用传统的CAD软件对原设计进行改进。当要设计需要通过实验测试才能定型的工件模型时,通常采用逆向工程的方法。比如航天航空领域,为了满足产品对空气动力学等要求,首先要求在初始设计模型的基础上经过各种性能测试(如风洞实验等)建立符合要求的产品模型,这类零件一般具有复杂的自由曲面外型,最终的实验模型将成为设计这类零件及反求其模具的依据。 (4)在RPM (Rapid Prototyping Manufacturing,快速原型制造)中的应用快速原型制造(又称RP技术)是80年代后期兴起的一种基于材料累加法的高 5 新制造技术,被认为是近20年来制造领域的一次重大突破。RPM综合了机械、CAD,数控、激光以及材料科学等各种技术,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,用以对产品设计进行快速评估、修改及功能试验,大大缩短了产品的研制周期。而以RP系统为基础的快速工装模具制造(Quick Tooling/Molding)和快速精铸技术(Quick Casting)等则可实现零件的快速制造(Quick Manufacturing)。 为应用该项技术,首先应该有产品的三维几何模型。尽管己经出现了许多成功的三维CAD软件,但运用这些软件建立一个复杂的零件模型,仍相当费时。有时工程界提供的是实物,需要由实物制造模具或作设计上的改进,因此在RPM中经常利用逆向工程技术来建立产品的几何模型。此外,在计算机图形和动画、工艺美术和医疗康复工程等领域,也经常需要根据实物快速建立物体的三维几何模型。另一个重要的应用如修复破损的艺术品或缺乏供应的损坏零件等,此时不需要对整个零件原型进行复制,而是借助逆向工程技术抽取零件原形的设计思想,指导新的设计.这是由实物逆向推理出设计思想的一种渐近过程。因此,逆向工程技术在这些领域中也具有重要的应用价值。

汽车的主要尺寸参数

汽车的主要尺寸参数: 轴距(L ):是描述汽车轴与轴之间距离的参数,通常可通过汽车前后车轮中心来测量。轴距的长短直接影响到汽车的长度、重量和许多使用性能。轴椐短一些,汽车长度就短一些,自重就轻,最小转弯直径和纵向通过角就小,但若轴距过短,则会带来一系列缺点:如车厢长度不足或后悬过长,汽车行驶时纵摆和横摆较大;在制动时或上坡时重量转移较大,使汽车的操纵性和稳定性变坏。 轮距( B ):指同一轴上车轮接地点中心之间的距离,对双胎汽车,则是指两双胎接地点连线之中点之间的距离。轮距对汽车的总宽、总重、横向稳定性和机动性影响较大。轮距愈大,则横向稳定性愈好,对增加轿车车厢内宽也有利。但轮距宽了,汽车的总宽和总重一般也加大,而且容易产生向车身侧面甩泥的缺点。此外,轮距过宽也会影响汽车的安全性,因此,轮距应与车身宽度相适应。 前悬(L F )和后悬(L R ):前悬是指汽车最前端(除灯罩、后视镜等非刚性固定部分外)至前轴中心之间的水平距离。前悬的长度应足以固定和安装驾驶室前支点。发动机、水箱、转向机、弹簧前托架和保险杠等零件和部件。前悬不宜过长,否则,汽车的接近角过小。 后悬:是指汽车最后端(除灯罩等非刚性固定部分外)至后桥中心之间的水平距离,后悬的长度主要决定于货厢长度、轴距和轴荷分配情况,同时要保证适当的离去角。 汽车的外廓尺寸(总长、总宽、总高):汽车的外廓尺寸是根据汽车的用途、道路条件、吨位(或载客数)、外形设计、公路限制和结构布置等因素来确定的。在总体设计时要力求减少汽车的外廓尺寸,以减轻汽车的自重,提高汽车的动力性、经济性和机动性。 每个国家对公路运输车辆的外廓尺寸均有法规限制。这是为了使汽车的外廓尺寸适合本国的公路桥梁、涵洞和铁路运输的标准及保证行驶的安全性。我国对公路车辆的极限尺寸规定如下:汽车总高≤ 4m ;总宽(不含后视镜)≤ 2.5m ;总长:货车(含越野车)≤ 12m ;一般客车≤ 12m ;铰接大客车≤ 18 ;半挂牵引车(含挂车)≤ 16m ;汽车拖挂后总长≤ 20m 。 汽车轮胎尺寸解读

有限元法在汽车中的应用

有限元法在汽车中的应用 有限元法是随着计算机技术的应用而发展起来的一种先进的技术,广泛应用于各个领域中的科学计算、设计、分析中,成功的解决了许多复杂的设计和分析问题,己成为工程设计和分析中的重要工具。随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法,有限元法在产品设计和研制中所显示出的无可伦比的优越性,使其成为企业在市场竞争中制胜的一个重要工具,有限元法在机电工程中的应用也越来越重要。现代汽车工业技术快速发展,计算机技术不断推陈出新,使分析仿真技术以其快速高效和低成本的强大优势,成为汽车设计的重要手段,各种分析软件成为CAE技术广泛应用的工具。 有限元在机械设计中的优点是有目共睹的,在汽车的设计中这些优势得到了完美的体现,其优点如下: 1、与CAD软件的无缝集成 当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。 2、更为强大的网格处理能力

有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。有限元使用的自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要条件。 3、由求解线性问题发展到求解非线性问题 随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解,为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,它们的共同特点是具有高效的非线性求解器、丰富而实用的非线性材料库。 4、由单一结构场求解发展到耦合场问题的求解 理论上已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构非线性、流体动力学和耦合场问题的求解。需要对结构场和流场的有限元分析结果交叉迭代求解,即所谓"流固耦合"的问题。由于有限元的应用越来越深入,人们关注的问题越来越复杂,耦合场的求解必定成为CAE软件的发展方向。 5、程序面向用户的开放性 有限元软件允许用户根据自己的实际情况对软件进行设置和扩充,包括用户自定义单元特性、用户自定义材料本构(结构本构、热

推荐-反求工程在快速成形技术中的应用 精品

反求工程在快速成形技术中的应用 反求工程在快速成形技术中的应用ApplicationofReverseEngineeringinRapidPrototyping 华中平÷技大学(430074)滕功勇王从军黄树槐 【摘要】根据在零件复制,复杂设计及概念设计中不可缺少的反求技术与快速成彤技术的结合 应用,介绍j反求数据采集的几种方法.分析1在快速成形技术中反求数据的两种处理方式, 列出了在实际应用中所采取方案的数据结构和主要的算法过程及应用实例 关键词快速成形反求工程零件复制截面轮廓曲线Keywordsrapidprototyping,reverseengineering,partcoping,sectionalprofilecurvelin 敏捷制造技术对产品的推陈出新的速度,对商 家在竞争非常激烈的情况下把握商机,起着越来越 重要的作用.而快速成形技术和反求工程作为敏捷 制造技术的重要分支,为人们实现产品概念设计与 复杂设计担任着重要角色.快速成形技术对所加工 零件的几何形状无特别要求,可以将给定的数据还 原成实体模型,固此我们只要将一定格式的数据输 入快速成形系统,即可获得所要的实体模型.而反求 工程则是一种对普通仪器难以测量,表面形状很不 规则,不易设计的零件模型,艺术品,文物模型等进 行数据提取极其有利的工具.二者的结合可实现零 件的快速复制,还可通过CAD重新建模并加以修 改,或调整快速成形工艺参数,实现零件模型的变异 复制. 反求过程中采集数据的手段很关键,首先介绍 几种三维数据采集的测量技术,并结合快速成形技

术,针对各测量技术,分析比较对采集数据进行处理的两种途径,采用本文所述的方案的数据结构,主要算法过程及应用实例. 三维数据采集的几种方法 1.接触式测量 机械式三坐标测量是一种应用比较广泛的三维 测量方法,测量精度高,容易操作,不过测量速度较慢,测得的数据点少,不能用RP直接还原成原型件模型.测量时,可根据零件模型特征选择测量位置及方向,测得特征点数据,然后根据特征点数据求得几何元素的特征尺寸(如外形尺寸,半径,曲率等),再 利用特征曲面上的轮廓线特征点在三维造型软件(如Pro/E,UG,AutoCAD等)上重新建模.再根据 需要进行一定的修改,以STL格式输出到快速成形系统中制作原型件. 五坐标测量仪可测得所测点的法矢.曲面重构 过程中,进行三角网格划分后,在三角网格的每个三角形上构造B—B曲面片时,必须事先给出每个顶点上的法矢,而原先只能用估算的方法给出,必要时再进行调整,固而五坐标测量仪的出现使曲面的精确重构变得更容易实现 2.三维激光数字化仪测量 此种测量方法是继接触式三坐标测量之后发展 迅速的一种激光扫描测量技术其测量速度快,不需接触零件表面,数据点密集,目前精度可达0.05 mm,适于大尺寸外部曲面复杂的零件模型的测量. 测量时,被测件除了形状特征外,其色彩特征也可同时采集录入计算机.不过,对于细深孔底部,突变的 台阶等不能被激光照射到的部位,激光扫描仪则测

汽车外型尺寸

汽车知识:汽车外型尺寸介绍 一、外形尺寸参数 汽车设计中由设计师去弥定的外形尺寸包括:长、宽、高、轴距、轮距、前后悬 长和离地距等。各参数的含义见下图: 二、各级汽车的尺寸标准 弥定汽车尺寸所要考虑的因素主要是机械布局和使用要求,其中机械布局视乎厂家各自的设计方案有所差异;使用要求则主要由汽车所针对的目标市场级别而定。下表是根据经验总结的各主要级别(主要乘用车)的常见尺寸范围: 单位:米 长度宽度高度轴距典型代表 欧洲、亚洲轿车: 小型两厢轿车 3.6-4 1.5-1.7 1.3-1.5 2.2-2.5 夏利 小型三厢轿车 4.1-4.4 1.3-1.5 2.3-2.6 丰田COROLLA 中型轿车 4.3-4.7 1.7-1.8 1.3-1.5 2.6-2.8 捷达 中大型轿车 4.6-4.9 1.7-1.9 1.3-1.6 2.7-2.9 日产CEFIRO 大型轿车 4.8-5.2 1.8-2 1.4-1.6 2.8-3.2 奔驰S-CLASS 其他车种: 中型越野车 4.5-4.9 1.7-2 1.7-2.0 2.5-2.8 三菱PAJERO 中型MPV 4.4-4.8 1.7-1.9 1.5-1.9 2.7-3 丰田PREVIA 中型皮卡(pickup) 4.7-5 1.6-1.8 1.4-1.6 2.7-2.9 丰田HILUX 特殊规格: 日本轻自动车(K-CAR) <3.7 <1.5 不限不限奥拓 美国标准大型房车 5.2-5.5 1.8-2.1 1.3-1.5 2.8-3.3 林肯TOWNCAR 美国标准多用途车(SUV) 5-5.5 1.8-2.2 1.8-2.2 2.8-3.2 别克GL8 一级方程式赛车 4.2-4.4 <1.8 0.9-1 2.8-3.1 其中我们看到美国车的尺寸比欧、日的标准大很多,这主要是因为美国地大车少,油价低廉,对于汽车空间的要求远大于对省油性能的要求。日本则正好相反,为了改善道路

相关文档