文档库 最新最全的文档下载
当前位置:文档库 › 角平分线定理和逆定理__学案

角平分线定理和逆定理__学案

角平分线定理和逆定理__学案
角平分线定理和逆定理__学案

《角平分线的性质定理及逆定理》导学案

一、学习目标:

1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用。

2.回顾用尺规作角平分线的过程,并能说明其作法的依据;

3.能够熟练的按照证明的格式和步骤对一些命题进行证明。

二、重点及难点:角平分线的性质定理及其逆定理的灵活运用。

三、预习并思考一下两个问题:

1.角平分线的性质定理的内容是什么?

2.角平分线的性质定理的逆定理的内容是什么?

四、探索并证明角平分线的性质定理及逆定理:

1、角平分线的性质定理:。几何语言表述为:∵__________________________∴____________________________ 根据定理的内容,画出图形,并结合图形,写出已知、求证,并给出证明。

注:在实际应用中,角平分线性质定理是用来证明线段相等

2、写出角平分线性质定理的逆定理。

几何语言表述为:∵_______________________∴____________________________

根据定理的内容,画出图形,并结合图形,写出已知、求证,并给出证明。

注:角平分线性质定理的逆定理用来证明角相等或证明点在一个角的平分线上

3、角平分线的尺规作图法,作∠AOB的角平分线OP

思考:这种画法的依据是:。

五、检测练习

1、如图所示,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F ,且BD =DC ,

求证:BE =CF 。

2、已知:AC=BC , CA ⊥OA 于A ,BC ⊥OB 于B

(试用多种方法证明)

3、已知:如图,∠B=∠C=900,DM 平分∠

ADC , AM 平分∠DAB 求证: M B=MC

4、已知:如图,四边形ABCD ,E 是AC 上一点,ED

⊥CD 于D ,EB ⊥BC 于B ,CA 平分∠BCD 。求证:AD=AB 。

B A

角平分线定理

角平分线定理 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比,

证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC 证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC

角平分线定理在几何证明题中的妙用

角平分线定理在几何证明题中的妙用 颜庆波 利用角平分线的有关定理,我们不但可以用尺规作图的方法将角二、四、八、…等分,而且还可以利用它们简捷地证明几何问题。 例1 如图1,OC平分∠A O B,P是OC上一点,D是OA上一点,E是OB上一点,且PD=PE,求证:∠+ 1 O 8 0。 D E P ∠=? O P 例2 如图2,在?A B C中,∠B A C的平分线与BC边的垂直平分线相交于点P。过点P作AB、AC(或延长线)的垂线,垂足分别是M、N。求证:BM=CN。

初二数学几何证明难题 例3:已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) A F G C E B O D

例4:已知:如图,P是正方形ABCD内点,∠PAD=∠PDA =o 15.求证:△PBC是正三角形. 例5:已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.

求证:∠DEN=∠F. 例6:如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)

例7:如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二) 例8:设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)E

例9:已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. 求:∠APB的度数.

角平分线定理

2 1O E D A B C 第十一讲 角平分线定理 【学习目标】 1、掌握角平分线的定理和逆定理。 2、能应用角平分线定理和逆定理进行作图和证明。 3、进一步掌握推理证明的方法,拓发展演绎推理能力,培养思维能力。 【知识要点】 1、 角平分线性质定理的证明及应用。 定理:角平分线上的点到这个角的两边的距离相等。 定理解释:“点到这个角边的距离”实际上就是“点到这角两边所作垂线段的长度”,定理即表明这两条垂线段相等。 2、 角平分线的性质定理的逆定理的证明以及应用。 逆定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 3、 定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。 4、用尺规作角的平分线: 【典型例题】 例1、 如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O ,且∠1 =∠2。 求证:OB = OC 。 例2、已知,如图,CE ⊥AB ,BD ⊥AC ,∠B =∠C ,BF =CF 。求证:AF 为∠BAC 的平分线。

例3、如下图,一个工厂在公路西侧,在河的南岸,工厂到公路的距离与到河岸的距离相等,且与河上公路桥南首(点A )的距离为300米.请用量角器和刻度尺在图中标出工厂的位置. 例4、如右图,E 、D 分别是AB 、AC 上的一点,∠EBC 、∠BCD 的角平分线交于点M ,∠BE D 、∠EDC 的角平分线交于N . 求证:A 、M 、N 在一条直线上. 证明:过点N 作NF ⊥AB ,NH ⊥ED ,NK ⊥AC ,过点M 作MJ ⊥BC ,MP ⊥AB ,MQ ⊥AC ∵EN 平分∠BED ,DN 平分∠EDC ∴NF __________NH ,NH __________NK ∴NF __________NK ∴N 在∠A 的平分线上 又∵BM 平分∠ABC ,CM 平分∠ACB ∴__________=__________,__________=__________ ∴__________=__________ ∴M 在∠A 的__________上 ∴M 、N 都在∠A 的__________上 ∴A 、M 、N 在一条直线上 例5、如图1,OC 平分∠A O B ,P 是OC 上一点,D 是OA 上一点,E 是OB 上一点,且PD =PE ,求证:∠+∠=?P D O P E O 180。

角平分线定理专题

1.如图,2是/ DE = DG* △ ADG*U A AED 的而枳分别为 35,见I △ EDF 的而积为( ) 2 - A ?25 B ? 5.5 C ? 7.5 2?如图f 是ZAOB 平分线OC 上一点f D 丄OB,垂足为D, 若PD=2M 点P 到边OA 的距离是 3?如图,AABC 的三边AB,BC,CA 长分别是20,30,40,M 三条角平分线将Z\ABC 分为 三个三角形,则 S. .ABO : S A BCO : S/.CAO ,: .r \ ' _______________ ? 4. (2016?怀化)如图,OP 为Z AOB 的角平分线,PC 丄OA, PD 丄OB,垂足分别是C, D,则下 列结论错误的是() 4 PC=PD B ? ZCPD=Z DOP C ? ZCPO = Z DPO D ? OC = OD 5. (2016?淮安)如图,在PtAABC 中,ZC=90°,以顶点A 为圆心,适当长为半径画弧,分 别交AC, AB 于点M, N,再分别以点M, N 为圆心,大于扌MN 的长为半径画弧,两弧交于 点P ,作射线AP 交边BC 于点D,若CD=4, AB = 15,则厶ABD 的面积是( 6. 如图,AABC 中,ZC=90°, AD 平分Z BAC 交BC 于点D ?已知BD : CD = 3 : 2,点D 到 AB 的距禽是6,则BC 的长是 _________ 7. 如图所示,已知AABC 的周长是20, OB, OC 分别平分Z ABC 和Z ACB, OD 丄BC 于点D, 且OD = 3,贝U ABC 的面积是. _______ 之定理专题(基础题) B.2 C. 4 1 5 B. 30 C ? 45 D ? 60 () 為DF 丄AB ,垂足为& A D. B D B O A D H

角平分线定理应用

A B 一、选择题1. (2009 山东省临沂市) 如图,OP 平分,AOB ∠PA 垂足分别为A ,B .下列结论中不一定成立的是( )A . B .平分PA PB =PO APB ∠C . D .垂直平分OA OB =AB OP 2. (2010 吉林省长春市) 如图,中,,,是角ABC △90C ∠=°40B ∠=°AD 平分线,则的度数为( )ADC ∠(A ) (B ) (C ) (D )25°50°65°70° 3. (2010 广西柳州市) 如图,中,,的平分线交于,若Rt ABC △90C ∠=°ABC ∠BD AC D ,则点到的距离是( )3cm CD =D AB DE A .5cm B.4cm C.3cm D.2cm 4. (2010 湖南省益阳市) 如图3,已知△ABC ,求作一点P ,使P 到∠A 两边的距离相等,且PA =PB .下列确定P 点的方法正确的是A.P 为∠A 、∠B 两角平分线的交点 B.P 为∠A 的角平分线与AB 的垂直平分线的交点 C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点 5. (2010 湖北省襄樊市) 如图1,已知直线平分交于,,AB CD BE ∥,ABC ∠,CD D 150CDE ∠=°则的度数为( )C ∠A. B. C. D.150°130°120°100° O B D

二、填空题6. (2011 江西省) 如图,在中,点的内心,则=______度.ABC △P ABC 是△PBC PCA PAB ∠+∠+ ∠A 7. (2012 广东省广州市) 已知,是的平分线,则=_______度.30ABC ∠=°BD ABC ∠ABD ∠8. (2013 湖南省长沙市) 如图,是的平分线,是上的一点,于点,BD ABC ∠P BD PE BA ⊥E ,则点到边的距离为 cm . 4cm PE =P BC 9. (2013 福建省泉州市) 如图,,于,于,若,则70AOB ∠= QC OA ⊥C QD OB ⊥D QC QD = °.AOQ ∠=

角的平分线定理 定理1

角的平分线定理定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上 角的平分线是到角的两边距离相等的所有点的集合 矩形的定理 矩形性质定理1:矩形的四个角都是直角 矩形性质定理2:矩形的对角线相等 矩形判定定理1:有三个角是直角的四边形是矩形 矩形判定定理2:对角线相等的平行四边形是矩形 菱形定理 菱形性质定理1:菱形的四条边都相等 菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角 菱形面积=对角线乘积的一半,即S=(a×b)÷2 菱形判定定理1:四边都相等的四边形是菱形 菱形判定定理2:对角线互相垂直的平行四边形是菱形 正方形定理 正方形性质定理1:正方形的四个角都是直角,四条边都相等 正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

等腰梯形性质定理 等腰梯形性质定理: 1.等腰梯形在同一底上的两个角相等 2.等腰梯形的两条对角线相等 等腰梯形判定定理: 1.在同一底上的两个角相等的梯形是等腰梯形 2.对角线相等的梯形是等腰梯形 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边 平行四边形定理 平行四边形性质定理1:平行四边形的对角相等 平行四边形性质定理2:平行四边形的对边相等 推论:夹在两条平行线间的平行线段相等 平行四边形性质定理3:平行四边形的对角线互相平分 平行四边形判定定理1:两组对角分别相等的四边形是平行四边形 平行四边形判定定理2:两组对边分别相等的四边形是平行四边形 平行四边形判定定理3:对角线互相平分的四边形是平行四边形 平行四边形判定定理4:一组对边平行相等的四边形是平行四边形

第二节角平分线定理

第二节角平分线定理 【知识点拨】 1、三角形内角平分线的性质定理: 三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。(试证明) 2、三角形外角平分线性质定理: 三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。 3、常见问题 对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。 【赛题精选】 例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。 求CD的长。 例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。 求A D·DC的值。(2001年全国竞赛题)

【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。计算时要注意对应关系,正确书写比例式。 对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。 例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。 求证:BC AC AB ID AI +=。 例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分 ∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G 。 试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀 请赛题) 【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2 211n m n m =,从而得到21x b x a =,再证21x x =,从而得到a =b 。 本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。 例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。求证:AC ∥DF 。

八年级数学上册第12章角平分线定理使用中的几种辅助线作法(人教版)

角平分线定理使用中的几种辅助线作法 一、已知角平分线,构造三角形 例题、如图所示,在△ABC 中,∠ABC=3∠C,AD 是∠BAC 的平分线,BE⊥AD 于F 。 求证:1 ()2 BE AC AB =- 证明:延长BE 交AC 于点F 。 因为角是轴对称图形,对称轴是角的平分线所在的直线, 所以AD 为∠BAC 的对称轴, 又因为BE⊥AD 于Fs , 所以点B 和点F 关于AD 对称, 所以BE=FE= 1 2 BF ,AB=AF ,∠ABF=∠AFB。 因为∠ABF+∠FBC=∠ABC=3∠C, ∠ABF=∠AFB=∠FBC+∠C, 所以∠FBC+∠C+∠FBC=3∠C, 所以∠FBC=∠C,所以FB=FC , 所以BE= 12FC=12(AC -AF )=1 2(AC -AB ), 所以1 ()2 BE AC AB =-。 二、已知一个点到角的一边的距离,过这个点作另一边的垂线段 如图所示,∠1=∠2,P 为BN 上的一点,并且PD⊥BC 于D ,AB +BC=2BD 。 求证:∠BAP+∠BCP=180°。 证明:经过点P 作PE⊥AB 于点E 。 因为PE⊥AB,PD⊥BC,∠1=∠2, 所以PE=PD 。 在Rt△PBE 和Rt△PBC 中 BP BP PE PD =?? =? 所以Rt△PBE≌Rt△PBC(HL ), 2 1F E D C B A N P E D C B A

所以BE=BD 。 因为AB +BC=2BD ,BC=CD +BD ,AB=BE -AE , 所以AE=CD 。 因为PE⊥AB,PD⊥BC, 所以∠PEB=∠PDB=90°. 在△PAE 和Rt△PCD 中 PE PD PEB PDC AE DC =?? ∠=∠??=? 所以△PAE≌Rt△PCD, 所以∠PCB=∠EAP。 因为∠BAP+∠EAP=180°, 所以∠BAP+∠BCP=180°。 三、已知角平分线和其上面的一点,过这一点作角的两边的垂线段 例题、如图所示,在△ABC 中,PB 、PC 分别是∠ABC 的外角的平分线,求证:∠1=∠2 证明:过点P 作PE⊥AB 于点E ,PG⊥AC 于点G ,PF⊥BC 于点F . 因为P 在∠EBC 的平分线上,PE⊥AB,PH⊥BC, 所以PE=PF 。 同理可证PF=PG 。 所以PG=PE , 又PE⊥AB,PG⊥AC, 所以PA 是∠BAC 的平分线, 所以∠1=∠2。 2 1P F E C B A

(名师整理)最新中考数学专题复习《角平分线定理》精品教案

中考数学人教版专题复习:角平分线定理 考点考纲要求分值考向预测 角平分 定理 1. 理解并掌握角平线定义、角 平分线定理及逆定理; 2. 应用定理解决问题。 3~5 分 本类问题主要考查填空、选 择题,内容以角平分线定理 为主,难度不大,各省市题 量也不多,但要注意在综合 性问题中应用这一知识点。 1. 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 2. 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【重要提示】 ①三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 1

②三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等(即内心)。 3. 角平分线定理:角平分线上的点到这个角的两边的距离相等。(利用全等三角形进行证明ASA) 4. 角平分线定理的逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 【方法指导】 1. 三角形的三条内角平分线交于一点,并且到三条边的距离相等。有时候做三角形面积问题时经常使用。 2. 当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路。 3. 有角平分线考虑向角两边作垂线。 4. 三角形中有时候从内角平分线作垂线,有时候作外角平分线,注意区分。 【随堂练习】 如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线。若CD=3,则△ABD的面积为。 2

答案:解:作DE⊥AB于E。∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3。∴△ABD的面积为1 ×3×10=15。故答案是15。 2 思路分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高AB于E。根据角平分线的性质求得DE的长,即可求解。 即可,需作DE⊥ 典例精析 例题1 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是() D. 5 A. 3 B. 4 C. 6 思路分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可。 3

三角形内外角平分线定理上课讲义

三角形内外角平分线 定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 ABC AD BAC AB BD AC CD ∠=在中,若为的平分线,则:

求证: BA/AC=BD/DC 证明2:过D作DE⊥AB于E,DF⊥AC于F; ∵∠BAD=∠CAD;(已知) ∴ DE=DF; ∵ BA/AC=S△BAD/S△DAC;(等高时,三角形面积之比等于底之比) BD/DC=S△BAD/S△ABCDAC;(同高时,三角形面积之比等于底之比)∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD是△ABC中∠BAC的外角∠CAF的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD的平行线。 证明1:过C作CE∥DA与BA交于E。则: BA/AE=BD/DC ∵∠DAF=∠CEA;(两线平行,同位角相等) ∠DAC=∠ECA;(两线平行,内错角相等) ∠DAF=∠DAC;(已知) ∴∠CEA=∠ECA;(等量代换) ∴ AE=AC; ∴ BA/AC=BD/DC 。

角平分线定理

角平分线定理 目录 编辑本段角平分线的定义 ■ 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 编辑本段提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC

已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比, 证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC

证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC 方法4(正弦定理) 作三角形的外接圆,AM交圆于D, 由正弦定理,得, 证明4图 AB/sin∠BMA=BM/sin∠BAM, ∴AC/sin∠CMA=CM/sin∠CAM 又∠BAM=∠CAM,∠BMA+∠AMC=180° sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, ∴AB/AC=MB/MC

角平分线的性质定理教案

角平分线的性质定理教案 慧光中学:王晓艳 教学目标:(1)掌握角平分线的性质定理; (2)能够运用性质定理证明两条线段相等; 教学重点:角平分线的性质定理及它的应用。 教学难点:角平分线定理的应用; 教学方法:引导学生发现、探索、研究问题,归纳结论的方法 教学过程: 一,新课引入: 1.通过复习线段垂直平分线的性质定理引出角平分线上的点具有什么样的特点 操作:(1)画一个角的平分线; (2)在这条平分线上任取一点P,画出P点到角两边的距离。 (3)说出这两段距离的关系并思考如何证明。 2.定理的获得: A、学生用文字语言叙述出命题的内容,写出已知,求证并给予证明, 得出此命题是真命题,从而得到定理,并写出相应的符号语言。 B、分析此定理的作用:证明两条线段相等; 应用定理所具备的前提条件是:有角的平分线,有垂直距离。 3.定理的应用 二.例题讲解: 例1:已知:如图,点B、C在∠A的两边上,且AB=AC,P为∠A内一点,PB=PC,PE⊥AB,PF⊥AC,垂足分别是E、F。 求证:PE=PF (此题已知中有垂直,缺乏角平分线这个条件)

例2:已知:如图,⊙O与∠MAN的边AM交于点B、C,与边AN交于点 E、F, 圆心O在∠MAN的角平分线AQ上。 求证:BC=EF (此题已知中有角平分线,缺乏垂直这个条件) 三:课堂小结: ①应用角平分线的性质定理所具备的前提条件是:有角的平分线,有垂 直距离; ②若图中有角平分线,,可尝试添加辅助线的方法:向角的两边引垂线段.四:巩固练习 1.已知:如图,△ABC中,D是BC上一点,BD=CD,∠1=∠2求证:AB=AC 分析:此题看起来简单,其实不然。题中虽然有三个条件(∠1= ∠2;BD=CD,AD=AD),但无法证明△ABD ≌△ACD,所以必须添加一些线帮助解题。

角平分线定理专题

角平分线定理专题(基础题) 1. 如图,AD 是 的角平分线, ,垂足为F , , 和 的面积分别为60和35,则 的面积为 A. 25 B. C. D. 2.如图,P 是∠AOB 平分线OC 上一点,PD ⊥OB ,垂足为D ,若PD=2,则点P 到边OA 的距离是 A.1 B.2 C. D.4 3.如图,△ABC 的三边AB,BC,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ∶S △BCO ∶S △CAO 等于________. 4.(2016·怀化)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是( ) A .PC =PD B .∠CPD =∠DOP C .∠CPO =∠DPO D .OC =OD 5.(2016·淮安)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于1 2MN 的长为半径画弧,两弧 交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30 C .45 D .60 6.如图,△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D.已知BD ∶CD =3∶2,点D 到AB 的距离是6,则BC 的长是______ 7.如图所示,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,则△ABC 的面积是. ______

角平分线定理应用.doc

1 A B C P 一、选择题 1. (2009 山东省临沂市) 如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥, 垂足分别为A ,B .下列结论中不一定成立的是( ) A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP 2. (2010 吉林省长春市) 如图,ABC △中,90C ∠=°,40B ∠=°,AD 是角平分线,则ADC ∠的度数为( ) (A )25° (B )50° (C )65° (D )70° 3. (2010 广西柳州市) 如图,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于D ,若3cm CD =,则点D 到AB 的距离DE 是( ) A .5cm B.4cm C.3cm D.2cm 4. (2010 湖南省益阳市) 如图3,已知△ABC ,求作一点P ,使P 到∠A 两边的距离相等,且P A =PB .下 列确定P 点的方法正确的是 A.P 为∠A 、∠B 两角平分线的交点 B.P 为∠A 的角平分线与AB 的垂直平分线的交点 C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点 5. (2010 湖北省襄樊市) 如图1,已知直线AB CD BE ∥,平分ABC ∠,交CD 于D ,150CDE ∠=°,则C ∠的度数为( ) A.150° B.130° C.120° D.100° O B A P A B C D E E D C B A 图1

2 二、填空题 6. (2011 江西省) 如图,在ABC △中,点P ABC 是△的内心,则PBC PCA PAB ∠+∠+∠=______度. 7. (2012 广东省广州市) 已知30ABC ∠=°,BD 是ABC ∠的平分线,则ABD ∠=_______度. 8. (2013 湖南省长沙市) 如图,BD 是ABC ∠的平分线,P 是BD 上的一点,PE BA ⊥于点E ,4cm PE =, 则点P 到边BC 的距离为 cm . 9. (2013 福建省泉州市) 如图,70AOB ∠=o ,QC OA ⊥于C ,QD OB ⊥于D ,若QC QD =,则 AOQ ∠= °. B P C A

角平分线定理及其逆定理的应用

角平分线定理及其逆定理的应用 (苏州国际外语学校李平利) 教学目标:掌握用角平分线定理及其逆定理进行几何证明; 掌握几种已知角平分线添加辅助线的方法:向角的两边作垂线,截长、补短等。教学重点:掌握用角平分线定理及其逆定理进行几何证明; 掌握几种已知角平分线添加辅助线的方法:向角的两边作垂线,截长、补短等。教学方法:六步循环教学法 教具准备:ppt课件演示 预习检测: 2、已知如图,BD平分∠ABC,若要证明AD=DC,则可以添加的一个条件是______

如图,直线m、h、k表示相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有几处?请你把它们的位置画出来。 例题选讲: 例1、已知如图,∠1=∠2,∠3=∠4,求证:BP平分∠DBE. P 例2 已知:如图,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC. 求证:∠A+∠C=180度 例3、已知如图,四边形ABCD是正方形,将三角板的直角顶点P在对角线AC上移动,使直角边PD始终经过点D,另一条直角边PO与BC保持相交,则在运动过程中PD与PM的关系是怎样的?证明你的结论。 注意:先让学生猜想,再用几何画板演示,组织学生合作讨论。

知识点: 1、已知角平分线添加辅助线的方法: 方法一:向角的边作垂线 (AAS 或HL或ASA等) 方法二:在角的较长边上截取线段使 它等于角的短边(SAS)? 2、一题多解、一题多变 拓展延伸: 思考一:在例3中,如果与BC的延长线相交,结论是否还成立呢?如果成立请证明你的结论。 思考二:如图,AB∥CD, E为BC上的一点, ∠1=∠2, ∠3=∠4, 求证: AC=AB+DC

三角形内外角平分线定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC 证明2:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ; ∵ ∠BAD=∠CAD ;(已知) ∴ DE=DF ; ∵ BA/AC=S △BAD/S △DAC ; (等高时,三角形面积之比等于底之比) BD/DC=S △BAD/S △ABCDAC ;(同高时,三角形面积之比等于底之比) ∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD 是△ABC 中∠BAC 的外角∠CAF 的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 交于E 。则: BA/AE=BD/DC ∵ ∠DAF=∠CEA ;(两线平行,同位角相等) ∠DAC=∠ECA ;(两线平行,内错角相等) ∠DAF=∠DAC ;(已知) ∴ ∠CEA=∠ECA ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 ABC AD BAC AB BD AC CD ∠=在中,若为的 平分线,则:

角平分线定理

【知识点拨】 1、三角形内角平分线的性质定理: 三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。(试证明) 2、三角形外角平分线性质定理: 三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。 3、常见问题 对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。 【赛题精选】 例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。 求CD的长。 例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。 求AD·DC的值。(2001年全国竞赛题) 【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。计算时要注意对应关系,正确书写比例式。

对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。 例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。 求证:BC AC AB ID AI +=。 例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且 EG ∥AB 交CB 于G 。 试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀请赛题) 【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2211n m n m =,从而得到2 1x b x a =,再证21x x =,从而得到a =b 。 本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。 例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。求证:AC ∥DF 。 【说明】三角形角平分线的性质为比例关系的转化提供了新的方法,从而开阔了解题思路,另外在证明几何题时,还应注意合比、等比性质的应用。 本题是由线段成比例证明两条直线平行的,这是证两条直线平行的新方法,对于题设

三角形外角定理

北师大版八上第七章第五节 《三角形内角和定理2》 教学设计 郑州市第七十五中学郑红莉

《三角形内角和定理2》教学设计 郑州市第七十五中学郑红莉 一课标要求 掌握三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和,证明三角形任意两边之和大于第三边。 二基于对教材的理解 本节课是北师大版八年级上册第七章第五节《三角形内角和定理》第2课时的内容,学生在前一节课中已经学习了三角形内角和定理的证明和应用,因此本节课是对三角形知识学习的延伸,主要涉及三角形的外角定义,三角形两个外角定理及应用,同时进一步熟悉和掌握证明的步骤、格式、方法、技巧。 三基于对考试要求的分析 能利用三角形内角和定理推论进行角度计算和角度数量关系证明。 四基于对学情的分析 1、学生已有知识基础。 学生对于平行线相关知识以及三角形内角和定理的灵活运用已经有了深入的了解,为今天的学习奠定了知识基础,并且他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力。 2、已有的活动经验 具备一定的学习能力,包括自学和交流,具备有条理的思考分析和表达能力,思维正逐步由具体走向抽象,当然依然倾向于通过形象

的材料来理解相关知识和概念。 3、学习本节可能出现的难点 学生仅具备初步的利用定理推理证明的能力,但如何证明几何中的不等关系可能存在困难,另外证明的方法、技巧有待提高。 4、学生座次表 AB层通过预习能描述判断三角形外角,并能推理证明三角形外角有关定理及进行有关应用,CD层通过自学及与同桌交流能说出三角形外角定义,并能结合图形会描述三角形外角的两个定理及简单的应用。五学习目标 1.通过视频引入活动一,会判断和作出三角形的外角; 2.通过猜想、同桌交流,能描述有关三角形外角的两个定理及推理验证过程; 3.通过小组合作,会运用三角形内角和定理的两个推论解决相关问题 【学习重点】三角形有关外角的两个定理的应用 【学习难点】会用三角形的内角和定理的两个推论解决几何证明和几

三角形内外角平分线定理

三角形内外角平分线定 理 -CAL-FENGHAI.-(YICAI)-Company One1

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 求证: BA/AC=BD/DC 证明2:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ; ∵ ∠BAD=∠CAD ;(已知) ∴ DE=DF ; ∵ BA/AC=S △BAD/S △DAC ; (等高时,三角形面积之比等于底之比) BD/DC=S △BAD/S △ABCDAC ;(同高时,三角形面积之比等于底之比) ∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD 是△ABC 中∠BAC 的外角∠CAF 的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 交于E 。则: BA/AE=BD/DC ∵ ∠DAF=∠CEA ;(两线平行,同位角相等) ABC AD BAC AB BD AC CD ∠=在中,若为的 平分线,则:

平面几何基本定理

一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线 定理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此 二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外 接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂 心依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++

相关文档
相关文档 最新文档