文档库

最新最全的文档下载
当前位置:文档库 > 博弈论经典案例

博弈论经典案例

重复博弈

囚徒困境,砸了传统经济学的场子。因为个人的自利行为,并不一定导致集体利益的最大化,“看不见的手”拉不住,人类向堕落之城下滑的趋势,难道这真是一个悲哀?索性并非如此,撇去博弈论的理性假设不说。博弈论者很快发现囚徒困境只在单次博弈情形下明显,一旦博弈的开始陷入重复,合作将到来。因为,未来的收益将左右目前的决策。

以牙还牙

重复的博弈理论上导致了合作的产生,但是谁也不能保证合作的继续,因为之前已经说过,合作的代价是建立在损害个人利益基础之上的。如果个人放弃未来收益或当前背叛收益大于未来收益,背叛的风险仍然存在。那么在重复博弈中怎样的策略才是最优。若干睿智而复杂在经过计算机中PK之后,极其原始的“以牙换牙”策略脱颖而出,固然这个策略简单至极,其威力却无穷,以至于人们在短暂的欣喜之后,发现这把太阿指之剑倒持的可怕,一旦重复链条中出现一次(也许不经意的)背叛,那据此原则行事的博弈将永无止境的背叛下去,个人利益极度膨胀的同时,集体利益无限衰微。幸好,这个世界不是模型,也不是如此简单。很多时候,我们不必以牙还牙,第三方的规范:道德与法律就是我们的假牙,他们更加有利、有理、有节。

人质困境

一场憋屈的博弈。抢打出头鸟,人质联合固然可以制服歹徒,但是谁愿出头。这一点给了无数处于劫持者地位的一方以机会,类似于秦的远交近攻、各个击破的策略,将最终全盘赢下。人质可有反制的策略,当然有,不过艰难至极。人质可以选择沉默,这样他有一定时间苟延残喘;或者联合劫持者对付人质,结局还是取决于劫持者,万一他过河拆桥怎么办;同时反抗,集体将获得左右策略,但是这需要壮士断腕的勇气,部分人可能因此受伤。这里是实力与勇气的较量,而且实力暂居上风。

酒吧博弈

如果人人理性,那么每一天到达酒吧的人数将是差不多正好的,但是人非圣贤,往往是有限理性的。第一次到酒吧的人多,那么大多人人认为酒吧人太多,太挤。第二次决定的时候,参考前次而不去酒吧。少数去的人发现酒吧的人第二天很少,感觉很爽,第三次将继续回来,并重新带回许多人……循环就此开始。酒吧博弈一方面显示,现实的博弈参与者,是极其有限理性的,其理性只前延后伸一小段。历史数据只对计算机有用,对人,则不一定。另一个方面,酒吧博弈指出,胜利者永远只是少数。尽管酒吧存在调谐的可能,譬如发短信时时提醒,但成本恐怕太高。而在其他场合,少数派可能更加会设置种种障碍阻止后进者的上升。也就是说,我们的世界仍然是操弄在少数派的手中。不过,总算这个世界不是模型,少数派的道路到底还是有迹可循的。老练的将军仍旧会在八卦迷阵中找到唯一的生门。若你想要,必须做一个更加老练的将军。

枪手博弈

王者的悲哀。三人对枪自决,甲乙丙枪法优劣递减。最后无奈而神奇的结局,将不取决于同时开枪还是先后开枪,最优良的枪手,倒下的概率将最高;而最蹩脚的枪手,存活的希望却最大。因为没有人会把威胁最小的枪手列为一号清楚目标。在这里,后发制人的弱势者将胜出。以弱胜强,绝不是神话。难道王者的命运就真如此不堪,呵,道别忘了每个理论模型都是有其前提的,击破之中任何一个,王者仍将归来。这就是先发优势。假设这是一场类似CS的竞技,优秀的枪手击倒二号枪手,立刻获得奖励:盾牌。那么三号枪手将陷入绝境。不过,不管怎样,这个博弈模型,到底给了弱势者一份希望。机会永远存在。

猎鹿博弈

两个猎人合作猎鹿获得的收益将远大于分别猎兔的收益,战略联盟将开始。这或许是件好事,不过有取决于最后猎获的鹿——这一公共资源的分配,如果分配得当,整体的效率将增加。如果一方主导,另一方受损,那么帕累托改善无法进行,合作可能终将破裂。另外一个问题,更加大局的问题。合作的示范性将使得更多的猎人加入,猎获的鹿将大大增加,人类的利益短期内将呈几何级数增长。但是最后,确是生态失衡,鹿群灭群。短暂的繁华之后,猎人将再一次回归于原始猎兔生活。尽管为了避免这一悲剧,人类还有最后的希望:制度经济学的法宝——科斯定理以产权归属来解决外部经济问题。但由于谈判成本以及可行性,人类社会的公共悲剧仍将不断上演。

智猪博弈

混沌之前最后的博弈。小猪和大猪住在猪圈的一边(食槽在这里),开启食物的开关在另一头,谁去踩,谁丧失先机。结果怎样?是小猪选择“搭便车”,大猪勤跑。因为小猪无论跑还是停,大猪的最优策略都是策略都是去踩机关。不过在实际生活中。这里依旧存在两种策略。小猪的“搭便车”。大猪有的时候,自觉或不自觉地自封“侠之大者,为国为民”,并因此承受一些不能承受之重。《博弈论的诡计》指出美国战后的行为极似大猪,战后的美国竭力宣传自己的普世价值观,并深入到海外事务,甚至不惜重金协助小国防务。这样小国不自觉地对大国进行了“剥削”。大猪在击破模型的一个假设之后,仍然有一个后发制人的机会。因为大猪和小猪的耐饿能力不一样,大猪完全有能力撑得更久,小猪如果不想饿死,那只有一条豪赌的路子:龟兔赛跑式的豪赌,但愿大猪打了个盹儿,他回来的时候,还能吃上一两口,要不然真是赔了夫人又折兵了。据此,再也不难解释为什么很多人切齿的腾讯,毫无顾忌地跟风,做QQ旋风,做拍拍,做滔滔。因为不甘心的小猪早早把新技术研发的前期搞定了,大猪们只需要悄悄跟随,适当的时候踢开挡路的,就可以了。大猪在这里的后发制人和枪手博弈的后发并不一致,枪手后发是建立在他人恶斗的基础上,大猪后发完全是以自身实力为基础。而且大猪完全不必采取任何激进措施,只要跟随就好。因为小猪获胜的条件不是接近,还是距离。

警察与小偷

令人沮丧的博弈结局。警察和小偷各只有一个机会去巡查或者偷盗A地或B地。A地的价值大于B地,那么警察应该为了保护价值大而一直保护A地吗。博弈论认为当然不是,警察的合理策略应当是有倾向于A以一定概率的随机巡查。这个概率就是:p=A地价值/AB地总价值。这种情况下才能使小偷最大得手几率降至最低。但是很不幸的是,此时的小偷谋求的是,最小得手几率的最大化。也就是说,警察的最优策略将把小偷的最差策略改良!这个便是冯·诺伊曼提出的“最小最大定律”。我们必须再一次感谢这个不完美的世界,因为现实之中,类似的现象,对于一方仍然可以设法找到对手致命的规律性行动(当然必须考虑到对方是不是一个更加老练的猎手,故意放出的诱饵)。而保持自己的行动的无序性,则有可能成为欺骗策略的武器,这倒似张三丰所言道的:无招胜有招。

斗鸡博弈

两只斗鸡在决斗的时候,无论选择进或退都是一个难题,因为纳什均衡已经给出了一胜一败的最优策略。在很多较量下,

死拼将是得不偿失的,因为很可能给第三者机会。因此,两个已经在战场的强势力很可能自觉的遵循纳什均衡,当一方攻击时,另一方暂退。虽然可能某方暂时受损,但较之于两败俱伤是好得多的。不过,要维持这一状况,必须保证下一次先期受损的一方发动攻势的时候,另一方同样的后退。于是这样的攻击性行为开始变得“仪式化”,没有人真正流血。这只不过是两个巨头玩弄的游戏,目的是警告后来者,想进来,那么也得陪我们一起玩,可是你玩的起么?这正是百事的广告,即使暗含挑衅也最多只到“敢为中国红”这样的地步的原因。

协和谬误

欧洲政府在大量投资协和飞机后,终于不能自拔。即使前景黯淡,也撑着面子投下去,非要走投无路才放弃。而这时投入的成本已经全打水漂了。如果,发现不能继续的时候,就果敢放手,损失会小得多。可是他们会、能这么做么?壮士断腕,是何等的壮烈,却也是何等的艰难!沉没成本很可能会延续人们无畏的坚持。已经沉没的本该放弃,可惜大部分有赌徒式的心理,相信阿基米德的杠杆终将启动。可惜他们在爬到足够撬动杠杆的支点之前,已经窒息了。协和谬误,倒是给了人们半途而废的理由,会不会有人担心它的滥觞会左右一些本该坚持的目标?的确有这个可能,但是应该相信人们足够理智,完全可以比较沉没成本、机会成本与未来收益的关系。看清了的,必定会坦然地走出协和谬误。

蜈蚣博弈

一场颠前倒后的博弈。蜈蚣博弈的机理是以最终的结果倒退至开始。这是一个睿智的策略,因果相报,把握好因缘,自有好结果。它的另一个好处,就是使得未来的计划明晰化,是你不再徘徊。只可惜,很多时候,碌碌无为的我们并没有看透迷局的眼睛。我们黑色的眼睛只习惯于黑夜。蜈蚣博弈也有一个致命的悖论,仍旧是个人利益和集体利益的冲突,因为最后一次的背叛收益始终优于合作。可悲的是,这一次背叛将由于人性的理智,穿越时光隧道,回到原始的地点:人们将从开始就拒绝合作。还是感谢我们这个不完美的世界吧,事实上人们很少这样做。当然合作到最后的也很少,这意味着,倒推法只在中间阶段突然发生了作用,只不过谁也不能预测,中间一步在哪里。在那里,我们只有冀望信任、道德、良知等等。

分蛋糕博弈

两个小孩怎么分蛋糕?经典的故事,经典的解答:一个分,一个选。现实多如此,权利与利益的合理分配将有效促进公平与效率。经营权与所有权的分置的确使得经济更加活力。不过分蛋糕的进阶模型却强调了讨价还价的策略,分蛋糕不是一次性的,而是多回合的,而且出现成本:蛋糕在融化。时间成本的加入,将使得分配变得复杂化。双方如果不能及时达成交易,不仅集体的收益将减量,而且个体的收益也将减少。在此情况下,利用时间成本以及承诺、威胁将对其中一方极其有利。顾客可能迫于情势,必须尽快结束谈判,这时卖方却不慌不忙,故意拖延,顾客一方将不得不在价格上作出妥协。顾客一方当然也有策略,它的策略就是货比三家,要求承诺或威胁。这个前提是买方市场的存在。顾客还应当保护自己讨价还价的能力,这就是顾客有权投诉商家。

鹰鸽博弈

这个博弈很多人等同于斗鸡博弈。不过,斗鸡是两个兼具侵略性的个体,鹰鸽却是两个不同群体的博弈,一个和平,一个侵略。在只有鸽子一个苞谷场里,突然加入的鹰将大大获益,并吸引同伴加入。但结果不是鹰将鸽逐出苞谷场,而是一定比例共存,因为鹰群增加一只鹰的边际收益趋零时(鹰群发生内斗),均衡将到来。由此产生了ESS进化上的稳定策略,也就是说一旦均衡形成,偏离的运动会受到自然选择的打击。也就是鹰群饱满后,再试图加入的鹰将会被鹰群排挤。进化上的稳定均衡最大的好处莫过于保持稳定。但问题在于形成强势的路径依赖,也就是胜出的不一定是最好的。因为最好的会被当作出头鸟干掉,这是个体的失败,集团的胜利以及集体的止步不前。

脏脸博弈

恍然大悟的博弈。三个人在屋子里,不许说话。美女进来说:你们当中至少一个人脸是脏的。三人环看,没有反应。美女又说:你们知道吗?三人再看,顿悟,脸都红了。为什么?因为美女后一句废话点破天机,三个人都知道脏脸的存在,而且推测知道对方也知道了脏脸的存在(因为另两人脸没红,说明他们看到脏脸了),而且知道对方知道自己已经想到上一步……循环开始,知识开始共同化,真相大白:三个人都是脏脸,所有人都脸红了。这就是共同知识的作用,它的作用显得有点可怕的强大。几乎是一招无影腿,杀人不见血。在台面上的博弈之前,私下的算计已经置对手于死地。不过,很可能对方也预料到这一点,早也想到这一点,同时杀来。终于,形成双死局面。当然,现实虽然存在类似现象,不过共同知识更大的作用在于减少交易成本。因为某些规则人尽皆知,双方只要各自依之行事就可以了。

信息均衡

很显然,信息的作用在博弈之中非常重要。将博弈论还原到现实,人们不再完全理性,信息存在不对称,博弈就需要在抢占信息高地上作出努力。信息不对称,是一个很大的障碍。信息的不对称会造成“逆向选择”和“道德风险”,前者事前,后者事后。信息不对称短期内对某一方会有利,但最终会破坏整个市场。于是有两个解决策略。

信息传递

传达你的正面的信息的策略,也就是说吸引顾客走到你的柜台面前。它的要点是保持有效、减低成本。

信息甄别

诱导对手暴露其私下拥有的真实信息。就是给顾客一个放大镜,保证顾客不会走到其他柜台去。这种策略显然更加有效,不过风险也更大:万一顾客用放大镜看出了了自己的瑕疵怎么办?

价格战博弈

现在我们经常会遇到各种各样的家电价格大战,彩电大战、冰箱大战、空调大战、微波炉大战……这些大战的受益者首先是消费者。每当看到一种家电产品的价格大战,百姓都会“没事儿偷着乐”。在这里,我们可以解释厂家价格大战的结局也是一个“纳什均衡”,而且价格战的结果是谁都没钱赚。因为博弈双方的利润正好是零。竞争的结果是稳定的,即是一个“纳什均衡”。这个结果可能对消费者是有利的,但对厂商而言是灾难性的。所以,价格战对厂商而言意味着自杀。从这个案例中我们可以引伸出两个问题,一是竞争削价的结果或“纳什均衡”可能导致一个有效率的零利润结局。二是如果不采取价格战,作为一种敌对博弈论(vivalry game)其结果会如何呢?每一个企业,都会考虑采取正常价格策略,还是采取高价格策略形成垄断价格,并尽力获取垄断利润。如果垄断可以形成,则博弈双方的共同利润最大。这种情况就是垄断经营所做的,通常会抬高价格。另一个极端的情况是厂商用正常的价格,双方都可以获得利润。从这一点,我们又引出一条基本准则:“把你自己的战略建立在假定对手会按其最佳利益行动的基础上”。事实上,完全竞争的均衡就是“纳什均衡”或“非合作博弈均衡”。在这种状态下,每一个厂商或消费者都是按照所有的别人已定的价格来进行决策。在这种均衡中,每一企业要使利润最大化,

消费者要使效用最大化,结果导致了零利润,也就是说价格等于边际成本。在完全竞争的情况下,非合作行为导致了社会所期望的经济效率状态。如果厂商采取合作行动并决定转向垄断价格,那么社会的经济效率就会遭到破坏。这就是为什么WTO 和各国政府要加强反垄断的意义所在。

污染博弈

假如市场经济中存在着污染,但政府并没有管制的环境,企业为了追求利润的最大化,宁愿以牺牲环境为代价,也绝不会主动增加环保设备投资。按照看不见的手的原理,所有企业都会从利己的目的出发,采取不顾环境的策略,从而进入“纳什均衡”状态。如果一个企业从利他的目的出发,投资治理污染,而其他企业仍然不顾环境污染,那么这个企业的生产成本就会增加,价格就要提高,它的产品就没有竞争力,甚至企业还要破产。这是一个“看不见的手的有效的完全竞争机制”失败的例证。直到20世纪90年代中期,中国乡镇企业的盲目发展造成严重污染的情况就是如此。只有在政府加强污染管制时,企业才会采取低污染的策略组合。企业在这种情况下,获得与高污染同样的利润,但环境将更好。

贸易自由与壁垒

这个问题对于刚刚加入WTO的中国而言尤为重要。任何一个国家在国际贸易中都面临着保持贸易自由与实行贸易保护主义的两难选择。贸易自由与壁垒问题,也是一个“纳什均衡”,这个均衡是贸易双方采取不合作博弈的策略,结果使双方因贸易战受到损害。X国试图对Y国进行进口贸易限制,比如提高关税,则Y国必然会进行反击,也提高关税,结果谁也没有捞到好处。反之,如X和Y能达成合作性均衡,即从互惠互利的原则出发,双方都减少关税限制,结果大家都从贸易自由中获得了最大利益,而且全球贸易的总收益也增加了。

博弈论经典案例“囚徒困境”及其实证分析

最近三四十年,经济学经历了一场“博弈论革命”,就是引入博弈论的概念和方法改造经济学的思维,推进经济学的研究。诺贝尔经济学奖授予包括美国普林斯顿大学的纳什博士在内的3位博弈论专家,可以看作是一个标志,这自然也激发了人们了解博弈论的热情。博弈论作为现代经济学的前沿领域,已成为占据主流的基本分析工具。

博弈论是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡,也就是说,当一个主体的选择受到其他主体选择的影响,而且反过来影响到其他主体选择时的决策问题和均衡问题。

一个完整的博弈应当包括五个方面的内容:第一,博弈的参加者,即博弈过程中独立决策、独立承担后果的个人和组织;第二,博弈信息,即博弈者所掌握的对选择策略有帮助的情报资料;第三,博弈方可选择的全部行为或策略的集合;第四,博弈的次序,即博弈参加者做出策略选择的先后;第五,博弈方的收益,即各博弈方做出决策选择后的所得和所失。

“囚徒困境”

“囚徒困境”是博弈论里最经典的例子之一。讲的是两个嫌疑犯(A和B)作案后被警察抓住,隔离审讯;警方的政策是"坦白从宽,抗拒从严",如果两人都坦白则各判8年;如果一人坦白另一人不坦白,坦白的放出去,不坦白的判10年;如果都不坦白则因证据不足各判1年。

在这个例子里,博弈的参加者就是两个嫌疑犯A和B,他们每个人都有两个策略即坦白和不坦白,判刑的年数就是他们的支付。可能出现的四种情况:A和B均坦白或均不坦白、A坦白B不坦白或者B坦白A不坦白,是博弈的结果。A和B均坦白是这个博弈的纳什均衡。这是因为,假定A选择坦白的话,B最好是选择坦白,因为B坦白判8年而抵赖却要判十年;假定A选择抵赖的话,B最好还是选择坦白,因为B坦白判不被判刑而抵赖确要被判刑1年。即是说,不管A坦白或抵赖,B的最佳选择都是坦白。反过来,同样地,不管B是坦白还是抵赖,A的最佳选择也是坦白。结果,两个人都选择了坦白,各判刑8年。在(坦白、坦白)这个组合中,A和B都不能通过单方面的改变行动增加自己的收益,于是谁也没有动力游离这个组合,因此这个组合是纳什均衡。

囚徒困境反映了个人理性和集体理性的矛盾。如果A和B都选择抵赖,各判刑1年,显然比都选择坦白各判刑8年好得多。当然,A和B可以在被警察抓到之前订立一个"攻守同盟",但是这可能不会有用,因为它不构成纳什均衡,没有人有积极性遵守这个协定。

实证分析:

"囚犯困境"在经济学上有很多应用,也有力地解释了一些经济现象。

一.电信价格竞争

根据我国电信业的实际情况,我们来构造电信业价格战的博弈模型。假设此博弈的参加者为电信运营商A与B, 他们在电信某一领域展开竞争,一开始的价格都是P0。A(中国电信)是老牌企业,实力雄厚,占据了绝大多数的市场份额;B(中国联通)则刚刚成立不久,翅膀还没有长硬,是政府为了打破垄断鼓励竞争而筹建起来的。

正因为B是政府扶植起来鼓励竞争的,所以B得到了政府的一些优惠,其中就有B的价格可以比P0低10%。这一举动,还不会对A产生多大的影响,因为A的根基实在是太牢固了。在这样的市场分配下,A、B可以达到平衡,但由于B在价格方面的优势,市场份额逐步壮大,到了一定程度,对A造成了影响。这时候,A该怎么做?不妨假定:A降价而B维持,则A获利15,B损失5,整体获利10;

A维持且B也维持,则A获利5,B获利10,整体获利15;

A维持而B降价,则A损失10,B获利15,整体获利5;

A降价且B也降价,则A损失5,B损失5,整体损失10。

从A角度看,显然降价要比维持好,降价至少可以保证比B好,在概率均等的情况下,A降价的收益为15×50%-5×50%=5,维持的收益为5×50%-10×50%=-2.5,为了自身利益的最大化,A就不可避免地选择了降价。从B角度看,效果也一样,降价同样比维持好,其降价收益为5,维持收益为2.5,它也同样会选择降价。在这轮博弈中,A、B都将降价作为策略,因此各损失5,整体损失10,整体收益是最差的。这就是此博弈最终所出现的纳什均衡。我们构造的这一电信业价格战博弈模型是典型的囚徒困境现象,各个局部都寻求利益的最大化,而整体利益却不是最优,甚至是最差。

许多其他行业的价格竞争都是典型的囚徒困境现象,如可口可乐公司和百事可乐公司之间的竞争、各大航空公司之间的价格竞争等等。

二.OPEC组织成员国之间的合作与背叛

“囚徒困境”告诉我们,个人理性和集体理性之间存在矛盾,基于个人理性的正确选择会降低大家的福利,也就是说,基于个人利益最大化的前提下,帕累托改进得不到进行,帕累托最优得不到实现。

上述我们在对电信价格竞争的博弈分析中,只是一次性的“囚徒困境”博弈,因此得到了互相降价的纳什均衡。而在现实生活当中,信任与合作很少达到如此两难的境地,无论在自然界还是在人类社会,“合作”都是一种随处可见的现象。比如中东石油输出国组织(OrganizationofPetroleumExportingCountries

博弈论经典案例

简称OPEC)的成立,本身就是要限制各石油生产国的产量,以保持石油价格,以便获取利润,是合作的产物。OPEC之所以能够成立,各组织成员国之间之所以能够合作,是因为囚徒困境如果是一次性博弈(One shot game)的话,基于个人利益最大化,得到纳什均衡解,但如果是多次博弈,人们就有了合作的可能性,囚徒困境就有可能破解,合作就有可能达成。连续的合作有可能成为重复的囚徒困境的均衡解,这也是博弈论上著名的“大众定理”(Folk Theorem)的含义。

但合作的可能性不是必然性。博弈论的研究表明,要想使合作成为多次博弈的均衡解,博弈的一方(最好是实力更强的一方)必须主动通过可信的承诺(Credible commitment) ,向另一方表示合作的善意,努力把这个善意表达清楚,并传达出去。如果该困境同时涉及多个对手,则要在博弈对手中形成声誉,并用心地维护这个声誉。这里“可信的承诺”是一个很牵强的翻译,“Credible commitment”并不是什么空口诺言,而是实实在在的付出。所以合作是非常困难的。所以OPEC组织经常会有成员国不遵守组织的协定,私自增加石油产量。每个成员国都这样想,只要他们不增加产量,我增加一点点产量对价格没什么影响,结果每个国家都增加产量,造成石油价格下跌,大家的利润都受到损失。当然,一些产量增加较少的国家损失更多,于是也更加大量生产,造成价格进一步下降--结果,陷入一个困境:大家都增加产量,价格下跌,大家再增加产量,价格再下跌……。

理论上,几乎所有的卡特尔都会遭到失败,原因就在于卡特尔的协定(类似囚犯的攻守同盟)不是一个纳什均衡,没有成员有兴趣遵守。那么是不是不可能有卡特尔合作成功了?理论上,如果是无限期的合作,双方考虑长远利益,他们的合作是会成功的。但只要是有限次的合作,合作就不会成功。比如合作10次,那么在第九次博弈参与人就会采取不合作态度,因为大家都想趁最后一次机会捞一把,反正以后我也不会跟你合作了。但是大家料到第九次会出现不合作,那么就很可能在第八次就采取不合作的态度。第八次不合作会使大家在第七次就不合作……一直到,从第一次开始大家都不会采取合作态度。

以上是运用博弈论中的经典案例“囚徒困境”对现实经济生活的一些简单的理论上的分析,虽然在现实生活当中影响人们决策和态度的因素很多,但是,博弈论作为现代经济学的前沿领域,始终是一个强有力的分析工具。

博弈论的案例评论

----"囚徒困境"说的是两个囚犯的故事。这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。

----那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。但他们不得不仔细考虑对方可能采取什么选择。A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。这种想法的诱惑力实在太大了。但他也意识到,他的同伙也不是傻子,也会这样来设想他。所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。

----当然,在现实世界里,信任与合作很少达到如此两难的境地。谈判、人际关系、强制性的合同和其他许多因素左右了当事人的决定。但囚徒的两难境地确实抓住了不信任和需要相互防范背叛这种真实的一面。让我们看看冷战时期两个超级大国将自己锁定在一场40年的军备竞赛中,其结果对双方都毫无益处。还有各国的贸易保护主义的永恒倾向。

----但是,无论在自然界还是在人类社会,"合作"都是一种随处可见的现象。那么,问题就出现了:到底是何种机制促使生物体或者人类进行相互合作呢?

----这个问题的答案大部分归功于美国密西根大学一位叫做罗伯特·爱克斯罗德的人。爱克斯罗德是一个政治科学家,对合作的问题久有研究兴趣。为了进行关于合作的研究,他组织了一场计算机竞赛。这个竞赛的思路非常简单:任何想参加这个计算机竞赛的人都扮演"囚徒困境"案例中一个囚犯的角色。他们把自己的策略编入计算机程序,然后他们的程序会被成双成对地融入不同的组合。分好组以后,参与者就开始玩"囚徒困境"的游戏。他们每个人都要在合作与背叛之间做出选择。

----但这里与"囚徒困境"案例中有个不同之处:他们不只玩一遍这个游戏,而是一遍一遍地玩上200次。这就是博弈论专家所谓的"重复的囚徒困境",它更逼真地反映了具有经常而长期性的人际关系。而且,这种重复的游戏允许程序在做出合作或背叛的抉择时参考对手程序前几次的选择。如果两个程序只玩过一个回合,则背叛显然就是唯一理性的选择。但如果两个程序已经交手过多次,则双方就建立了各自的历史档案,用以记录与对手的交往情况。同时,它们各自也通过多次的交手树立了或好或差的声誉。虽然如此,对方的程序下一步将会如何举动却仍然极难确定。实际上,这也是该竞赛的组织者爱克斯罗德希望从这个竞赛中了解的事情之一。一个程序总是不管对手作何种举动都采取合作的态度吗?或者,它能总是采取背叛行动吗?它是否应该对对手的举动回之以更为复杂的举措?如果是,那会是怎么样的举措呢?

----事实上,竞赛的第一个回合交上来的14个程序中包含了各种复杂的策略。但使爱克斯罗德和其他人深为吃惊的是,竞赛的桂冠属于其中最简单的策略:一报还一报(TIT FOR TAT)。这是多伦多大学心理学家阿纳托·拉帕波特提交上来的策略。一报还一报的策略是这样的:它总是以合作开局,但从此以后就采取以其人之道还治其人之身的策略。也就是说,一报还一报的策略实行了胡萝卜加大棒的原则。它永远不先背叛对方,从这个意义上来说它是"善意的"。它会在下一轮中对对手的前一次合作给予回报(哪怕以前这个对手曾经背叛过它),从这个意义上来说它是"宽容的"。但它会采取背叛的行动来惩罚对手前一次的背叛,从这个意义上来说它又是"强硬的"。而且,它的策略极为简单,对手程序一望便知其用意何在,从这个意义来说它又是"简单明了的"。

----当然,因为只有为数不多程序参与了竞赛,一报还一报策略的胜利也许只是一种侥幸。但是,在上交的14个程序中,有8个是"善意的",它们永远不会首先背叛。而且这些善意的程序都轻易就赢了6个非善意的程序。为了决出一个结果来,

爱克斯罗德又举行了第二轮竞赛,特别邀请了更多的人,看看能否从一报还一报策略那儿将桂冠夺过来。这次有62个程序参加了竞赛,结果是一报还一报又一次夺魁。竞赛的结论是无可争议的。好人,或更确切地说,具备以下特点的人,将总会是赢家。

---- 1.善意的;2.宽容的;3.强硬的;4.简单明了的。

----一报还一报策略的胜利对人类和其他生物的合作行为的形成所具有的深刻含义是显而易见的。爱克斯罗德在《合作进化》一书中指出,一报还一报策略能导致社会各个领域的合作,包括在最无指望的环境中的合作。他最喜欢举的例子就是第一次世界大战中自发产生的"自己活,也让他人活"的原则。当时前线战壕里的军队约束自己不开枪杀伤人,只要对方也这么做。使这个原则能够实行的原因是,双方军队都已陷入困境数月,这给了他们相互适应的机会。

----一报还一报的相互作用使得自然界即使没有智能也能产生合作关系。这样的例子很多:真菌从地下的石头中汲取养分,为海藻提供了食物,而海藻反过来又为真菌提供了光合作用;金蚁合欢树为一种蚂蚁提供了食物,而这种蚂蚁反过来又保护了该树;无花果树的花是黄蜂的食物,而黄蜂反过来又为无花果树传授花粉,将树种撒向四处。

----更广泛地说,共同演化会使一报还一报的合作风格在这个充满背信弃义劣行的世界上蔚然成风。假设少数采取一报还一报策略的个人在这个世界上通过突变而产生了。那么,只要这些个体能互相遇见,足够在今后的相逢中形成利害关系,他们就会开始形成小型的合作关系。一旦发生了这种情况,他们就能远胜于他们周围的那些背后藏刀的类型。这样,参与合作的人数就会增多。很快,一报还一报式的合作就会最终占上风。而一旦建立了这种机制,相互合作的个体就能生存下去。如果不太合作的类型想侵犯和利用他们的善意,一报还一报政策强硬的一面就会狠狠地惩罚他们,让他们无法扩散影响。

----现在,对博弈论的研究是如此地广泛,以致于有些人说最新的经济学和管理科学都已经利用博弈论的理论和工具重写过了。博弈论中有很多有趣而富于哲理的案例,一报还一报就是其中的一个。它那种善意、宽容、强硬、简单明了的合作策略无论对个人还是对组织的行为方式都有很大的指导意义。

话说有一天,一位富翁在家中被杀,财物被盗。警方在此案的侦破过程中,抓到两个犯罪嫌疑人,斯卡尔菲丝和那库尔斯,并从他们的住处搜出被害人家中丢失的财物。但是,他们矢口否认曾杀过人,辩称是先发现富翁被杀,然后只是顺手牵羊偷了点儿东西。于是警方将两人隔离,分别关在不同的房间进行审讯。由地方检察官分别和每个人单独谈话。检察官说,“由于你们的偷盗罪已有确凿的证据,所以可以判你们一年刑期。但是,我可以和你做个交易。如果你单独坦白杀人的罪行,我只判你三个月的监禁,但你的同伙要被判十年刑。如果你拒不坦白,而被同伙检举,那么你就将被判十年刑,他只判三个月的监禁。但是,如果你们两人都坦白交代,那么,你们都要被判5年刑。”斯卡尔菲丝和那库尔斯该怎么办呢?他们面临着两难的选择——坦白或抵赖。显然最好的策略是双方都抵赖,结果是大家都只被判一年。但是由于两人处于隔离的情况下无法串供。所以,按照亚当?斯密的理论,每一个人都是从利己的目的出发,他们选择坦白交代是最佳策略。因为坦白交代可以期望得到很短的监禁———3个月,但前提是同伙抵赖,显然要比自己抵赖要坐10年牢好。这种策略是损人利己的策略。不仅如此,坦白还有更多的好处。如果对方坦白了而自己抵赖了,那自己就得坐10年牢。太不划算了!因此,在这种情况下还是应该选择坦白交代,即使两人同时坦白,至多也只判5年,总比被判10年好吧。所以,两人合理的选择是坦白,原本对双方都有利的策略(抵赖)和结局(被判1年刑)就不会出现。这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”,也叫非合作均衡。

我的感想:听说研究博弈论的人经常会精神分裂,以纳什为模范,因为他们总要将自己设想成参加博弈的不同的人,你猜我想些什么,我猜你想些什么,你猜我猜你在想什么,我猜你猜我在想什么,你猜我猜你猜我在想什么,我猜你猜我猜你在想什么……如此循环往复,于是他们就迷失自己了。

博弈论案例分析(1) 二妓争子

《旧约全书·列王记》上记有二妓争儿,所罗门命令左右取剑,曰:“剖儿为两,各得一半”,一妓乞求不要杀儿,自己愿意舍让,一妓则说杀就杀了,不再争执;所罗门据此判断是非。在古印度也有类似的故事,《贤愚经》卷十一〈檀腻羁品〉第四六载:

二母人共诤一儿,诣王相言。时王明黠,语二母言:‘今唯一儿,……听汝二人,各挽一手,谁能得者,即是其儿。’非其母者,於儿无慈,尽力顿牵,不恐伤损;所生母者,于儿慈深,随从爱护,不忍拽挽。王鉴真伪。

以上故事是一个典型的个体博弈案例。实际上,博弈对任何个体而言都是一个决策过程. 而个体作出决策很重要的一点是认识妥协,学会妥协。看清了什么样的妥协是可以接受的,什么样的事情是必须坚持到底的。妥协有两种不同的性质:

1) 利益下限得到满足:“半块面包总比没有面包来得好”。

2) 损失下限没被突破:“与其要回半个死孩子,还不如将孩子送给对方为好”。

以上二母争儿案例,可用博弈论解法提供一个“几乎”完美的机制:

提出问题:

妓女A和妓女B中只有一个是真母亲,但他们都宣称自己是孩子真正的母亲。不管她们中到底是谁,英明的所罗门王都需要把孩子交给真正的母亲。可是所罗门确实不知道谁才是真正的母亲,虽然两个女人都很清楚是怎么回事。这需要所罗门发挥睿智,间接诱导出正确的结果。

解决问题:

所罗门可以向其中任意一个“母亲”提问孩子是不是她的(比如: 妓女A)?

如果答案是否定的,则孩子交给另一个女人(妓女B),博弈结束;

如果答案是肯定的,则

所罗门王可以接着向另一个女人(妓女B)提问她是否反对?

如果另一个女人(妓女B)不反对,则孩子归妓女A,博弈结束;

否则,所罗门就要这个女人(妓女B)提出一个赌注(V),然后向妓女A收取罚金F,并问她是否愿意出同样的赌注?

如果妓女A同意出同样的赌注,孩子归妓女A,妓女B交纳同样的罚金;

如果妓女A放弃,则孩子归妓女B,妓女A给所罗门王赌注的钱

以上机制起作用的前提是:孩子对真母亲的价值比对假母亲的高,并且这些认识是他们之间的普遍知识(common knowledge): 即每个人都知道每个人都知道这些,如此一直无穷。

以上很容易推出:

如果妓女A是真母亲,她的策略是说孩子是她的,然后妓女B不反对,因为她(妓女B)反对的结果只会导致她要多交钱,因为她为了赢得后面的“拍卖”必须使自己的赌注高过妓女A愿意出的最高值——即孩子对妓女A的真正价值,妓女A 为什么要出这么多的钱得到一个不值这么多的孩子呢?

如果妓女A是假母亲,她的策略是承认孩子不是她的,因为如果说孩子是她的,妓女B必然会反对,并且妓女B为了得到孩子只需出高过孩子对妓女A的价值的钱,这只会造成妓女A白白地被罚款。

问题思考:

以上机制对假母亲具有妒忌型效用函数时无效,因为她(假母亲)可以出更多的钱得到一个并不物有所值的东西,属于损人不利己的行为——这是这个机制“几乎”完美的命门。对于“如果妓女 A 是真母亲,并坚持说孩子是她的”(她是神经病),此时仍然可用所罗门的经典判案来挑战:妓女 A 必然愿意杀就杀了而无所得,而妓女B 则不愿意突破损失下限。神经病可能不愿意杀了小儿么?如果是,说明她也不是神经病,也许假母亲也可以称为真正的母亲了。

经济学博弈论经典案例二

在热门时髦,而又超凡脱俗的大经济学讲坛上,学子们正被传授着称为“智猪博弈”的人类智慧,大意是这样的:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,猪每踩一下踏板,猪圈另一边的食槽里就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。博弈的结果(纳什均衡)是,小猪舒舒服服地躺在食槽边,让大猪为一点残羹不知疲倦地奔忙于踏板和食槽之间。

学子们合上厚重的“信息经济学与博弈论”课本,不禁惊叹:多么聪明的小猪!好像全世界的小猪是这样成长为大猪的。然而,猪圈里的“智慧”,谁又在人圈里见过?

经济市场里的现实教训会告诉你什么是真实的智人博弈。为了叙述的直观,首先对关键词作如下的变换:大猪→富人,小猪→穷人,猪圈→市场,食槽→财富池,食物→财富。

现实素描是:市场里有两个人,一个富人,一个穷人。市场的一边有个踏板,人每踩一下踏板,市场的另一边的财富池里就会落下少量的财富。如果有一个人去踩踏板,另一个人就有机会抢先得到另一边落下的财富。

当穷人踩动踏板时,富人完全有能力在穷人跑到财富池之前刚好取光所有的财富;若是富人踩动了踏板,则还有机会在穷人取光落下的财富之前跑到财富池,争得另一半残羹(穷人们算术不太好,数目太大就搞不清白)。

博弈的纳什均衡是,富人舒舒服服地躺在食槽边,穷人每踩动一下踏板,富人就取走财富池里的大部分财富,只留下穷人刚好能弄明白的一点点财富(千万别以为富人会把财富取光,只有蠢猪才会那么做),让穷人为一点残羹不知疲倦地奔忙于踏板和财富池之间。

又假设二人博弈变为多人博弈,比如有两个穷人,会不会出现第二个穷人像富人一样守在财富池边,也安详地获取财富?通常的情形是,与此同时那个能释放财富的踏板,会变得需要两个穷人同时踩踏才能够继续有效运转;而且,更有值得一提的所谓执业许可证,新入局的穷人还必须拥有霸王式“文化传销”老鼠会的高等学历文凭。如此这般,智人博弈在新的游戏规则下,又重新开始了。

(1)失火了,你往哪个门跑

失火了,你往哪个门跑——这就是博弈论

一天晚上,你参加一个派对,屋里有很多人,你玩得很开心。这时候,屋里突然失火,火势很大,无法扑灭。此时你想逃生。你的面前有两个门,左门和右门,你必须在它们之间选择。但问题是,其他人也要争抢这两个门出逃。如果你选择的门是很多人选择的,那么你将因人多拥挤、冲不出去而烧死;相反,如果你选择的是较少人选择的,那么你将逃生。这里我们不考虑道德因素,你将如何选择?这就是博弈论!

你的选择必须考虑其他人的选择,而其他人的选择也考虑你的选择。你的结果——博弈论称之为支付,不仅取决于你的行动选择——博弈论称之为策略选择,同时取决于他人的策略选择。你和这群人构成一个博弈(game)。

上述博弈是一个叫张翼成的中国人在1997年提出的一个博弈论模型,被称之为少数者博弈或少数派博弈(Minority Game)。当然,原来的博弈形式不是这么简单,这里我把它简化了,我们在第三部分论述归纳推理时还要谈这个博弈模型。现在很多学者在研究这个问题。

生活中博弈的案例很多,你会见到很多例子。只要涉及到人群的互动,就有博弈。

什么叫博弈?博弈的英文为game,我们一般将它翻译成“游戏”。而在西方,game的意义不同于汉语中的游戏。在英语中,game即是人们遵循一定规则下的活动,进行活动的人的目的是使自己“赢”。奥林匹克运动会叫Olympic Games。在英文中,game有竞赛的意思,进行game的人是很认真的,不同于汉语中游戏的概念。在汉语中,游戏有儿戏的味道。因此将关于game的理论,即game theory翻译成博弈论或者对策论,是恰当的。本书下面统称game theory为博弈论。

博弈论的出现只有50多年的历史。博弈论的开创者为诺意曼与摩根斯坦,他们1944年出版了《博弈论与经济行为》。诺意曼是著名的数学家,他同时对计算机的发明作出了巨大贡献,他去世时博弈论还未对经济学产生广泛影响,否则经济学的诺贝尔奖肯定有他的名字,因为诺贝尔奖有规定,只颁发给在世的学者。谈到博弈论,不能忽略博弈论天才纳什(John Nash)。纳什的开创性论文《n人博弈的均衡点》(1950)、《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。今天博弈论已发展成一个较完善的学科。

博弈论对于社会科学有着重要的意义,它正成为社会科学研究范式中的一种核心工具,以至于我们可称博弈论是“社会科学的数学”,或者说是关于社会的数学。从理论上讲,博弈论是研究理性的行动者(agents)相互作用的形式理论,而实际上它正深入到经济学、政治学、社会学等等,被各门社会科学所应用。甚至有学者声称要用博弈论重新改写经济学。1994年经济学诺贝尔奖颁发给三位博弈论专家:纳什、塞尔屯(R.Selten)、哈桑尼(J.Harsanyi),而像1985年获得诺贝尔奖的公共选择学派的领导者布坎南,1995年获得诺贝尔奖的理性主义学派的领袖卢卡斯(Lukas),其理论与博弈论都有着较深的联系。现在博弈论正渗透到各门社会科学,更重要的是它正深刻地改变着人们的思维。

二、博弈论能解释所有社会现象吗?

社会由不同的人群的集合体所构成。不同的人群集合体形成不同的结构,一个结构中的群体之间的相互作用(interactions)就构成一个博弈。这个博弈是广义上的。社会中有不同的文化,人类有文明、道德,如果说文明、文化、道德是宏观的社会现象,那么还存在着微观的社会现象,如:群体为什么有合作又有不合作?为什么人群之间或集团之间有“威胁”或“承诺”?

这些都是博弈论研究的对象。本书下面将努力用博弈论的基本思想来解释社会中的这些现象。

博弈论对人的基本假定是:人是理性的(rational)。所谓理性的人是指行动者具有推理能力,在具体策略选择时的目的是使自己的利益最大化。博弈论研究的是理性的人之间如何进行策略选择的。

博弈论力图在这个最简单的假定下得到丰富的结论,正如我们下面所看到的,它确实做到了。博弈论专家的这种做法如同物理学家对自然的假定一样。大家知道,物理学家往往假定几个最基本的假设,这最基本的假设构成公设,其余的结论由它们推得,如爱因斯坦的狭义相对论只有两条假设:(1)物理定律在所有参考系中不变;(2)在所有参考系中光速保持常数。多么简单的公设!在这两个公设下得出了惊奇的结论,如运动的参照系中尺子收缩,时钟变慢,等等。相对论的这两条公设改变了物理学的整个构架,也改变了人们对自然的整个看法!

博弈论当然不是关于自然的,它是关于社会的,它不能构成人们对自然看法的革命。博弈论的假定是非常简单的,它能得出令人惊奇的结论吗?它能改变人们关于社会的看法吗?——这些是伟大科学的要求!我们将发现,博弈论确实如此!

这里讲一个小小的插曲。在与朋友聊博弈论时,他随意说了一句话给我启发很深。他说,中国人研究其他学问难说,但研究博弈论是有优势的。这句话是褒义,也是贬义。说它是

褒义,是因为中国古代有很多这方面的著述与实践,春秋战国时期七国争雄,其实也是谋士之间的角逐,而罗贯中的《三国演义》在今天看来就是一部博弈论教材!无论是兵书如《孙子兵法》、《三十六计》,还是现代流行的所谓“商战策略”、“公共关系”以及所谓“厚黑学”都是关于如何赢得与人交往的胜利的,或者说如何获取成功的。说它是贬义,是因为,中国人走关系、相互算计是出了名的,中国人对博弈论有天生的了解。正如中国人常说的“事事洞明皆学问,人情练达即文章”,即是说人与人之间的关系、社会交往均是学问。而中国很多“做人”的道理,道出了如何在人与人的博弈中获取成功,如:在任何场合下都不要得罪人,不要锋芒毕露(如“枪打出头鸟”),等等。不过,在中国文化传统中,人与人之间的所谓关系并不像西方那样是科学,而更像一门艺术。

博弈案例(1)

囚徒困境可以用来说明许多现象。我国目前的应试教育就是一个囚徒困境。

囚徒博弈是完全信息下的静态博弈,两个小偷各种策略组合下的支付是他们之间的“公共知识”(我们在下一章中将讨论什么是“公共知识”)。

我们上面已经分析了囚徒对局下各个策略下的结果或支付,以及它的均衡。它的均衡是双方均选择“招认”的策略。

可以这么说,最近10多年来,我国基础教育的问题是如何摆脱应试教育的困境问题。目前给中小学生“减负”不仅是学生家长的呼声,也是教育专家和教育管理部门的呼声,也可以说是全社会的呼声。教育管理部门这几年做了一系列的工作,但收效甚微,并没有从根本上解决问题。学校不断给学生增加负担是目前教育的实际状况。

大家普遍认为应试教育是扼杀学生的创造性,无论是专家还是家长,都在呼吁改变应试教育的模式。但是无论是专家,还是意识到教育问题的普通老百姓以及没有意识到教育问题的老百姓,其小孩都在接受着这种教育。

在现有的教育体制下,学生(或学生家长)有两个可选择的策略:“减负”和“增负”。学生的精力是有限的,如果选择“减负”策略,意味着学生有更多的时间学习课本以外的东西,这样学生的素质得到提高,因此,“减负”策略往往与素质教育联系在一起;而如果选择“增负”策略,则意味着学生花大量的时间做大量的习题,以“学透”、“学精”课本规定的东西,此时,学生没有时间学习课本以外的没有规定的内容。“减负”的结果是学生的全面发展;而“增负”的结果是学生获得高的分数。

在这样的博弈结构下,学生(或学生家长)如何选择呢?每个学生这样想:其他人采取的是“增负”教育策略的话,如果我采取“减负”教育策略,我的考试分数不如他人,在求学方面我会落后,接受不了好的教育,在未来求职时我也赶不上他人。在他人采取“增负”的策略下,我也应当采取“增负”策略。如果其他人采取的是“减负”策略,我应当采取什么策略呢?还是应当采取“增负”策略!因为,如果其他人采取的是“减负”策略的话,如果我采取的是“增负”策略,我的考试分数会比其他人高,我会上好的学校,在未来的职业竞争中我会处于优势。因此,无论其他人采取的是什么策略,我采取“增负”策略都是最好的。当每个学生都这样想的时候,全社会便进入了应试教育这样一个囚徒困境之中。

如果我国现有的考试制度没有改变,现在假设所有的学生都选择“减负”策略,即除了做少量的巩固性的作业外,不补课、不做其他的练习题,情况会是什么样子?

假设这种状态会出现,我们说,这种状态会很快消失,而立即会出现所有学生都进入“增负”的这样一个状态。可以说,均选择“减负”策略的状态是不稳定的,而“增负”的状态是稳定的均衡。原因就是,目前的教育的博弈结构规定了各种行动或行为的收益或好处:获得高分的会进入好的初中、高中,进入好的初中、高中的学生可以考高分进入好的大学。在这个博弈中,对于教师来说,学生的升学率高意味着其成绩大、奖金高,对自己的学生采取“增负”策略,对于自己而言是占优策略。

我国基础教育的博弈与囚徒困境有共同的结构,大家均选择“增负”策略构成基础教育博弈的纳什均衡。纳什均衡是一个稳定的博弈结果,这也是为什么我国目前的应试教育难以改变的原因。

2.斗鸡博弈与古巴的导弹危机

试想有两只公鸡遇到一起,每只公鸡有两个行动选择:一是退下来,一是进攻。如果一方退下来,而对方没有退下来,对方获得胜利,这只公鸡则很丢面子;如果对方也退下来,双方则打个平手;如果自己没退下来,而对方退下来,自己则胜利,对方则失败;如果两只公鸡都前进,那么则两败俱伤。因此,对每只公鸡来说,最好的结果是,对方退下来,而自己不退。支付矩阵如下:

鸡乙鸡甲前进后退前进(-2,-2)(1,-1)后退(-1,1)(-1,-1)

上表中的数字的意思是:两者如果均选择“前进”,结果是两败俱伤,两者均获得-2的支付;如果一方“前进”,另外一方“后退”,前进的公鸡获得1的支付,赢得了面子,而后退的公鸡获得-1的支付,输掉了面子,但没有两者均“前进”受到的损失大;两者均“后退”,两者均输掉了面子,获得-1的支付。当然表中的数字只是相对的值。

这个博弈有两个纳什均衡:一方前进,另一方后退。但关键是谁进谁退?一博弈,如果有惟一的纳什均衡点,那么这个博弈是可预测的,即这个纳什均衡点就是事先知道的惟一的博弈结果。但是如果一博弈有两个或两个以上的纳什均衡点,则任何人无法预测出一个结果来。因此,我们无法预测斗鸡博弈的结果,即不能知道谁进谁退,谁输谁赢。

用这个博弈来解释20世纪60年代初发生在美苏两个超级大国之间的一场导弹危机,是最合适不过的了。

二战结束后,形成了对峙的两个超级大国,美国和苏联。这两个超级大国是两个核心,在其周围有各自的盟友,它们一起组成了两大敌对的阵营。1962年赫鲁晓夫偷偷地将导弹运送到加勒比海上的岛国古巴,卡斯特罗政权是苏联这个超级大国的盟友,是美国的敌人。苏联的目的是将导弹部署在美国的眼皮底下,以对付美国。然而苏联的行动被美国的U-2飞机侦察到了,美国发现古巴建立了导弹发射场。此事震动美国,肯尼迪总统指责苏联,并发出严重警告,而苏联方面矢口否认。美国决定对古巴进行军事封锁,派遣了舰艇、空军及航空母舰,并集结了登陆部队。美国进入戒备状态,,美苏之间的战争一触即发。

面对美国的反应,苏联面临着是将导弹撤回国还是坚持部署在古巴的选择?而对于美国,则面临着是挑起战争还是容忍苏联的挑衅行为的选择?也就是说,这两只“大公鸡”均在考虑采取进的策略还是退的策略?

战争的结果当然是两败俱伤,而任何一方退下来(而对方不退)则是不光彩的事。结果是苏联将导弹从古巴撤了下来,做了丢面子的“撤退的鸡”。美国坚持了自己的策略,做了

“不退的鸡”。当然,为了给苏联一点面子,同时也担心苏联坚持不退而发生美苏战争——这是美国不愿意看到的,美国象征性地从土耳其撤离了一些导弹。古巴导弹危机是冷战期间美苏两霸之间发生的最严重的一次危机。

这就是美国与苏联在古巴导弹上的博弈结果。对于苏联来说,退下来的结果是丢了面子,但总比战争要好;对美国而言,既保全了面子,又没有发生战争。这就是这两只“大公鸡”博弈的结果。

3.骑虎难下博弈与美苏武器竞赛

我们经常碰到的一类博弈是,行动者进也不是,退也不是。笔者将这样的博弈称为骑虎难下博弈。

有一个拍卖,其规则是:轮流出价,谁出得最高,谁就将得到该物品,但是出价少的人不仅得不到该物品,并且要按他所叫的价付给拍卖方。

假定有两人竞价争夺价值100元的物品,只要双方开始叫价,在这个博弈中双方就进入了骑虎难下的状态。因为,每个人都这样想,如果我退出,我将失去我出的钱,若不退出,我将有可能得到这价值100元的物品,但是,随着出价的增加,他的损失也可能越大。每个人面临着两难:是继续叫价还是退出?

你会说,这个拍卖的规则不合理,在实际中这样的拍卖不会出现。当然这只是一个模型,但我们经常会看到此类型的博弈案例。这个博弈有一个纳付均衡:第一个出价人叫出100元的竞标价,另外一个人不出价(因为在对方叫出100元的价格后,他继续叫价将是不理性的),出价100元的参与人得到该物品。

在冷战期间,美苏为争夺霸权拼命发展武器,无论是原子弹、氢弹等核武器的研制,还是如隐形战斗机这样的常规武器的研制,双方均不甘落后。20世纪80年代,里根在位时准备启动“星球大战”计划,此举意味着两个超级大国的武器竞赛将进一步升级。美苏之间的武器竞赛就相当于拍卖中轮番出价,双方均不断出更高的价,如果一方没有出最高的价钱,退了下来,即没有继续竞赛下去,那么意味着它在军备上的投入没有效果,而对方将赢得整个局面。但如果继续竞赛下去,一旦支撑不住,损失也就越大。

1991年苏联的垮台在一定程度上是军备竞赛的结果。苏联将整个力量放在军备竞赛上,而民用建设无法跟上,国力不济,最终退下阵来。里根的“星球大战”计划其目的就是要拖垮苏联。

一旦进入骑虎难下的博弈,及早退出是明智之举,然而当局者往往做不到,这就是所谓当局者迷。这种骑虎难下的博弈经常出现在国家之间,也出现在企业或组织之间,当然个人之间也经常碰到。20世纪60年代,美国介入越南就是一个骑虎难下博弈。赌红了眼的赌徒输了钱还要继续赌下去以希望返本,也是骑虎难下博弈,其实,赌徒进入赌场开始赌博时,他已经进入了骑虎难下的状态,因为,赌场从概率上讲是肯定赢的。从理论上讲,赌徒与赌场之间的博弈如果是多次的,那么赌徒肯定输的,因为赌徒的“资源”与赌场的“资源”相比实在太小了。如果你的资源与赌场的资源相比很大,那么赌场有可能输的;如果你的资源无限大,只要赌徒有非0的赢的可能性,那么赌徒肯定会赢的。因此,像葡京这样的赌场要设定赌博数额的限制。

博弈论专家将这里的骑虎难下博弈称为协和谬误。20世纪60年代,英国和法国政府联合投资开发大型超音速客机,即协和飞机。该种飞机机身大、设计豪华并且速度快。但是,英法政府发现:继续投资开发这样的机型,花费会急剧增加,但是这样的设计定位能否适应市场还不知道;而停止研制将使以前的投资付诸东流。随着研制工作的深入,他们更是无法作出停止研制工作的决定。协和飞机最终研制成功,但因飞机的缺陷(如耗油大、噪音大、污染严重等等),它不适合市场,最终被市场淘汰,英法政府为此蒙受很大的损失。在这个研制过程中,如果英法政府能及早放弃飞机的开发工作,会使损失减少,但他们没能做到。

4.警察与小偷的故事——混合策略问题

纳什在《n人博弈的均衡点》这篇论文中,给出了均衡存在的简单证明,纳什说,在n个人的博弈中至少存在着一个均衡,在这点上双方均不愿意先改变策略。这里的均衡点有可能是混合策略点。人们称它为纳什定理。

什么是混合策略?

警察部门负责一城市中某一区的治安。警察要对该区的A、B两地进行巡逻。假定该区有一群小偷,要实施偷盗。警察要防止小偷的偷盗,但因为设备有限,只有一部警车,因此,警察只能一次在一个地方巡逻。而对于小偷而言,他们也只能去一个地方。假定A地需要保护的财产价值为2万元,B地的财产价值为1万元。若警察在某地进行巡逻,而小偷也选择了去该地,因警察在场,小偷无法偷盗该地的财物;若警察没有去某地巡逻而小偷选择了去该地,则小偷偷盗成功。警察怎么巡逻才能使效果最好?

一个明显的做法是,警察对A地进行巡逻,小偷去B地,这样,警察可以保住2万元的财产不被偷窃,小偷的收益为1万元。但是这种做法是警察的最好做法吗?有没有对这种策略改进的措施?

我们可以将警察与小偷之间的这个支付写成如下的支付矩阵。警察巡逻某地,偷盗者在该地无法实施偷盗,假定此时小偷的得益为0(没有收益),此时警察的得益为3(保住3万元)。

这个博弈也是常和博弈,它没有纯策略纳什均衡点,而有混合策略均衡点。这个混合策略均衡点下的策略选择是每个参与者的最优(混合)策略选择。

由此可见:纯策略是参与者一次性选取的,并且坚持他选取的策略;而混合策略是参与者在各种备选策略中采取随机选取的。在博弈中,参与者可以改变他的策略,而使得他的策略选取满足一定的概率。

当博弈是零和博弈与常和博弈时,即一方所得是另外一方的所失时,此时只有混合策略均衡。对于任何一方来说,此时

不可能有纯策略的占优策略。

5.《三国演义》中的空城计与信息不对称的博弈

如果我们用博弈论的眼光看《三国演义》,三国演义完全是一部记载着许多博弈案例的著作。当然,罗贯中不可能用“博弈”一词。如果我们用一词来概括《三国演义》,这个词就是“计”。计,即计策或策略也。用计,即用策略赢对方。用计算敌,不仅要自己选择恰当的计策,而且要算准对方用什么计策,这不就是博弈?现在让我们看《三国演义》中著名的空城计博弈。

诸葛亮误用马谡,致使街亭失守。司马懿引大军十五万蜂拥而来。当时孔明身边别无大将,只有一班文官,五千军士,已分一半先运粮草去了,只剩二千五百军士在城中。众官听得这个消息,尽皆失色。孔明登城望之,果然尘土冲天,魏兵分两路杀来。孔明传令众将旌旗尽皆藏匿,诸军各收城铺。打开城门,每一门用二十军士,扮作百姓,洒扫街道。而孔明乃披鹤氅,戴纶巾,引二小童携琴一张,于城上敌楼前凭栏而坐,焚香操琴。司马懿自飞马上远远望之,见诸葛亮焚香操琴,笑容可掬。司马懿顿然怀疑其中有诈,立即叫后军作前军,前军作后军,急速退去。司马懿之子司马昭问:“莫非诸葛亮无军,故作此态,父亲何故便退兵?”司马懿说:“亮平生谨慎,不曾弄险。今大开城门,必有埋伏。我兵若进,中其计也。”孔明见魏军退去,抚掌而笑,众官无不骇然。诸葛亮说,司马懿“料吾生平谨慎,必不弄险;见如此模样,疑有伏兵,所以退去。吾非行险,盖因不得已而用之”,我兵只有二千五百,若弃城而去,必为之所擒。

这就是为后人广为传颂的空城计。这是一个信息不对称的博弈。

这里,司马懿不知道自己和对方在不同行动策略下的支付,而诸葛亮是知道的,他们对博弈结构的了解是不对称的,诸葛亮拥有比司马懿更多的信息,当然有。这种信息的不对称完全是诸葛亮“制造出来的”。因此这是一个信息不对称的博弈。

在这里,孔明可以选择的策略是“弃城”或“守城”。无论是“弃”还是“守”,只要司马懿明确知道他自己的支付,那么孔明均要被其所擒。孔明惟一的办法就是不让司马懿知道他自己的策略结果。他的空城计是降低司马懿进攻的可能收益,使得司马懿认为,后退比进攻要好。

司马懿孔明进攻后退守城(被擒,大胜)(逃脱,不胜不败)弃城(被擒,大胜)(逃脱,不胜不败)

在信息不充分的情况下,博弈参与者不是使自己的支付或效用最大,而是使自己的“期望支付(或效用)”最大。比如:如果让你在“有50%的可能获得100元”与“有10%的可能获得200元”两者之间进行选择,你当然选前者,因为前者的“期望所得”为:50%×100=50元,而后者为:10%×200元=20元。理性的人是选择前者的。

在孔明—司马懿的博弈中,孔明了解双方的局势,制造空城假象的目的就是让司马懿感到进攻有较大的失败的可能。如果我们用概率论的术语来说,诸葛亮的做法是加大司马懿对进攻失败的主观概率。此时,在司马懿看来,进攻失败的可能性较大,而退兵的期望效用大于进攻的期望效用。即:司马懿认为进攻的期望效用低于退兵的效用。诸葛亮惟有通过这个办法,才能让司马懿退兵。

司马懿想,诸葛亮一生谨慎,不做险事,只有设定埋伏才可能如此镇定自若,焚香操琴。此时,司马懿觉得“退”比“进攻”更合理,或者说期望效用更大。于是后军变前军,前军变后军,后退而去。结果是诸葛亮得以逃脱。

司马懿对局势的判断不是没有道理的,他对诸葛亮的判断是基于以前的认识,这就是“归纳法”,我们会在第六章中讨论归纳法在博弈中的作用及其局限。

空城计博弈是不完全信息博弈,我们说过《三国演义》是一本博弈实战教材,在该书中有完全信息博弈实例吗?当然,曹操与诸葛亮的华容道博弈就是一个完全信息博弈。

曹操亲领八十万大军进攻东吴,孙权和刘备联合破曹,曹军大败。曹操引兵而逃。经过一路厮杀,来到一处,军士报:前方有两条道路,请问丞相走哪条路?曹操问:哪条路近?军士说:大路稍平,却远五十余里。小路投华容道,却近五十多里。曹操令人上山观望,回报:小路山边有数处狼烟,大路并无动静。曹操叫走华容道。诸将问:烽烟起处必有军马,何故反走这条路?曹操说:岂不闻兵书有云:“实则虚之,虚则实之”。诸葛亮多谋,故使人于山僻放烟,使我军不敢从这条路走,他却伏兵于大路等着。吾已料定,偏不教中他计。诸将皆曰:丞相妙算,人不可及。遂曹兵走华容道。但关羽依着诸葛亮的妙计在华容道等着曹操,于是关羽上演了一场“只为当初恩义重,放开金锁走蛟龙”的捉放曹的义举。逃过华容道大难,曹操只剩二十七骑!

在曹操与诸葛亮之间的这一华容道博弈中,曹操的策略是在走华容道还是走大路之间进行选择,而诸葛亮派关羽埋伏时,要在埋伏在大路还是埋伏在通往华容道的小路之间进行选择。

华容道博弈曹操诸葛亮华容道大路——0.1华容道(捉住曹操,被捉)(白等,逃脱)大路(白等,逃脱)(捉住曹操,被捉) 这个博弈如同猜硬币的游戏一样,是一“零和博弈”所谓“零和博弈”是指双方的得益之和为一常数零,一方所得增加,另一方所得便减少。而“变和博弈”是指博弈双方的所得之和为一变数。,它没有纳什均衡点。双方对博弈有完全的信息,各种策略下的博弈支付是公共知识——我们下一章将说明什么是公共知识。但双方无法知道对方的策略选择,而只能进行猜测。曹操要选择走诸葛亮的军队不在的路,这是他的最优的结果。而诸葛亮的最优结果是埋伏在曹操要走的路上。

诸葛亮制造埋伏在大路的假象,其实则派关羽埋伏在小路。这里关键是谁能真正猜到对方的策略,谁就是赢家。诸葛亮胜曹操一筹。这个博弈不存在纯策略纳什均衡点,博弈结果是:曹操选择了走华容道,结果被抓;关羽在华容道守候,抓住了曹操。