文档库 最新最全的文档下载
当前位置:文档库 › 驼峰三部位缓行器制动、缓解时间异常问题分析处理

驼峰三部位缓行器制动、缓解时间异常问题分析处理

驼峰三部位缓行器制动、缓解时间异常问题分析处理
驼峰三部位缓行器制动、缓解时间异常问题分析处理

驼峰三部位缓行器制动、缓解时间异常问题分析处理

摘要:本文针对3起驼峰三部位缓行器制动、缓解时间异常问题进行分析,对具体问题提出了解决方案。

关键词:驼峰三部位缓行器;三位五通换向阀;制动时间;缓解时间

0 引言

我国编组站驼峰自动化从上世纪90年代至今得到了迅速的推进和普及,基本实现了货物列车高效、安全的解编作业。随着铁路大提速,铁路货物发送量呈现大幅增长态势,编组站解编压力越来越大。由于驼峰解体作业速度控制的复杂性,三部位速度控制异常给安全生产带来的负面影响不容忽视,如何通过设备和技术上的提高以及分析能力的增强提高对异常情况的处理是我们值得研究的课题,本文针对实际工作中碰到的一些案例组织进行分析,对具体现场工作者具有一定参照价值。

1 故障案例

案例1: X月X日驼峰楼内工区分析减速器制动、缓解时间记录19道后台缓行器制动时间为2991ms,超出正常范围1000ms以上。《维规》规定:T.JK2-B、A(50)型全制动时间不大于0.6s;T.JK1-D型全制动时间不大于0.5s。

案例2: X月X日驼峰楼内工区分析减速器缓解、制动时间记录20道前台缓行器制动时间为3010ms,超出正常范围2000ms以上。

案例3: X月X日驼峰解38013次第010勾31道1辆车,测长488米,三部位入口速度12.3 Km/h,定速6.5Km/h,出口速度为0 Km/h,车辆被夹停在缓行器区段上。前台缓行器全缓解时间为1000ms,超出正常范围300ms。《维规》规定:T.JK2- A(50)全缓解时间为0.9s;T.JK2- B(50)全缓解时间为0.6s T.JK1-D(50)全缓解时间为0.7s。

2 原因分析

2.1 案例1分析

查看该勾走行概要图一:

图一

分析结果:查看同一时间微监开关量采集信息,19道后台缓行器制动命令继电器J319-ZJ2有吸起记录,手动操纵观察19道继电器的状态,J319-ZJ2吸起,J319-ZBJ2吸起相对滞后。判断19道后台缓行器制动受阻,造成缓行器制动时间过长。

入所分解三位五通阀,发现制动位电磁先导阀密封垫破损,渣子堵住了A→O通道,与A口相接的腔体气体无法由O排向大气,活塞无法转换。

解决措施:现场人员操纵19道后台缓行器,动作非常慢。更换三位五通换向阀后,操纵测试19道后台缓行器,制动时间为646ms,如图三。

图二

分析:后台缓行器发出制

动命令后给出制动表示

很慢(粉红色为后台发

令,黄色为缓解表示)电磁先导阀图形符号

图三2.2 案例2分析

查看该勾走行概要图四:

图四

分析结果:查看同一时间的微监开关量采集信息,20道前台缓行器制动命令继电器J320-ZJ1有吸起记录。判断20道前台缓行器没有制动,缓行器制动时间报长。

现场操纵前台缓行器没有动作,测试电磁先导阀有20V电压,判断该三位五通换向阀故障。

将故障的三位五通换向阀入所修,测试先导电磁换向阀阀体孔径为12.6-12.7mm,公差偏大有0.1mm,如测试阀芯的直径为12.3mm,与使用正常的阀芯直径一样,如图六。

分析:前台缓行器发出制动命令后没有给出制动表示(黄色为缓解表示)

判断20道前台缓行器不制动的原因是阀芯的密封圈不耐油,阀芯在换向阀阀体活动阻力增大造成。

解决措施:修配工区将同批次的57个换向阀阀体退回厂家,并要求厂家提供先导电磁换向阀阀体孔径值和耐油密封圈。

图五案例3分析:

查看该勾走行概要图七

图六

图八

原因分析:车子进入前台缓行器时,计算机发出制动命令(输出栏紫色表示前台发制动命令),前台缓行器在制动轨的侧压下,速度下降,当达到定速6.5Km/h时,计算机发出缓解命令(输出栏黄色表示发缓解命令),由于从计算机发出缓解命令到缓行器缓解到位这一过程的时间很长,造成车辆被夹停在缓行器上,速度降为0 Km/h。

新电磁先导阀K23JD-10T/DC24V 与线圈不匹配造成,现场线圈阻值有两种:88ΩEVI7/9 6.5W和120ΩK23JD-10T,如图八。缓行器工区更换该股道的三位五通换向阀备品时,没有同步更换120Ω的线圈,仍用阻值为88Ω的线圈带动新式先导阀阀芯动作,而新式先导阀的阀芯、弹簧硬度、弹簧长度与旧先导阀不一样,88Ω的线圈端电压较低,电磁得电时,动铁芯克服小弹簧的压力较小,被吸移动距离不足以打开进气孔,推动活塞移动,从而推动阀芯转换。

先导电磁阀工作原理:气动控制系统主要由先导电磁换向阀、三位五通换向阀等组成。先导电磁阀为单电控二位三通阀,P为进气口,A为工作口,O为排气口。电磁阀无控制电源时,电磁铁无磁力,动铁芯靠弹簧的压力,其前端头将推动活塞动作的进气孔封堵。阀芯靠复位弹簧的压力切断A→O 通道,接通P→A通道,气体由P口进入,经阀内通道由A口输出。电磁阀得电时,电磁铁励磁,动铁芯克服小弹簧的压力被吸移动,与固定静铁芯相接触,动铁芯后端头将静铁芯与大气相连的排气孔封堵,动铁芯前端头将原封堵的进气孔打开,气体进入气室,推动活塞移动,活塞又推动阀芯克服复位弹簧的压力而转换。阀芯的转换切断P→A通道,接通A→O通道,与A口相接的腔体气体由O口排向大气。

电磁阀失电失,电磁铁失磁,动铁芯由小弹簧的弹力的作用,与静铁芯分离,动铁芯后端头将打开封堵的排气孔,动铁芯前端头将进气孔封堵,气室内的气体由打开的排气孔泄压,同时通过复位弹簧的压力使阀芯复位,切断A→O通道,接通P→A通道。

解决措施:现场更换成套备品后,测试前台缓行器缓解时间为650ms,恢复正常使用。

3 总结

3.1 从缓行器制动、缓解时间分析可以判断缓行器机械部分或者气路部分动作是否正常。全制动时间是指:从发出制动命令到给出制动表示的时间。全缓解时间是指:从发出缓解命令到给出缓解表示的时间。制动时间长就会超速,缓解时间长就会夹慢或夹停,在此基础上,如果隔勾车办理加速推送,会导致撞重勾的严重后果。如图九,前勾车因夹慢尚未出清缓行器区段,本道雷达接收到临道勾车速度后发出制动命令,造成前勾车本应

缓解出去又被制动,前后隔勾车辆在缓行器上追勾。缓行器制动、缓解时间的日分析非常重要,楼内工区人员应人人掌握分析方法,不断总结经验,提高分析能力。

3.2 外界原因造成缓行器缓解慢不可避免,雷达受邻道干扰目前也没有好的解决方法,驼峰调车长应掌握推峰速度,必要时进行手动干预或停轮处理。

3.3 加强三位五通换向阀和先导电磁换向阀的备品管理,因现场小缓设备型号多,三位五通换向阀和先导电磁换向阀故障必须成套更换。

另外,三位五通换向阀底座的密封垫圈破损难以发现,因此,小缓工区进行三位五通换向阀周期轮换时,必须使用组合工具同步更换底座的密封垫圈。

3.4 严把产品质量验收关。对裂纹的风杯、规格及型号不达标和测试数据不达标的部件均要淘汰,严禁上道使用,提高出所质量。

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

TJK(YD)系列浮轨重力式驼峰车辆减速器

T?JK(Y、D)系列浮轨重力式驼峰车辆减速器 车辆减速器是驼峰编组站中设置在线束或股道的车辆调速设备,与驼峰控制系统配合,用来对溜放中的车辆进行速度控制,使车辆保持适当间隔或者溜入调车线的速度满足安全连挂要求。 50多年来,通号所共研制出适于大、中、小驼峰调车场使用的液压、气压和电动3大系列28种型号的减速器,在全国16个铁路局100多个驼峰调车场安装使用8500多台。其中T?JK(Y)3-A50和T?JK(Y)3-B50型减速器已在全国数十个驼峰调车场安装了560多台。T?JK(Y、D)2-B50型减速器已在全国数十个驼峰调车场安装了2700多台。 通号所研究开发的这些系列产品,技术先进、经济和社会效益显著、推广应用前景良好、完全属于具有自主知识产权的科研成果。仅驼峰车辆调速设备部分,累计获得部级以上科技成果13项,起草铁道行业标准10项,出版专著5部、获国家专利17项。这些成果中获国家发明、科技进步等国家及部级奖励9项,列为国家重点新产品2项。技术水平国内领先,国际先进。 目前推广使用的减速器系列: 3B系列:T?JY3-B50、T?JK3-B50型; 2B系列:T?JY2-B50、T?JK2-B50、T?JD2-B50型。 3B和2B系列均为适合重载的车辆减速器,适合全国各大、中、小驼峰调车场。 T?JK3-B50型间隔制动减速器

T?JY3-B50型间隔制动减速器 T?JK(Y)2-B50型目的制动减速器

T?JD2-B50型电动目的制动减速器 减速器主要技术特点: 1)采用组合式轨枕板(专利号:ZL 2003 2 0130339.0) 增加寿命,方便维修。 2)采用开放式钢轨承座(专利号:ZL 2005 2 0108610.X) 解决钢轨承座无法更换问题,方便维修。 3)钢螺纹尼龙螺旋套管(专利号:ZL 2007 2 0142128.7) 强度高,寿命长,绝缘好,便于维修。 4)一种电动调速单元(专利号:ZL 2005 2 0109823.4) 彻底解决电动减速器电机断轴问题。功率小、电流小、扭矩大、可靠性高。 5)3B系列减速器制动轨可采用75kg/m钢轨 3B系列减速器制动轨采用75kg/m钢轨,制动轨使用寿命长,稳定性好。 新技术的应用 1. 钢台座轨道板技术的应用 车辆减速器专用钢台座轨道板技术是基础方面的重大升级。借鉴高铁轨道板,设计了减速器专用钢台座轨道板。主要特点如下: 1) 简化基础形状,使用规则大平面,去掉高出的承轨台部分;

盘式制动器说明书

第二章可控自冷盘式制动器 K P Z— / ?? ?? 制动器副数?规格 ?? ?制动盘直径 ?? ?制动 ?? ?盘式 ?? ?可控 ?? ?KPZ型号含义 1.可控盘闸系统的选用型号含义 2. 结构特征与工作原理 2.1 机械系统结构及工作原理 ?? ?1 电动机;2 联轴器;3 牵引体;4 传动轮;5 联轴器;6 垂直轴减速器;7 制动盘;8 弹簧;9 活塞;10 闸瓦; 11 油管 图1 制动装置布置图 自冷盘式可控制动装置主要由制动盘,液压制动器(含活塞、闸瓦、弹簧等),底座,液压站等组成,图1是制动装置在系统中的布置示意图。它主要由制动盘7和液压制动器(8,9,10)等组成。盘式制动装置的制动力是由闸瓦10与制动盘7摩擦而产生的。因此调节闸瓦对制动盘的正压力即可改变制动力。而制动器的正压力N 的大小决定于油压P与弹簧8的作用结果。当机电设备正常工作时,油压P达最大值,此时正压力N为0,并且闸瓦与制动盘间留有1-1.5mm的间隙,即制动器处于松闸状态。当机电设备需要制动时,根据工况和指令情况,电液控制系统将按预定的程序自动减小油压以达到制动要求。 2. 盘式制动器的安装说明: 2.1 盘式制动器主机的安装: 盘式制动装置安装前要准确测定位置及距离。通常制动盘与减速器的某一低速轴相连,也可以直接与驱动轮连接实现各种工作制动。 安装制动器时制动闸座与底座安装必须对中安装。制动盘安装后要求盘面的旋转跳动量≤0.1mm,闸盘与闸瓦的平行度≤0.2mm。盘式制动器在松闸状态下,闸瓦与制动盘的间隙为1~1.5mm;制动时,闸瓦与制动盘工作面的接触面积不应小于80%。

安装于减速机倒数二轴上安装于滚筒轴上 电动机; 2-联轴器; 3-牵引体; 4-传动轮; 5-联轴器; 6-减速器; 7-制动盘; 8, 9, 10-液压制动器; 11-油管 图2 制动装置安装布置示意图 其中制动盘安装分两种情况,1、胀套联接2、键连接 2.2 盘式制动装置的连接方式 胀套联接 KZP自冷盘式可控制动装置胀套联接 胀套示意图 表3 安装尺寸表 和无损伤。在清洗后的胀套结合面上均匀涂一层薄润滑油(不含二硫化钼等极压添加剂),预装到滚筒轴上。把制动盘推移到滚筒轴上,使达到设计规定的位置,然后按胀套拧紧力矩的要求将胀套螺钉拧紧。 拧紧胀套螺钉的方法: (1) 使用扭矩扳手,按对角、交叉的原则均匀的拧紧。 (2) 拧紧螺钉时按以下步骤拧紧: a. 以1/3MAX值拧紧 b. 以2/3MAX值拧紧 c. 以MAX值拧紧 d. 以MAX值检查全部螺钉 安装完毕后,在胀套外漏端面及螺钉头部涂上一层防锈油脂,并进行整体二次灌浆。

电务·驼峰减速器信号工

驼峰减速器信号工 1.什么是难行车?什么是易行车? 答:走行阻力大,溜放起来比较困难的车辆称为难行车。走行阻力小,溜放起来比较容易的车辆称为易行车。 2.驼峰场溜放车组间钩距及车组过岔速度有何规定? 答:溜放车组的钩距应不小于20米,车组过岔最大速度:在自动化、半自动化、机械化驼峰为6.4 m/s 。 3.车辆限界检查器机械部分的要求? 答:车辆限界检查器安装位置正确,各部螺栓紧固,转动轴在轴架上转动灵活,检查板应在同一轴线上,并与轨道垂直。 4.对车辆限界检查器接点的要求? 答:接点接触可靠,当检查板倾斜10°-15°时,接点断开应大于2毫米。 5.车辆限界检查器接点在正常情况下断开证明什么?在电路上实现什么? 答:接点断开说明即将溜放的车组的下部限界侵入减速器上部限界。在电路上实现切断推峰信号,同时向调车人员发出报警。 6.压力表应如何选择其量程? 答:风压表、油压表应指示正确,各表的最大量程以工作压力指示在其满量程的2/3左右为宜。 7.减速器的外观要求? 答:减速器安装牢固、方正、部件无变形,无裂纹,各部螺栓完好并处于紧固状态,各转动部分转动灵活,不得有卡滞不转现象,减速器经常保持外观整洁。 8.重力式减速器对基本轨底部与钢轨承座承轨面有何要求? 答:浮轨重力式减速器在制动位置时,基本轨底部距钢轨承座承轨面应保持2-6mm的间隙。 9.连接减速器的管路有何要求? 答:各种管路接头及阀门密封作用良好,不得漏气、不得漏油成滴。 10.减速器连接风缸的胶管是如何规定的? 答:连接风缸、油缸的胶管不得有漏油、漏气、变形及其它异状,外表面不得有严重龟裂老化,不得与其它零部件相碰。 11.减速器表示装置应符合要求? 答:减速器制动、缓解表示接点动作良好,接触可靠,接点位置与制动、缓解位置相一致。 12.减速器控制部分应符合标准? 答:(1)减速器控制箱、阀门、管路油饰均匀 (2)减速器控制阀箱内阀体安装牢固,清洁无杂物 (3)控制电源开关位置正确、作用良好、配线整齐。 13.减速器入口速度是如何规定的? 答:减速器在制动时,车辆入口速度应不大于7m/s 。 14.减速器工作气缸的额定压力及工作压力范围是多少? 答:额定工作压力0.8Mpa,工作压力范围是0.6-0.8Mpa,在空载状态下,最低启动压力应小于0.1 Mpa。 15.TJK1-C、TJK1-D型减速器表示接点与磁座间距是多少? 答:TJK1-C型减速器表示接点与磁座间距是4-6mm。TJK1-D型减速器表示接点与磁座间距是5-15mm。 16.间隔制动位TJK减速器规定的全制动、缓解、全缓解时间是多少? 答:全制动时间不大于1.4s ,缓解时间不大于1.23s ,全缓解时间不大于1.94s 。 17.TJK1-C型减速器规定的全制动、缓解、全缓解时间是多少? 答:全制动时间不大于0.8s ,缓解时间不大于0.5s ,全缓解时间不大于0.9s 。 18.TJK1-D(50)型减速器规定的全制动、缓解、全缓解时间是多少? 答:全制动时间不大于0.5s,缓解时间不大于0.4s ,全缓解时间不大于0.7s 。 19.减速器电磁阀额定电压及工作电压范围是多少? 答:电磁阀额定电压直流20V,工作电压范围是20-30V之间。

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

驼峰车辆减速器(内撑式)问题分析与改进研究

驼峰车辆减速器(内撑式)问题分析与改进研究 摘要对驼峰车辆减速器(内撑式)的问题进行了简单的分析,综合实际状况提出了改进的对策与手段,以供参考研究。 关键词驼峰车辆减速器;问题;改进研究 内撑式车辆减速器设备通过对进入铁路驼峰调车场目的制动位的车辆轮对内侧面进行摩擦制动,达到调速要求的装置,是驼峰车辆作业系统中最为先进、稳定以及有效的减速工具之一,其主要就是基于减速器作为基础,由动力控制单元和执行装置构成。车辆减速器设备的工作稳定性、安全性以及可靠性都直接影响其整体性能,加强对检测铁路产品的信号监测分析,了解性能指标,基于规定要求系统分析,可以保障车辆的稳定运行。 1 表示器磁固定不良 1.1 检测问题分析 表示器主要就是通过制动以及缓解各1个组成的干簧继电器以及磁钢构成的系统。干簧继电器与磁钢的安装距离主要就是横向8mm~15mm范围内,纵向的数值为15~30mm。在制动或者缓解的过程中,其制动以及缓解干簧继电器的闭合接点连接车辆减速器设备的制动以及缓解则表示电路系统。因为磁钢的材质相对较为脆弱、整体强度相对较低,在紧固磁钢的过程中要保障力度适宜,避免出现磁钢断裂等问题。同时,因为磁钢没有放松形态,会受到车辆减速器设备的制动以及缓解影响之下导致出现移位的状况;在磁钢移位超过既定距离的时候,就会导致车辆减速器设备制动或者缓解不正常的问题。 1.2 改进研究 在对其进行改建优化过程中,可以在磁钢的紧固螺栓上增加放松卡。在固定磁钢的螺栓拧紧之后螺栓不会松动,这样就可以避免因为松动导致的质量问题。在进行处理过程中,在进步磁钢螺帽之前,要调整磁钢磁头以及干簧继电器之间的距离,保障干簧继电器动作灵活,其接点位置的可靠性,进而保障其表示正确,然后在基于车辆减速器的标准进行检查,进而保障其各项指标合格[1]。 2 电控换向阀瞬间断电 2.1 电控换向阀瞬间断电故障分析 (1)电控换向阀的电磁线圈以及插座之间接触不良,因为电磁线圈是通过简单的插接方式与控制电路进行连接,在插座上没有进行加固处理;同时,在插座里面的金属铜片中仅仅是通过小弹簧的压力作用保障其与电磁线圈以及控制电路之间的电气连接,弹簧自身的压力数值有限。此种结构在应用过程中,受到

湿式盘式制动器

第2章制动器理论分析 2.1 设计原始参数 1.在水平干硬路上面上,制动器在额定载荷下制动时制动初速度Vo=20km/h,制动距离小于等于8m。 2.车辆承载 1.5倍载荷在规定坡道16o时保持静止,整车最大装载质量4000kg,整车整备质量3000kg。 3.车辆应设置工作制动,工作制动的最大静态制动力应大于整车的最大质量的50%。 4.车辆应设置停车制动,停车制动应在车辆运行和动力停止运行时均起作用。停车制动装置要保证车辆在规定的坡道上承载 1.5倍最大载荷,在最大为16O的坡道上能保持静止状态。 2.2 汽车制动性能 汽车制动性能好坏,是安全行车最重要的因素之一,因此也是汽车检测诊断的重点。汽车具有良好的制动性能,遇到紧急情况,可以化险为夷;在正常行驶时,可以提高平均行驶速度,从而提高运输生产效率。 汽车制动性能通常是由制动效能、制动效能恒定性和制动时汽车方向稳定性这三个方面来评价的。 制动效能是指汽车迅速降低行驶速度直至停车的能力,是制动性能最基本的评价指标。它是由制动力、制动减速度、制动距离、和制动时间来评定;制动距离是指车辆在规定的初速度下急踩制动时,从脚接触制动踏板(或手触动制动手柄)时起至车辆停住时止,车辆驶过的距离。制动距离与踏板力以及地面的附着情况有关;制动距离越短性能越好;制动减速度反映了制动时汽车速度降低的速率,与地面制动力与制动器制动力有关,制动减速度越小性能越好;制动时间是制动过程所经历的时间,时间越短性能越好。 制动效能恒定性是指制动器的抗热衰退性和抗水衰退性;抗热衰退性能是防止车辆高速制动、短时间重复制动或下长坡连续制动时,制动器温度上升,摩擦力矩显著下降这些现象。水衰退性是指当车辆涉水后,制动器因为进水使其短时间内制动效能降低这种现象,这是由于制动器进水后摩擦系数下降,使其制动效能降低,不过由于制动器工作时会散热,就会使水迅速蒸发,使得制动效能恢复。

驼峰

1驼峰定义:指将调车场始端道岔区前的线路抬到一定高度,主要利用其高度使车辆自动溜到调车线上,用来解体列车的一种调车设备。(驼峰形似骆驼的峰背,故称驼峰。它面向调车场有一段较陡的坡度,调车时溜放的动力以其本身的重力为主。) 2驼峰的分类:按解体能力分为:小能力驼峰,解体能力200~2000辆,调车线5~16条,应设1条禁溜线;中能力驼峰,解体能力2000~4000,调车线17~29条,宜设1~2条禁溜线;大能力驼峰,解体能力4000辆以上,调车线一般不少于30条,2条禁溜线。 3驼峰的主要设备:1,调速工具,主要有铁鞋,车辆减速器,减速顶,加减速顶和可控顶。2,进路控制和信号设备,3,照明,通信,广播设备及技术办公房屋等。 4调速分类:间隔调速:为了保证在溜放部分道岔和减速器的安全转换,前后溜放勾车在道岔和减速器上的最小间隔时间;目的调速:保证勾车在调车场内以某一速度溜行一定距离以后能以规定的速度与停留车安全连挂。5,调速系统的分类:1,点式调速系统,采用减速器,特点:溜行速度高,解体效率高,提供的制动力大,但是精度不够,因为测量设,备和减速器的误差加在一起,所以安全连挂率不高;2,点连式调速系统:由减速器和减速顶相结合或减速器和推送小车结和的点连式调速系统,特点:;3,连续式调速系统:全部采用减速顶;特点:精度高,安全连挂率高达98%但是效率低,溜行速度低; 6,我国铁路由于车辆安全连挂速度低,(5km/h以下),车辆溜放阻力离散度大,允许连挂速度低,要求溜行距离远,以及驼峰作业量大等运营特点,采用点连式调速系统。 7,制动位:放置减速器的位置 8,减速器目前我国采用的车辆减速器都是钳夹型,按其制动力的来源分为重力式和压力式,重力式减速器的制动力产生于车辆本身的重力,制动力的大小与车辆的重量无关成正比,压力式减速器的制动力产生于外界动力源,其制动力的大小与车辆重量无关,不能随车辆的重量自行调节。9,减速顶的组成:1,壳体2,滑动油缸a,速度阀:提供速度的临界值,b,压力阀:产生制动力,保证油缸压下去,c,回程阀:滑动油缸缓慢回升。 10,减速顶的工作原理:1、车速低于临街速度时:当车辆溜放速度低于减速顶所调定的临界速度时,吸能帽因受力而慢速向下滑行,迫使吸能帽上腔的油液刘静速度阀环形缝隙而充满吸能帽的下腔。但由于它产生的压差很小,不足以客服支撑弹簧的预压力,因此速度阀板始终保持开启状态,是上下腔油路沟通,不能形成压力,所以减速顶对车辆不起减速作用。同时,吸能帽上腔的氮气,由于吸能帽的位移而被压缩。2、车速高于临界速度时:当车辆溜放速度高于减速顶所调定的临界速度时,吸能帽下滑速度很快,吸能帽上腔的油液刘静速度阀环形缝隙使速度阀板上下形成较大压差,克服了支撑弹簧的预压力,于是速度阀板立即关闭。速度阀板关闭后,吸能帽继续下滑,迫使吸能帽上腔的氮气压缩,压力急剧上升直到将压力阀打开。由于油液以一定的压力通过压力阀而消耗功,因此减速顶便对车辆起制动作用。3、当车轮轮缘通过吸能帽的定点之后,吸能帽上被压缩的氮气膨胀,而使吸能帽向上回升。此时,吸能帽下腔的油液通过回程阀孔将回程阀板推向活塞下端面,堵小孔,起到阻尼作用,使吸能帽以适当速度回升。 11,车流性质对驼峰的设计影响较大,当空车和不满载车所占的比重较大时,就要求峰高高些,反之可使峰高低些。 12,计算车辆:1,难行车为不满载的50t棚车,(p50),2,中型车为满载的50t敞车(C50),总重为700KN,3,易型车为满载的60t敞车(C65),总重为800KN。 13,能高:将单位重量的能量或阻力功用高度来表示。包括动能高,势能高,阻力高。14,动能高:单位重量的动能 15,势能高:单位重量的势能 16,阻力高:单位重量的阻力功 17,车辆溜放的过程中受力:重力,溜放阻力,推力制动力

盘式制动器设计说明书

错误!未找到引用源。盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻

盘式制动器设计说明书

盘式制动器设计说明书 一汽车制动系概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已经停驶的汽车保持不动,这些作用统称为汽车制动。 对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力,上坡阻力,空气阻力都能对汽车起制动作用,但这外力的大小是随机的,不可控制的。因此,汽车上必须设一系列专门装置,以便驾驶员能根据道路和交通等情况,借以使外界在汽车上某些部分施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力,统称为制动力。这样的一系列专门装置即成为制动系。 1 制动系的功用:使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠的停在原地或--=-坡道上。 2 制动系的组成 任何制动系都具有以下四个基本组成部分: (1)供能装置——包括供给、调节制动所需能量以及改善传能介质状态的各种部件。其中,产生制动能量的部位称为制动能源。 (2)控制装置——包括产生制动动作和控制制动效果的各种部件。 (3)传动装置——包括将制动能量传输到制动器的各个部件。 (4)制动器——产生阻碍车辆的运动或运动趋势的力的部件,其中也包括辅助制动系中的缓速装置。 较为完善的制动系还具有制动力调节装置以及报警装置、压力保护装置等附加装置。 3 制动系的类型 (1)按制动系的功用分类 1)行车制动系——使行使中的汽车减低速度甚至停车的一套专门装置。 2)驻车制动系——是以停止的汽车驻留在原地不动的一套装置。 3)第二制动系——在行车制动系失效的情况下,保证汽车仍能实现减速或停车的一套装置。在许多国家的制动法规中规定,第二制动系是汽车必须具备的。 4)辅助制动系——在汽车长下坡时用以稳定车速的一套装置。 (2)按制动系的制动能源分类 1)人力制动系——以驾驶员的肢体作为唯一的制动能源的制动系。 2)动力制动系——完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的制动系。 3)伺服制动系——兼用人力和发动机动力进行制动的制动系。 按照制动能量的传输方式,制动系又可分为机械式、液压式、气压式和电磁等。同时采用两种以上传能方式的制动系,可称为组合式制动系。 4 设计制动系时应满足如下主要要求: 1)具有足够的制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两相指标来评定的;驻坡能力是以汽车在良好路面上能可靠的停驻的最大坡度来评定的。详见GB/T7258-2004

电务·信号工(驼峰减速器)

行车岗位理论百题 电务2信号工(驼峰减速器) (2009年版) 哈尔滨铁路局职教办 电务处 前〒〒言 为使职工培训适应铁路快速发展的需要和提速培训需求,进一步加强职工培训的针对性、实用性和适度超前性。根据刘部长“按专业制定主要行车工种、关键岗位应知应会,编印成册,人手一份”的要求,路局职教办与有关业务处共同组织编写了《行车岗位理论百题》。 今年的《行车岗位理论百题》是在职教办组织下,由局业务处、站段教育科具有丰富现场实践经验的技术人员、职教人员、工人技师等共同编写,并经路局业务主管部门审定把关定稿,更新内容达25%以上,增加了10%的实作应急处理试题。其主要内容涵盖了主要行车岗位的基本规章、标准化作业、非正常情况下应急故障处理及“四新”知识等内容,它既可用于行车主要工种职工日常学习,又可供职工资格性及适应性岗位培训使用。 该《行车岗位理论百题》,由职教办王光辉、张玉成、周杰、徐波,电务处辛立明,哈尔滨职工培训基地霍泽军,哈尔滨电务段秦洪彦等同志进行编审。在此,对资料提供单位和编审人员及各单位审阅人员一并表示衷心的感谢。由于编写工作量大、有些规章内容还在时时变化,书中难免有疏漏和不当之处,恳请广大职工提出宝贵意见。 哈尔滨铁路局职教办 电务处 二OO九年四月十八日 电务2信号工(驼峰减速器) 1.什么是难行车?什么是易行车? 答:走行阻力大,溜放起来比较困难的车辆称为难行车。 走行阻力小,溜放起来比较容易的车辆称为易行车。 2.驼峰场溜放车组间钩距及车组过岔速度有何规定? 答:溜放车组的钩距应不小于20米,车组过岔最大速度:在自动化、半自动化、机械化驼峰为6.4 m/s 。 3.什么是减速器制动轨的开口距离? 答:减速器制动轨的开口距离:内、外侧制动轨轨顶面间的最小距离。 4.什么是减速器两条内侧制动轨间最小距离? 答:减速器两条内侧制动轨间最小距离是减速器在制动状态时,两条内侧制动轨的制动钳向股道内侧调整至结构最小位置时(用撬棍撬至)两内侧制动的制动面之间的尺寸。 5.什么是轨枕板左右方向? 答:站在峰顶,顺着车辆溜行方向,若减速器气缸位于股道左侧,则轨枕板为左轨枕板;反之为右轨枕板。

盘式制动器毕业设计

1.课题研究的目的及意义 汽车的设计与生产涉及到许多领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的形式速度和路面情况复杂程度的提高,更加需要高性能、长寿命的制动系统。其性能的好坏对汽车的行驶安全有着重要影响,如果此系统不能正常工作,车上的驾驶员和乘客将会受到车祸的伤害。 汽车是现代交通工具中用得最多、最普遍、也是运用得最方便的交通工具。汽车制动系统是汽车底盘上的一个重要系统,它是制约汽车运动的装置,而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性的要求越来越高,为保证人身和车辆安全,必须为汽车配备十分可靠的制动系统。 车辆在形式过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。 现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。 2.汽车制动器的国内外现状及发展趋势 对制动器的早期研究侧重于试验研究其摩擦特性,随着用户对其制动性能和使用寿命要求的不断提高,有关其基础理论与应用方面的研究也在深入进行。 目前,汽车所用的制动器几乎都是摩擦式的,可分为鼓式和盘式两大类。盘式制动器被普遍使用。但由于为了提高其制动效能而必须加制动增力系统,使其造价较高,故低端车一般还是使用前盘后鼓式。汽车制动过程实际上是一个能量转换过程,它把汽车行驶时产生的动能转换为热能。高速行驶的汽车如果频繁使用制动器,制动器因摩擦会产生大量的热量,使制动器温度急剧升高,如果不能及时的为制动器散热,它的效率就会大大降低,影响制动性能,出现所谓的制动效能热衰退现象。 在中高级轿车上前后轮都已经采用了盘式制动器。不过,时下还有不少经济型轿车采用的还不完全是盘式制动器,而是前盘后鼓式混合制动器(即前轮采用盘式制动器、后轮采用鼓式制动器),这主要是出于成本上的考虑,同时也是因为轿车在紧急制动时,负荷前移,对前轮制动的要求比较高,一般来说前轮用盘式制动器就够了。当然,前后轮都使用盘式制动器是一种趋势。在货车上,盘式制动器也有被采用的,但离完全取代鼓式制动器还有相当长的一段距离。 现代汽车制动器的发展起源于原始的机械控制装置,最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,那时的汽车重量比较小,速度比较低,机械制动已经能够满足汽车制动的需要,但随着汽车自身重量的增加,助力装置对机械制动器来说越来越显得非常重

乘用车盘式制动器设计(课程设计必备)

提供全套毕业论文,各专业都有 盘式制动器设计

目录 摘要................................................. 错误!未定义书签。 1 绪论.............................................. 错误!未定义书签。 1.1研究意义...................................... 错误!未定义书签。 1.2国内外发展现状................................ 错误!未定义书签。 1.3制动系统应具有的功能和应满足的要求 (3) 1.4课题任务 (3) 2 制动器方案的选择.................................. 错误!未定义书签。 2.1方案选择的依据................................ 错误!未定义书签。 2.2方案的选定.................................... 错误!未定义书签。 2.2.1制动器选择.............................. 错误!未定义书签。 2.2.2前、后制动器的选择 (4) 2.3行车制动器的标准和法规 (6) 3 制动器的主要参数及其选择 (7) 3.1 制动力与制动力分配系数 (7) 3.2 同步附着系数计算 (11) 3.3 制动器最大制动力矩 (14) 3.4 利用附着系数和制动效率 (15) 3.4.1利用附着系数 (16) 3.4.2制动效率E f、E r (17) 3.5制动器制动性能核算 (18) 4 制动器主要零件的设计计算 (18) 4.1制动盘主要参数的确定 (18) 4.1.1制动盘 (18) 4.1.2制动盘直径D (19) 4.1.3制动盘厚度h (19) 4.2摩擦衬块主要参数的确定 (20) 4.2.1 摩擦衬块内半径R1和外半径R2 (20) 4.2.2 摩擦衬块有效半径 (20) 4.2.3 摩擦衬块的面积和磨损特性计算 (21) 4.2.4 摩擦衬块参数设计核算 (23) 4.3液压制动驱动机构的设计计算 (24) 4.3.1制动轮缸直径d与工作容积V (24) 4.3.2制动主缸直径与工作容积 (25) 4.3.3制动踏板力 (26) 4.3.4踏板工作行程S (26) P 5 制动器主要零件的结构设计 (26) 5.1制动钳 (26)

盘式制动器-课程设计

盘式制动器-课程设计

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 (9)、轮胎参数:165/70R13; 轮胎有效半径为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径 (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则满足制动性能要求的制动减速度由:计

盘式制动器设计指南更新

3行车制动系统 3.1分系统—制动器总成 3.3.1制动器类型:盘 3.3.4制动钳的结构 制动钳的分类和结构可以参照其它资料,我公司的制动钳均属于浮动钳,目前前制动钳按照缸数分有单缸和双缸(例如P11、B13)两种,后制动钳皆为单缸,B11后制动钳为综合驻车式制动钳,除了可以实现行车制动外还能够实现驻车的功能。 浮动式制动钳的结构型式主要有:

滑轨式 导向销式:我公司目前采用的均为此种型式。有的导向销在钳体上(B14后钳),有的在支架上(B11前钳);有的没有制动钳支架而是固定在转向节或者制动底板(T11后钳)等其它零件上。

综合起来就是: 下面我们来看一下制动完以后的回位原理:

密封圈与钳体和活塞的细节关系如下: 未工作时 工作时

制动钳 支架和钳体一般为铸造件,材料大部分为球墨铸铁,现在有的制动钳开始使用新的材料,如B11后制动钳钳体采用铝合金材料。 在浮动式制动钳中,钳体只承受轴向力;主要是作用在制动钳钩爪上外制动块给卡钳的反作用力,还有作用在卡钳缸孔底部的液压力,如下图所示。 图所示。

这种变形所导致的后果是非常严重的,将产生制动块、制动盘径向偏磨,在制动过程中制动块与制动盘接触不均匀而导致局部过热,进而导致制动盘的磨损不均匀。 鉴于以上的问题,抵抗这种变形是设计卡钳时首先要考虑的,即卡钳必须具有一定的轴向刚度。在卡钳材料一定的情况下,在这里起关键作用的是卡钳的缸背的厚度,缸径51mm以上的卡钳该厚度一般控制在11mm-14mm之间,如下图所示 除此之外,钩爪内过度圆弧,以及观察孔的位置都对卡钳的刚度有影响。遵循的规则是:在允许的情况下尽量采用大的过渡圆角,并且将观察孔尽可能的缩小其轴向长度,但不允许越过制动盘为工作面。 在卡钳的设计阶段CAE分析必不可少,由于卡钳属对称件,为了方便划分网格并缩短计算时间,通常将卡钳从对称面分割开,如下图所示。

盘式制动器设计

目录 绪论 (1) 一、设计任务书 (1) 二、盘式制动器结构形式简介 .................... 错误!未定义书签。 2.1、盘式制动器的分类....................... 错误!未定义书签。 2.2、盘式制动器的优缺点..................... 错误!未定义书签。 2.3、该车制动器结构的最终选择............... 错误!未定义书签。 三、制动器的参数和设计 ........................ 错误!未定义书签。 3.1、制动盘直径 ............................ 错误!未定义书签。 3.2、制动盘厚度 ............................ 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径............... 错误!未定义书签。 3.4、摩擦衬块面积 .......................... 错误!未定义书签。 3.5、制动轮缸压强 .......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算........... 错误!未定义书签。 3.7、制动力矩的计算和验算................... 错误!未定义书签。 3.8、驻车制动计算 .......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 .............. 错误!未定义书签。 4.1、制动盘 ................................ 错误!未定义书签。 4.2、制动钳 ................................ 错误!未定义书签。 4.3、制动块 ................................ 错误!未定义书签。 4.4、摩擦材料 .............................. 错误!未定义书签。

盘式制动器的发展与现状

工学院毕业设计(论文综述) 题目:普通轿车前轮盘式制动器的设计 专业:车辆工程 班级: 07车辆(4)班 姓名:徐玉林 学号: 21 指导教师:李同杰 日期: 2010年12月 盘式制动器的现状与发展趋势 车辆工程07级(4)班 学号:21 姓名:徐玉林 指导教师:李同杰 摘要:现今盘式制动器在汽车上的应用越来越普遍,其优越性也越来越明显。本文 主要介绍了盘式制动器的发展历程和现状以及其发展趋势,并对国外先进的制动器 制造和应用技术进行大体的介绍,同时针对我国汽车工业的发展提出了建议和展 望。 关键词:现状发展趋势 Pro/E 盘式制动器 一、盘式制动器介绍 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,点击放大图片主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。

盘式制动器由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小,制动性能稳定。[1] 结构型式主要有点盘式和全盘式。点盘式:由于摩擦面仅占制动盘的一小部分,故称点盘式。有固定卡钳式和浮动卡钳式两种。为了不使制动轴受到径向力和弯矩,点盘式制动缸应成对布置。制动转矩较大时,可采用多对制动缸。必要时可在中间开通风沟,以降低摩擦副温升,还应采取隔热散热措施,以防止液压油温高变质。全盘式:这种制动器结构紧凑,摩擦面积大。 现代轿车的制动器的鼓式和盘式两大类型,它们各有千秋,但随着轿车车速的不断提高,近年来采用盘式制动器的轿车日益增多,尤其是中高级轿车,一般都采用了盘式制动器。汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。因此,散热对制动系统是十分重要的。如果制动系统经常处于高温状态,就会阻碍能量的转换过程,造成制动性能下降。越是跑得快的汽车,制动起来所产生的热量越大,对制动性能的影响也越大。解决好散热问题,对提高汽车的制动性能也就起了事倍功半的作用。所以,现代轿车的车轮除了使用铝合金车圈来降低运行温度外,还倾向于采用散热性能较好的盘式制动器。当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。所以,汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮盘式制动,后轮鼓式制动的方式。四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在汽车领域中,盘式制动有逐渐取代鼓式制动的趋向。[2] 一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳

相关文档