文档库 最新最全的文档下载
当前位置:文档库 › MapReduce统计三角形数量

MapReduce统计三角形数量

MapReduce统计三角形数量
MapReduce统计三角形数量

实验四图的三角形计数

组号:2015st30

组长:吴少博MF1533055

组员:王勇MF1533054

刘拨杰MF1533029

一、Map和Reduce的设计思路

1、逻辑一:IF (A->B) OR (B->A) THEN A-B:

设计思路:(1)为了统计三角形的数量,首先应该知道哪些点之间有边相连,所以会先读取输入文件的每一行,将点与点之间相连。然后,为了统计三角形数量,我们的基本思路是,对于一个顶点A,如果AB和AC存在,那么我们就去看BC存不存在,如果BC存在,则构成一个三角形。这样的“BC”有多少个,三角形就有多少。而AB,AC很容易以A为key的reduce的value中找到,所以基于此,我们的逻辑1的三角形个数统计算法设计如下:

算法设计:本程序总共包含3个mapreduce程序。第一个mapreduce程序:map函数具体操作为,读取本地数据,获取每条边,构成边的两个node按字典顺序排序构成key (smallnode-bignode),value为“#”,构成中间结果(如果两个node值相等,那么表示这是一条自己指向自己的边,那么不做任何操作),

reduce函数去掉重复的边,将去重的所有边输出到本地文件中,

第二个mapreduce程序:map函数的具体操作为,读取文件,获取上一步生成的所有边,每条边较小的节点为key值(smallnode),较大边为value值(bignode),构成中间结果,

Reduce阶段:每个reduce函数,value的值其实是以key为顶点的所有邻居节点,例如key 是“A”,value里的值都是与“A”相连的所有顶点。对于其中两点,不妨设为“B”,“C”,那么,显然,“AB”和“AC”已经存在,我们只需要看“BC”是否存在,若“BC”存在,则构成三角形,若“BC”不存在,则不构成。所以我们在Reduce阶段输出两种类型的键值对。首先,对于像“AB”,“AC”这样的边,即以key为一个顶点,value数组里的一个值为另一个顶点构成的边,以这样的边为新的key,字母”e”为新的value,输出到文件,”e”表明图中存在这样的边。

而对于原来的value里的值,我们两两之间组合成一条边,因为若这样的边存在,则构成三角形。所以,这样的边是我们所需要的,所以我们以这样的边为新的key,“n”为新的value,输出。表明这样的边是我们所需要的。

第三个mapreduce程序:Map阶段:map函数获取上一步构成的所有key-value值,构成中间结果数据,

Reduce阶段:reduce函数,key值为边(smallnode-bignode),遍历values,我们看values 里的内容,如果values里的存在“e”,表明这条边存在,而如果values里存在“n”,则表示

这条边被“需要”用来构造三角形,“n”的个数就是三角形的个数。所以我们统计边的时候,一条边必须既存在,又被“需要”着,才能构成三角形,也就是说,value里必须既有“e”又有“n”,则“n”的数目是几三角形的总个数就加几,最后把所有的这些都相加,就可以得到总个数。

cleanup函数输出这个Reduce节点上统计的三角形的总个数。

2、逻辑二:IF (A->B) AND (B->A) THEN A-B:

设计思路:(1)读取本地数据集,获取所有边;(2)将每条存在的边标记为存在,并将该边的反向标记为需要,即(node1-node2,e),(node2-node1,*);(3)以每条边为key,遍历value值,若该边既存在又需要,则证明该边满足条件,为双向的。(4)通过上面的方法,统计三角形的个数。

算法设计:共包含六个mapreduce程序。

第一个mapreduce程序:去掉重复的边和自己指向自己的边。Map函数直接获取所有边,不再大小排序(因为这一次边是有向的),key(node1-node2),value(”#”),reduce函数去除重复边并将所有边写入到本地文件。

第二个mapreduce程序:map函数获取上一步的所有边,key(node1)-value(node2),构成中间结果数据,reduce函数读取中间结果数据,将每条边标记为存在边输出到本地,将每条边的反向标记为需要的边输出到本地,即key(node1-node2)-value(“@“),key(node2-node1)-value(”*”)。

第三个mapreduce程序:获取所有双向的边。map函数获取上一步处理的数据,reduce函数以每条边为key值,若values中既包含“e“,有包含“*“,则说明该边既存在,又被“需要”着,表明这条边的反向边也存在,这条边为双向边,故满足条件(IF (A->B) AND (B->A) THEN A-B),以该边两节点大小排序构成key(smallnode)-value(bignode)对,写入本地。

第四、五、六个mapreduce程序:以上程序已获取所有满足条件的边,后面的做法和逻辑一的三个mapreduce 是一样的,故不再赘述。

二、统计的三角形的个数

三、输出结果文件截图,文件在HDFS路径

文件输出的hdfs路径如下(我删除掉了中间的结果文件夹,只保留了最后一个job的输出):/user/2015st30/GoogleOutput1 逻辑一(OR逻辑)谷歌数据集输出

/user/2015st30/GoogleOutput2 逻辑二(AND 逻辑)谷歌数据集输出

/user/2015st30/Twitter_1_Output 逻辑一推特数据集输出

/user/2015st30/Twitter_S_Output 逻辑二推特数据集输出

PS:这些结果我也进行了合并,并下载到了本地,一起打包上交。

由于设置的reduce个数的问题,所以输出结果需要将每个reduce的结果累加,才会得到最终的结果。

Twitter数据集:

IF (A->B) OR (B->A) THEN A-B

IF (A->B) AND (B->A) THEN A-B Google+数据集:

IF (A->B) OR (B->A) THEN A-B

IF (A->B) AND (B->A) THEN A-B 四、系统运行性能的分析

程序运行总体上性能比较让我满意,Twitter数据集运行逻辑一和逻辑二,总时间分别为3min 6s和4min 6s,这可能与我的算法一开始对数据进行了去除重复边的操作,以及在map 之后设置了combiner有关。对于Google数据集,运行逻辑一和逻辑二的时间分别为1h45min43s以及7min15s,能够在三小时之内跑完让我很惊讶。总体感觉还是可以的,也可能与我在晚上12点多开始跑程序,集群上当时只有我一个作业有关。

五、性能、扩展性等方面存在的不足和可能的改进之处

性能方面的不足之处应该就是感觉算法还能再优化,可以更快的的跑完Google数据集。

扩展性方面,因为本人的代码风格问题,感觉程序的可扩展性方面还不是很好,以后要多注意变成规范,编程时就注意扩展性的问题。

六、源代码、可执行程序JAR包、JAR包运行方式说明

源代码在打包上交的文件夹的code文件夹里,共两个java文件,triangle_count.java 是逻辑一,而Triangle_count2.java是逻辑二。

可执行的jar包也在文件夹中,为“Triangle_last.jar”

JAR包的运行方式如下:

推特数据集逻辑一:

hadoop jar Triangle_last.jar lab04.triangle_count

hdfs://master01:54310/data/tritter_graph_v2.txt Twitter_1_Output

推特数据集逻辑二:

hadoop jar Triangle_last.jar lab04.Triangle_count2

hdfs://master01:54310/data/tritter_graph_v2.txt Twitter_S_Output

Google数据集逻辑一:

hadoop jar Triangle_last.jar lab04.triangle_count

hdfs://master01:54310/data/gplus_combined.unique.txt GoogleOutput1

Google数据集逻辑二:

hadoop jar Triangle_last.jar lab04.Triangle_Count2

hdfs://master01:54310/data/gplus_combined.unique.txt GoogleOutput2

七、WebUI执行报告

由于本次实验job数量较多,故我将WebUI执行报告的文件下载并保存为pdf文件,放入到了打包文件夹的“WebUI执行报告”文件夹中。

2019年中考几何相似三角形怎么证明

2019年中考几何相似三角形怎么证明 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 初中几何相似三角形怎么证明?很多同学一接触证明题就不会,教育网针对这个问题,给大家具体解答一下。 数学:相似三角形怎么证明 相似三角形定理 :平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 相似三角形判定定理1:两角对应相等,两三角形相似 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 判定定理2:两边对应成比例且夹角相等,两三角形相似 判定定理3:三边对应成比例,两三角形相似

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 性质定理2:相似三角形周长的比等于相似比 性质定理3:相似三角形面积的比等于相似比的平方 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DE F”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角

形相似。 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 方法三 如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似 方法四 如果两个三角形的三组对应边成比例,那么这两个三角形相似 方法五 对应角相等,对应边成比例的两个三角形叫做相似三角形 三个基本型 Z型A型反A型 方法六 两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形 1.两个全等的三角形

沪科版数学八年级上册专题:三角形的有关计算与证明

专题:三角形的有关计算与证明 三角形的有关计算和证明是中考的必考内容之一,这类试题解法比较灵活,通常以全等三角形、等腰三角形、等边三角形和直角三角形的性质和判定为考查重点,以计算题、证明题的形式出现,解答这类问题时,不仅要熟练掌握有关的公式定理,更要注意它们之间的相互联系. 例如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB 交BE的延长线于点D.CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG. 求证:(1)AF=CG;(2)CF=2DE. 【思路点拨】(1)要证明AF=CG,可以利用“ASA”证明△ACF≌△CBG来得到; (2)要证明CF=2DE,由(1)得CF=BG,则只要证明BG=2DE,又利用△AED≌△CEG可得DG=2DE,故证明DG=BG即可. 【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC. ∴∠BCG=∠CAB=45°. 又∵∠ACF=∠CBG,AC=BC, ∴△ACF≌△CBG(ASA), ∴CF=BG,AF=CG. (2)延长CG交AB于点H. ∵AC=BC,CG平分∠ACB, ∴CH⊥AB,H为AB中点. 又∵AD⊥AB,∴CH∥AD, ∴G为BD中点,∠D=∠EGC. ∵E为AC中点,∴AE=EC. 又∵∠AED=∠CEG, ∴△AED≌△CEG(AAS), ∴DE=EG,∴DG=2DE,∴BG=DG=2DE. 由(1)得CF=BG,∴CF=2DE. 方法归纳:解答与线段或角相等的有关问题时,通常将它转化为全等三角形问题来求解. 1.如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.

相似三角形证明的方法与技巧

相似三角形的判定和应用 一、判定相似三角形的基本思路: 1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的角所对的边是对应边,对应边所对的角是对应角。 2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。 二、相似形的应用: 1.证比例式; 2.证等积式; 3.证直线平行; 4.证直线垂直; 5.证面积相等; 三、经典例题: 例1.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。 求证: CE AE BF AF = . 变式1:如图,在ΔABC 中,A ∠与B ∠互余,CD ⊥AB ,DE//BC ,交AC 于点E ,求证: AD:AC=CE:BD. 例2:如图:已知梯形ABCD 中,AD//BC ,?=∠90ABC ,且BD ⊥CD 于D 。 求证:①DCB ABD ??~ ;②BC AD BD ?=2

例3.如图,在ΔABC 中,?=∠90BAC ,M 是BC 的中点,DM ⊥BC 交BA 的延长线于D ,交AC 于E 。 求证:ME MD MA ?=2 例4.已知:在ΔABC 中,AD 是BAC ∠的平分线,点E 在AD 上,点F 在AD 的延长线 上,且 AC AB DF ED = 求证:BE//FC 。 例5.如图,在正方形ABCD 中,E ,F 分别为AB 、AC 上一点,切BE=BF ,BP ⊥CE ,垂足为P 。 求证:PD ⊥PF.

2020年全国各地中考数学压轴题按题型(几何综合)汇编(一)三角形中的计算和证明综合(原卷版)

2020全国各地中考数学压轴题按题型(几何综合)汇编 一、三角形中的计算和证明综合题 1.(2020贵州黔东南州)如图1,△ABC和△DCE都是等边三角形. 探究发现 (1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用 (2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长. (3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长. 2.(2020黑龙江牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC, 交射线CA于点F.请解答下列问题:

(1)当点E 在线段AB 上,CD 是△ACB 的角平分线时,如图①,求证:AE +BC =CF ;(提示:延长CD ,FE 交于点M .) (2)当点E 在线段BA 的延长线上,CD 是△ACB 的角平分线时,如图②;当点E 在线段BA 的延长线上,CD 是△ACB 的外角平分线时,如图③,请直接写出线段AE ,BC ,CF 之间的数量关系,不需要证明; (3)在(1)、(2)的条件下,若DE =2AE =6,则CF = . 3.(2020武汉)问题背景:如图(1),已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ; 尝试应用:如图(2),在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F ,点D 在BC 边上, AD BD = √3,求 DF CF 的值; 拓展创新 如图(3),D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =2√3,直接写出AD 的长. 4.(2020湖南常德)已知D 是Rt △ABC 斜边AB 的中点,∠ACB =90°,∠ABC =30°,过点D 作Rt △DEF 使∠DEF =90°,∠DFE =30°,连接CE 并延长CE 到P ,使EP =CE ,连接BE ,FP ,BP ,设BC 与DE 交于M ,PB 与EF 交于N . (1)如图1,当D ,B ,F 共线时,求证: ①EB =EP ; ②∠EFP =30°; (2)如图2,当D ,B ,F 不共线时,连接BF ,求证:∠BFD +∠EFP =30°.

等腰三角形计算和证明题集锦(全)

一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 3. 如图,△ABC 中,AB=AC ,D 在BC 上, DE ⊥AB 于E ,DF ⊥BC 交AC 于点F , 若∠EDF=70°,求∠AFD 的度数 4. 如图,△ABC 中, AB=AC,BC=BD=ED=EA 求∠A 的度数 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点, 作DE ⊥BC 于E ,若BE=AC,BD=1/2,DE+BC=1, 求∠ABC 的度数 7. 如图,△ABC 中, AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 二、证明题 8、如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P , 过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 9、如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系。 10、如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC A B C D F E

11、11. 如图,△ABC中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD 12、12. 如图,△ABC中,AB=AC,D为△ABC外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD 13、13.已知:如图,AB=AC=BE,CD为△ABC中AB 边上的中线 求证:CD=1/2 CE 14、如图,△ABC中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED 15、如图,△ABC中,AB=AC,BE=CF,EF交BC于点G 求证:EG=FG 16、如图,△ABC中,∠ABC=2∠C,AD是BC边上的高,B到点E,使BE=BD 求证:AF=FC 17、如图,△ABC中,AB=AC,AD和BE两条高, 交于点H,且AE=BE 求证:AH=2BD 18、如图,△ABC中,AB=AC, ∠BAC=90°,BD=AB,∠ABD=30°求证:AD=DC 19、如图,等边△ABC中,分别延长BA至点E, 延长BC至点D,使AE=BD 求证:EC=ED 20、如图,四边形ABCD中,∠BAD+∠BCD=180°AD、BC的延长线交于点F,DC、AB的延长线交于点E,∠E、∠F的平分线交于点H 求证:EH⊥FH

三角形中的五种常见证明类型

专训一:三角形中的五种常见证明类型名师点金:学习了全等三角形及等腰三角形的性质和判定后,与此相关的几何证明题的类型非常丰富,常见的类型有:证明数量关系、位置关系,线段的和差关系、倍分关系、不等关系等. 证明数量关系 题型1证明线段相等 1.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC 上的点,且AE=AF,求证:DE=DF. (第1题) 题型2证明角相等 2.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD 于F交BC于E. 求证:∠ADB=∠CDE. (第2题) 证明位置关系 3.如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,BE=CD,点G是EF的中点,求证:DG⊥EF.

(第3题) 证明倍分关系 4.如图,在△ABC中,AB=AC,AD,BE是△ABC的高,AD,BE相交于点H,且AE=BE,求证:AH=2BD. (第4题) 证明和、差关系 5.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC.求证:AB+BD=AC. (第5题) 证明不等关系 6.如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB >AC,求证:AB-AC>PB-PC.

(第6题) 专训二:构造全等三角形的六种常用方法 名师点金:在进行几何题的证明或计算时,需要在图形中添加一些辅助线,辅助线能使题目中的条件比较集中,能比较容易找到一些量之间的关系,使数学问题得以较轻松地解决.常见的辅助线作法有:构造法、平移法、旋转法、翻折法、加倍折半法和截长补短法,目的都是构造全等三角形. 构造基本图形法 1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF. 求证:∠ADC=∠BDF. (第1题) 翻折法

北师大版-数学-九年级上册-4.5 相似三角形判定定理的证明 教案

相似三角形判定定理的证明 预习导学: 1.相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似. 2.证明相似三角形判定定理时,先作辅助线,再根据条件选择适当的判定定理。 教学目标: 1.了解相似三角形判定定理,会证明相似三角形判定定理 2.掌握推理证明的方法,发展演绎推理能力 教学重点:会证明相似三角形判定定理 教学难点:掌握推理证明的方法,并提供应用能力 教学过程: 判定定理的证明: 定理1:两角分别相等的两个三角形相似 如果∠A =∠A ′,∠B =∠B ′, 那么,△ABC ∽△A′B′C′. 证明:在△ABC 的边AB (或延长线)上截取AD=A’B’,过点D 作BC 的平行线, 交AC 于点E,则∠ADE=∠B, ∠AED=∠C, AD AE AB AC =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). 过点D 作AC 的平行线,交BC 于点F,则 AD CF AB CB =(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ∴ AE CF AC CB =

∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是平行四边形. ∴DE=CF ∴AE DE AC CB = ∴AD AE DE AB AC BC == 而∠ADE=∠B, ∠DAE=∠BAC, ∠AED=∠C, ∴△ADE ∽△ABC. ∵∠A=∠A’, ∠ADE=∠B’, AD=A’B’, ∴△ADE ≌△A’B’C’ ∴△ABC ∽△A’B’C’. 定理2:两边对应成比例且夹角相等,两三角形相似. 探究2 如果∠B =∠B1, 那么,△ABC ∽△A1B1C1. 自己思考,与同学交流 定理3:三边对应成比例,两三角形相似. 如果 1111 ,AB BC k A B B C ==, AB BC AC A B B C A C ==''''''

以圆为背景的相似三角形的计算与证明

以圆为背景的相似三角形的计算与证明 【经典母题】 如图Z13-1,DB为半圆的直径,A为BD延长线上的一点,AC切半圆于点E,BC⊥AC于点C,交半圆于点F.已知AC=12,BC=9,求AO的长. 图Z13-1 经典母题答图解:如答图,连结OE,设⊙O的半径是R,则OE=OB=R. 在Rt△ACB中,由勾股定理,得 AB=AC2+BC2=15.

∵AC 切半圆O 于点E ,∴OE ⊥AC , ∴∠OEA =90°=∠C ,∴OE ∥BC , ∴△AEO ∽△ACB , ∴OE BC =AO AB ,∴R 9=15-R 15,解得R =458, ∴AO =AB -OB =15-R =758 . 【思想方法】 利用圆的切线垂直于过切点的半径构造直角三角形,从而得到相似三角形,利用比例线段求AO 的长. 【中考变形】 1.如图Z13-2,在Rt △ACB 中,∠ACB =90°,O 是AC 边上的一点,以O 为圆心,OC 为半径的圆与AB 相切于点D ,连结OD . (1)求证:△ADO ∽△ACB ; (2)若⊙O 的半径为1,求证:AC =AD ·BC . 证明:(1)∵AB 是⊙O 的切线,∴OD ⊥AB , ∴∠C =∠ADO =90°,∵∠A =∠A , ∴△ADO ∽△ACB ; (2)由(1)知,△ADO ∽△ACB .∴AD AC =OD BC , ∴AD ·BC =AC ·OD ,∵OD =1,∴AC =AD ·BC . 2.[2017·]如图Z13-3,已知Rt △ABC ,∠C =90°,D 为BC 的中点,以AC 为直径的⊙O 交AB 于点E . (1)求证:DE 是⊙O 的切线; 图Z13-2

相似三角形的比例关系及相似三角形证明的变式

相似三角形的比例关系及相似三角形证明的变式 【知识疏理】 一, 相似三角形边长比,和周长比以及面积比的关系! 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------。 二, 相似三角形证明的变式 1,相似三角形当中常以乘积的形式出现,如: 例1、 已知:如图1,BE 、DC 交于点A ,∠E=∠C 。求证:DA ·AC=BA ·AE 图2 题目比较简单,学生独立完成,启发学生总结:①本题找对应角的特殊方法是对顶角相等;②要想证明乘积式或比例式,应先证明三角形相似。 2,对特殊图形的认识 例2、已知:如图3,Rt △ABC 中,∠ABC=90o,BD ⊥AC 于点D 。 图3 (1) 图中有几个直角三角形?它们相似吗?为什么? (2) 用语言叙述第(1)题的结论。 (3) 写出相似三角形对应边成比例的表达式。 总结: (1) 有一对锐角相等的两个直角三角形相似; (2) 本题找对应角的方法是公共角及同角的余角相等; A B C A'B'C'图(4)图1 B A C

双垂直图形中的BD 2=AD ·CD ,AB 2=AD ·AC ,BC 2=CD ·CA ,BC ·AB=AC ·BD 等结论很重要,它们在计算、证明中应用很普遍,但需先证明两个三角形相似得到结论,再加以应用。在此基础上,将双垂直图形转化 为“公边共角”,讨论、探究, A B C 得到结论:由公边共角的两个相似三角形中,公边是两个三角形中落在一条直线上的两边的比例中项,即若△ABD ∽△ACB ,则AB 2=AD ·AC 。 【课堂检测】 一选择题 1、一个三角形的三边长为5,5,6,与它相似的三角形最长边为10,则后一个三角形的面积为( ) A 、3100 B 、20 C 、54 D 、25 108 2、如图,梯形ABCD 中,AB ∥CD ,如果S △ODC :S △BDC =1:3,那么S △ODC :S △ABC 的值是( ) A 、 51 B 、61 C 、71 D 、9 1 D C A D O P A B B C (第2题图) (第4题图) 3、已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比是1:4,则两底的比是( ) A 、1:2 B 、1:4 C 、1:8 D 、1:16 4、已知,梯形ABCD 中,AD ∥BC ,∠ABC=900,对角线AC ⊥BD ,垂足为P ,已知AD :BC=3:4,则BD :AC 的值是 ( ) A、3:2 B、2:3 C、3:3 D、3:4 5、如图,已知:∠BAO=∠CAE=∠DCB ,则下列关系式中正确的是( ) A 、AE BC AD A B = B 、AD B C AE AC = C 、AE BC DE AB = D 、AD AB AE AC =

培优专题四 三角形中角度的证明与计算

三角形中角度的证明与计算 类型一:三角形中两个角的角平分线的夹角 1、两个内角平分线的夹角 如图,在△ABC 中,O 点是∠ABC 和∠ACB 的角平分线的交点,求∠O 与∠A 之间的关系。 2、一个内角平分线与一个外角平分线的夹角 如图,在?ABC 中,D 点是∠ABC 和∠ACE 的角平分线的交点,求∠D 与∠A 之间的关系。 3、两个外角平分线的夹角 如图,在?ABC 中,E 点是∠ABC 和∠ACD 的角平分线的交点,求∠E 与∠A 之间的关系。 练习1、如图,在?ABC 的三条内角平分线交于点I ,AI 的延长线与BC 交于点D ,BC IH ⊥于H ,试比较∠CIH 和∠BID 的大小 练习2、如图,在?ABC 中,∠A=n o ,∠ABC 和∠ACD 的平分线交 于点A 1,得∠A 1,∠A 1BC 和∠A 1CD 的平分线交于点A 2, 得2A ∠, BC A 2014∠和CD A 2014∠的平分线交于点2015A , 求2015A ∠ = 。 类型二:三角形中两条边的高线的夹角 如图,在?ABC 中,O 点是BC 和AC 边上高的交点,求∠AOB 与∠ D C

类型三:三角形中同一顶点的高线与角平分线的夹角 如图,在 ABC 中,AD 是BC 边上高,AE 是∠BAC 的平分线,求∠DAE 与∠B 和∠C 之间的关系。 练习3、如图,在△ABC 中,AE 平分∠BAC ,∠B =40°,∠C =70°,F 为射线AE 上一点(不与E 点重合),且FD ⊥BC. (1)若点F 与点A 重合,如图1,求∠EFD 的度数; (2)若点F 在线段AE 上(不与点A 重合),如图2,求∠EFD 的度数; (3)若点F 在△ABC 外部,如图3,此时∠EFD 的度数会变化吗?是多少? 类型四:三角形中两边中垂线的交点(锐角、直角、钝角三角形分类讨论) 如图,在△ABC 中,OD 垂直平分AB 交AB 于点D ,OE 垂直平分AC 交AC 于点E ,连接OB ,OC ,求∠BOC 与∠A 之间的关系。 练习4 (1)在△ABC 中,AB=AC ,∠BAC=100°,ME 和NF 分别垂直平分AB 和AC ,求∠MAN?的度数. (2)在(1)中,若无AB=AC 的条件,你还能求出∠MAN 的度数吗?若能,请求出;?若不能,请说明理由. 类型五:“8”字形图案的两条角平分线的夹角 如图,已知线段AB 、CD 相交于点O ,连接AD ,CB ,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于点M ,N 如图2,试回答下列问题: 在图1中,直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系 在图2中,∠D 与∠B 为任意角,试探究∠P 与∠D 、∠B 之间是否存在一定的数量关系,若存在,写出它们之间的关系并证明,若不存在,说明理由。

相似三角形的判定及证明技巧讲义

- 1 - / 4 相似三角形(三) 知识点(一):相似三角形的证明技巧 1.相似三角形的基本图形 2.相似三角形判定定理(3条) 3.相似三角形的具体解题方法 1.“三点定形法”:即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 例1、已知:如图△ABC中,CE⊥AB,BF⊥AC.求证:AE?AB=AC?AF.(判断“横定”还是“竖定”?) 例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。 分析方法: 1)先将积式______________ 2)______________(“横定”还是“竖定”?) 练习1.已知:如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交BC延长线于F。 求证:CD2=DE·DF。

A D E F B C

2.过渡法(或叫代换法) 有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明. (1)等量过渡法(等线段代换法) 遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。然后再应用三点定形法确定相似三角形。只要代换得当,问题往往可以得到解决。当然,还要注意最后将代换的线段再代换回来。 例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的 延长线于E.求证:DE2=BE·CE. - 2 - / 4 (2)等比过渡法(等比代换法) 当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代

专题07 三角形及四边形的计算与证明(解析版)

专题07 三角形及四边形的计算与证明 一、三角形 1.三角形的概念及性质 概念:(1)由三条线段首尾顺次相接组成的图形,叫做三角形.(2)三角形按边可分为:非等腰三角形和等腰三角形;按角可分为:锐角三角形、钝角三角形和直角三角形. 性质:(1)三角形的内角和是180°;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角.(2)三角形的任意两边之和大于第三边;三角形任意两边之差小于第三边. 2.三角形中的重要线段 (1)三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. (2)三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称高.特性:三角形的三条高线相交于一点. (3)三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角形的三条中线交于一点. 3.全等三角形的性质与判定 概念:能够完全重合的两个三角形叫做全等三角形. 性质:全等三角形的对应边、对应角分别相等. 判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL). 4.等腰三角形 等腰三角形的有关概念及分类:有两边相等的三角形叫等腰三角形,三边相等的三角形叫做等边三角形,也叫正三角形;等腰三角形分为腰和底不相等的等腰三角形和腰和底相等的等腰三角形. 等腰三角形的性质: (1)等腰三角形的两个底角相等(简称为“等边对等角”); (2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”); (3)等腰三角形是轴对称图形.

初中数学相似三角形六大证明技巧(推荐)

相似三角形6大证明技巧 相似三角形证明方法 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型.

“旋转相似”与“一线三等角” 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =?

通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证: DC CF AE AD =. A B C F D E 【例2】 如图,ABC △中,90BAC ∠=?,M 为BC 的中点,DM BC ⊥交CA 的延长线于 D ,交AB 于 E .求证:2AM MD ME =? C B A E D M 【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E , 交AD 于F .求证: BF AB BE BC =. D B A C F E 技巧一:三点定型 比例式的证明方法

15相似三角形判定定理的证明知识讲解基础

相似三角形判定定理的证明(基础) 【学习目标】 1.熟记三个判定定理的内容. 2.三个判定定理的证明过程. 3.学选会用适当的方法证明结论的成立性. 【要点梳理】 要点一、两角分别相等的两个三角形相似 已知:如图,在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC∽△A′B′C′. 证明:在△ABC的边AB(或它的延长线)上截取AD=A′B′,过点D作BC的平行线,交AC于点E,则 ∠ADE=∠B,∠AED=∠C, ADAE?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABAC过点D作AC的平行线,交BC与点F,则 ADCF?(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例). ABCBAECF?∴ACCB∵DE∥BC,DF∥AC, ∴四边形DFCE是平行四边形. ∴DE=CF. ∴AE:AC=DE:CB ADAEDE??. ∴ABACBC而∠ADE=∠B,∠DAE=∠BAC,∠AED=∠C, ∴△ADE∽△ABC. ∵∠A=∠A′,∠ADE=∠B=∠B′,AD=A′B′, ∴△ADE∽△A′B′C′. ∴△ABC∽△A′B′C′. 要点诠释:证明这个定理的正确性,是把它转化为平行线分线段成比例来证明的,注意转化时辅助线的做法.

【典型例题】类型一、两角分别相等的两个三角形相似,求证:△ADE∽△ABC.D, CE⊥AB,垂足为E1、在△ABC中,∠A=60°,BD⊥AC,垂足为 断可判∠AEC=∠ADB=90°,利用∠EAC=∠DAB路点拨】由BD⊥AC,CE⊥AB得到【思 ,加上∠EAD=∠CAB,根据三角形相似的==,利用比例性质得△AEC∽△ADB,则判定方法即可得到结论.【答案与解析】证明:∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,而∠EAC= ∠DAB,∴△AEC∽△ADB,∴,=∴,= ∵∠EAD=∠CAB,∴△ADE∽△ABC.有两组有两组角对应相等的两三角形相似;【总结升华】考查了相似三角形的判定与性质:对应边的比相等且夹角相等的两个三角形相似;相似三角形的对应边的比相等.举一反三°,ADE=60,且∠在BC、AC上,点是等边三角形D,E分别ABC【变式】如图,△CE. CD=AC?证求:BD? 【答案】证明:∵△ABC是等边三角形, ∴∠B=∠C=60°,AB=AC, ∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°, ∴∠BAD=∠CDE, ,DCE△∽ABD△∴.ABBDCC BCD=AC BCD=AC 2、已知,Rt△ABC中,∠ACB=90°,点H在AC上,且线段HD⊥AB于D,BC的延长线与DH的延

三角形的证明练习题

八年级下册数学第一章提高训练 9.等腰三角形的周长是 2 + J 3,腰长为1,则其底边上的高为 _________________ . 12 .已知:如图,AB = AC,/A= 36°,AB 的垂直平分线交AC 于D,则下列结论:①/C= 72。:②总。是/AB C 的平分线;③AAB D 是等腰三角形;④ABCD 是等腰三角形,其中正确的有( A. 1个 B. 2个 C. 3个 D. 4个 13 .如图,已知在 AABC 中,AB = AC,/C= 30°,AB±AD,AD = 10 .以长为1、 . 2、2 ,5、3,中的三条线段为边长可以构成 个直角三角形 . (11题图) 二计算题 11 .如图,在△AEC,/C= 90° ZB= 15°,AB 的中垂线DE 交EC 于D,E 为垂足,若BD = 10 cm,^ UAC 等 于( )A. 10 cm B. 8 cm C. 5cm D. 2. 5cm 3 cm,_KU AC 的长等于( ) A. 2 2 cm B. 2.3 cm C. 3 2 cm D. 3 .. 3 cm (13题图) 14.如图,加条件能满足 AAS 来判断/ AC*/ABE 的条件是( A. / AEB = / ADC / C = / D B.Z AEB = / ADC CD = BE C. AC = AB AD = AE D . AC = AB / C =/ B 一、填空题(每小题2分,共20分) 1. 在△ ABD 和厶ACE 中,有下列四个论断:① AB= AC;②AD= AE ;③/ B =Z C ;④BD= CE 请以其中三个论断作为条件,余 下的一个作为结论,写出一个正确的判断(000^0的形式写出来) ________________________________ . 2. ______________________________________________________________ 如图,在△ ABC 中,AD= DE AB= BE,/ A = 80° 则/ DEC= ________________________________________________________ . (2题图) (3题图) (4题图) 4.如图,/ AO =/ BO =15°,PC// OA PDLOA 若 PC = 4,贝U PD= . 5?等腰三角形一腰上的高与另一腰的夹角为 30°,则其顶角的度数为 _________________ 度. 6. 已知:如图,在厶ABC 中,AB=15m AC=12m AD 是/ BAC 的外角平分线,DE// AB 交AC 的延长线于点 E ,那么CE= _cm 7. ______________________________________________________________________________________________ 如图,人。是厶ABC 的中线,/ ADC= 45°,把△ ADC 沿 AD 对折,点 C 落在C 的位置,如果 BC=2, _则BC' = ______________ &在联欢晚会上,有 A 、B 、C 三名同学站在一个三角形的三个顶点位置上,他们在玩一个游戏,要求在他们中间放一个木 ABC (6题图) (7题 (12题 图)

相似三角形六大证明技巧

相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS ) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A ”型与“反X ”型. 示意图 结论 E D C B A 反A 型: 如图,已知△ABC ,∠ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE · AC =AD ·AB. 若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) O D C B A 反X 型: 如图,已知角∠BAO =∠CDO ,则△AOB ∽△DOC (AA ),∴OA ·OC =OD ·OB . 若连AD ,BC ,进而能证明△AOD ∽△BOC . 示意图 结论 A B C D 类射影: 如图,已知△ABC ,∠ABD =∠C ,则△ABD ∽△ACB (AA ),∴2AB =AD · AC. C A B H 射影定理 如图,已知∠ACB =90°,CH ⊥AB 于H ,则222,,AC AH AB BC BH BA HC HA HB =?=?=? 示意图 结论 相似三角形6大证明技巧 相似三角形证明方法

A B C D E 旋转相似: 如图,已知△ABC ∽△ADE ,则 AB AD AC AE =,∠BAC =∠DAE ,∴∠BAD =∠CAE , ∴△BAD ∽△CAE (SAS ) C B A E D 一线三等角: 如图,已知∠A =∠C =∠DBE ,则△DAB ∽△BCE (AA ) 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO ,∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =? 通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 比例式的证明方法

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析 一、相似三角形 (1)三角形相似的条件: ① ;② ;③ . 二、两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决. 三、三角形相似的证题思路:判定两个三角形相似思路: 1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角 两角对应相等,两三角形相似 找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似 找夹角相等 两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例 三边对应成比例,两三角形相似 找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似 找两边对应成比例 判定定理2 找顶角对应相等 判定定理1 找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3 e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3 四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。 例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BA AC AF AE (判断“横定”还是“竖定”? ) a)已知一对等 b)己知两边对应成比c)己知一个直 d)有等腰关

(完整word版)三角形的证明练习题

A B P C D O (7题图) (6题图)(11题图) 八年级下册数学第一章提高训练 一、填空题(每小题2分,共20分) 1.在△ABD和△ACE中,有下列四个论断:①AB=AC;②AD=AE;③∠B=∠C;④BD=CE 请以其中三个论断作为条件,余下的一个作为结论,写出一个正确的判断(⊙⊙⊙→⊙的形式写出来). 2.如图,在△ABC中,AD=DE,AB=BE,∠A=80°则∠DEC=. 3.如图,在△ABC中,AD平分∠BAC,AB=AC+CD,则∠B与∠C的关系是. (2题图)(3题图)(4题图) 4.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD=. 5.等腰三角形一腰上的高与另一腰的夹角为30°,则其顶角的度数为度. 6.已知:如图,在△ABC中,AB=15m,AC=12m,AD是∠BAC的外角平分线,DE∥AB交AC的延长线于点E,那么CE= cm.7.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在C/的位置,如果BC=2,则BC′= .8.在联欢晚会上,有A、B、C三名同学站在一个三角形的三个顶点位置上,他们在玩一个游戏,要求在他们中间放一个木凳,使他们抢坐到凳子的机会相等,试想想凳子应放在△ABC的三条线的交点最适当. 9.等腰三角形的周长是2+3,腰长为1,则其底边上的高为__________. 10.以长为1、2、2 、5、3,中的三条线段为边长可以构成个直角三角形. 二计算题 11.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cmB.8cmC.5cmD.2.5cm 12.已知:如图,AB=AC,∠A=36°,AB的垂直平分线交AC于D,则下列结论:①∠C=72°;②BD是∠ABC的平分线;③△ABD是等腰三角形;④△BCD是等腰三角形,其中正确的有() A.1个B.2个C.3个D.4个 13.如图,已知在△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=3cm,则AC的长等于() A.2 2cmB.3 2cmC.2 3cmD.3 3cm 14.如图 ,加条件能满足AAS来判断⊿ACD≌⊿ABE的条件是() A.∠AEB = ∠ADC ∠C = ∠D B.∠AEB = ∠ADC CD = BE C.AC = AB AD = AE D.AC = AB ∠C =∠B A B C D E A B C D (14题图) (12题图) (13题图)

中考数学考点专题(六) 与三角形有关的计算与证明

中考数学复习专题(六) 与三角形有关的计算与证明 1.(2016·河北)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB =DE ,AC =DF ,BF =EC. (1)求证:△ABC ≌△DEF ; (2)指出图中所有平行的线段,并说明理由. 解:(1)证明:∵BF =EC , ∴BF +FC =EC +FC ,即BC =EF. 又∵AB =DE ,AC =DF , ∴△ABC ≌△DEF. (2)AB ∥DE ,AC ∥DF. 理由:∵△ABC ≌△DEF , ∴∠ABC =∠DEF ,∠ACB =∠DFE. ∴AB ∥DE ,AC ∥DF. 2.(2017·苏州)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O. (1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数. 解:(1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE. 又∵∠A =∠B , ∴∠BEO =∠2. 又∵∠1=∠2, ∴∠1=∠BEO. ∴∠AEC =∠BED. 在△AEC 和△BED 中, ???∠A =∠B , AE =BE , ∠AEC =∠BED , ∴△AEC ≌△BED(ASA ). (2)∵△AEC ≌△BED , ∴EC =ED ,∠C =∠BDE. 在△EDC 中,∵EC =ED ,∠1=42°, ∴∠C =∠EDC =69°. ∴∠BDE =∠C =69°. 3.(2016·襄阳)如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F.

相关文档
相关文档 最新文档