文档库 最新最全的文档下载
当前位置:文档库 › 代数方程

代数方程

代数方程
代数方程

代数方程

本章知识结构图

一、整式方程的解法

1.一元一次方程和一元二次方程的解法

一元一次方程的解法都很熟练了,我们主要回顾一下一元二次方程的解法。 例题 用适当的方法解下列方程:

(1)(2x+1)2

=25 (2)01422=--x x (3)3x 2+8x-1=0 (4) x 2

-9x=0 一元二次方程的解法主要有四种:

(1)直接开平方法:适用于(mx+n )2

=h (h ≥0)的一元二次方程。

(2)配方法:适用于所有化为一般形式后的一元二次方程。但是,具有二次项系数为1,一次项系数为偶数特点的一元二次方程,用配方法解才较简便。

配方法是通过配方将一元二次方程化成(mx+n )2

=h (h ≥0)的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。其基本步骤是:

①首先在方程两边同除以二次项系数,把二次项系数化为1;②把常数项移到等式的右边; ③方程两边同时加上一次项系数一半的平方;④方程左边写成完全平方式,右边化简为常数; ⑤利用直接开平方法解此方程。用配方法解一元二次方程要注意,当二次项系数不为1时,一定要化为1,然后才能方程两边同时加上一次项系数一半的平方 (3)公式法:

适用于解一般形式的一元二次方程。利用公式()

04242

2

≥--±

-=

ac b

a

ac b b x 可以解

所有的一元二次方程。

注意:当b 2-4ac ≥0时,方程才有实数解;当b 2

-4ac <0时,原方程无实数解。 (4)因式分解法:

适用于方程右边是0,左边是易于分解成两个一次因式乘积的一元二次方程。 2.含字母系数的整式方程的解法 例题 解下列关于x 的方程 (1)(3a-2)x=2(3-x )

(2)bx 2-1=1-x 2

(b ≠-1)

解(1)去括号,得 3ax-2x=6-2x 移项,得 3ax-2x+2x=6

合并同类项,得 3ax=6 ※ 当a ≠0时,方程※是一元一次方程,解得 a

x 2=

当a=0时,方程※变成 0·x=6,这时不论x 取什么值,等式0·x=6都不成立,因此方程无解。所以,当a ≠0时,原方程的根是a

x 2=

;当a=0时,原方程无解。

(2)移项,得 bx 2

+x 2

=1+1 合并同类项,得(b+1)x 2

=2 因为b ≠-1,所以b+1≠0 两边同除以b+1,得 1

22

+=

b x

当b+1>0时,由方程※解得 1

22++±

=b b x ;

当b+1<0时,方程※中

01

2<+b ,这时方程没有实数根。

所以,当b+1>0时,原方程的根是1

221++=

b b x ,1

222++-

=b b x ;

当b+1<0时,原方程没有实数根。 3.特殊的高次方程的解法 (1)二项方程)0,0(0≠≠=+b a b ax

n

的解法

二项方程的定义:

如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另外一边是零,那么这样的方程叫做二项方程。

关于x 的一元n 次二项方程的一般形式是

),0,0(0是正整数n b a b ax

n

≠≠=+

二项方程的解法及根的情况: 一般地,二项方程)0,0(0≠≠=+b a b ax

n

可变形为a

b x

n

-

=

可见,解一元n 次二项方程,可以转化为求一个已知数的n 次方根,运用开方运算可以求出这个方程的根。

二项方程的根的情况: 对于二项方程)0,0(0≠≠=+b a b ax

n

当n 为奇数时,方程只有且只有一个实数根。

当n 为偶数时,如果0ab ,那么方程没有实数根。

例题 判断下列方程是不是二项方程,如果是二项方程,求出它的根。 (1)x 3-64=0 (2)x 4+x=0

(3)x 5= -9 (4)x 3+x=1 解:(1)、(3)是二项方程,(2)、(4)不是二项方程。 下面解方程(1)、(3): (1)移项,得 x 3=64 开方,得 3

64=x 即 x=4

(3)开方,得 5

9-=

x 即 59

-=x

(2)双二次方程的解法

双二次方程的定义:

只含有偶数次项的一元四次方程,叫做双二次方程。 关于x 的双二次方程的一般形式是 )0(02

4≠=++a c bx

ax

双二次方程的解法:可以用“换元法”解形如)0,0,0(02

4

≠≠≠=++c b a c bx

ax

的双

二次方程。就是用y 代替方程中的x 2

,同时用y 2

代替x 4

,将方程转化为关于y 的一元二次

方程ay 2

+by+c=0解这个关于y 的一元二次方程即可。

通过换元,把双二次方程转化为一元方程体现了“降次”的策略。 例题 判断下列方程是不是双二次方程,如果是,求出它的根:

(1)x 4-9x 2+14=0 (2)x 4

+10x+25=0

(3)2x 4-7x 3-4=0 (4)x 4+9x 2

+20=0 解:(1)、(4)是双二次方程,(2)、(3)不是双二次方程。 下面解方程(1)、(4):

(1) 设x 2=y ,则x 4=y 2

,于是原方程可化为

y 2

-9y+14=0 解这个关于y 的方程,得y 1=2,y 2=7 由y 1=2,得x 2

=2,解得 2±=x 由y 2=7,得x 2

=7,解得 7±=x 所以,原方程的根是x 1=2,x 2=2-

,x 3=7,x 4=7-

(4)设x 2=y ,则x 4=y 2,于是原方程可化为y 2

+9y+20=0解这个关于y 的方程,得 y 1=-4,y 2=-5

由y 1=-4,得x 2=-4,它没有实数根;由y 2=-5,得x 2

=-5,它也没有实数根 所以,原方程没有实数根。

(3)因式分解法解高次方程

解高于一次的方程,基本思想就是是“降次”,对有些高次方程,可以用因式分解的方法降次。用因式分解的方法时要注意:一定要使方程的一边为零,另一边可以因式分解。 例题 解下列方程:

(1)2x 3+7x 2-4x=0 (2)x 3-2x 2

+x-2=0 二、可化为一元二次方程的分式方程的解法 1.适宜用“去分母”的方法的分式方程

解分式方程,通常是通过方程两边同乘以方程中各分式的最简公分母,约去分母,化为整式方程来解。解分式方程要注意验根! 例题 解下列方程

60

17451235

42

+--=

--+

-x x x

x x

分析:本例是一道分式方程,通常采用去分母法。

(1)首先应观察各项分母,如能分解因式必须先分解因式,如本例x 2

-17x+60可分解因式为(x-5)(x-12).

(2)分解因式后再找各分母的最小公倍式.如本例为“(x-5)(x-12)”.

(3)用此整式去乘方程的每一项,便可约去分母,将分式方程转化为整式方程求解. (4)最后应检验,至此例可找到本例完整解答. 在去分母的过程中要注意两点:(1)必须注意符号的变化规律(如本例“12-x ”与“x-12”的关系);(2)用整式乘以方程的每一项,一项都不能漏. 2.适宜用“换元法”的分式方程

适宜用换元法的分式方程有两种,一是二次项与一次项相同的,采取同底换元法;二是不看系数,方程的未知项呈倒数关系的,可采取倒数换元法, 下面的例题中的两个方程,分别具有这两种特点。 例题 解下列方程:

(1)061512

=+??

?

??++??? ??+x x x x ;(2)112)1(31)2(822

2

2=+-+-+x x x x x x . (1)分析:观察方程(1)可发现二次项底数与一次项未知底数相同,因而,可考虑同底换元法为宜.(2)分析:观察方程(2)可发现这个方程左边两个分式中的

1

222

-+x x x 与

x

x x 212

2

+-互为倒数,根据这个特点,可以用倒数换元法来解.由此可以看出,解分式方程“转化”为

整式方程(一元一次方程或一元二次方程)用去分母法是基础方法,解分式方程应首先考虑用基本方法求解,然后再根据分式方程特点,考虑换元法,便可达到转化的目的,找到思路.对于解题过程的每一个步骤都不能疏忽,才能正确求解. 三、无理方程的解法

解无理方程的基本思路是把无理方程化为有理方程,通常采用“两边平方”的方法解。对有些特殊的无理方程,可以用“换元法”解。解无理方程一定要验根! 在初中阶段,我们主要学习下面两种无理方程的解法。 1.只有一个含未知数根式的无理方程

当方程中只有一个含未知数的二次根式时,可先把方程变形,使这个二次根式单独在一边;然后方程的两边同时平方,将这个方程化为有理方程。 例题 解下列方程:

(1)632-=-x x (2)x x =--

323

2.有两个含未知数根式的无理方程

当方程中有两个含未知数的二次根式时,可先把方程变形,使一个二次根式单独在一边,另外一个二次根式在方程的另一边;然后方程的两边同时平方,将这个方程化为有理方程。 例题 解下列方程: (1)

01222

=+-

-x x (2)12=-+x x

3.适宜用换元法解的无理方程 如果无理方程中,二次根式里面的未知项和二次根式外面的未知项相同,可以使用换元法来

解。

例题 解方程 46342222+-=+-x x x x 习题:

1.在方程01532

2

=-+-x x 中,若设

y x =-12

,则原方程化为关于y 的方程

是 .

2.当m= 时,关于x 的分式方程0

2

163

2

=++

--++x x x m x 没有实数解.

3.若关于x 的方程02=+-

-a x x 有实数根,则a 的取值范围是 .

4.用换元法解方程051612

=++-

???

??+x x x x 时,可设 =y,这时原方程变

为 .

5.方程0=x 的根是 ;x x =的根是 ;x x -=的根 是 .

6.无理方程x a x =-+62

的根为3±

,则a 的值为 .

7.若a ,b 都是正实数,且b a b a +=

-2

11,则=

-2

2

b

a ab

.

8.若a+b=1,且a ∶b=2∶5,则2a-b= .

9.当a= 时,方程0

2

2

=--+x x a

x 无实数根.

10.若8

1=

+

x x ,则=

-

x x 1 .

11.下列方程中既不是分式方程,也不是无理方程的有( )

A.

3

211

=--x x B.8

5

3

22

=-

-

x x

C.

132

=-

-x

x x

D.

x

x =-3

5

3 E.

5

32=+y x F.

2

32

2

-=+

x x

x

12.方程

)

3(4)

3)(3(32

)

3(21

2

--

-+=

-x x x x x 的最简公分母是( )

A.24(x+3)(x-3)

B.(x+3)(x-3)2

C.24(x+3)(x-3)2

D.12(x+3)(x-3)2

13.观察下列方程,经分析判断得知有实数根的是( )

A.0

3

3

=-x B.0

31

2

2

=++x C.

2

)

3(=++x x x D.

1

2

2

=-+-x x x

14.如果0

1816

2

=+-

x

x

,那么x 4

的值是( )

A.1

B.-1

C.±1

D.4 15.方程1142=+-

x x 的解是( )

A.0

B.2

C.0或2

D.

221±

16.设y=x2+x+1,则方程

x x x x +=

++2

2

2

1可变形为( )

A.y2-y-2=0

B.y2+y+2=0

C.y2+y-2=0

D.y2-y+2=0 17.若a a

a 214412

-=+-,则a 的取值范围是( )

A.全体实数

B.a ≥0

C.a ≥21

D.A ≤21

18.已知

)

0≠+=-S R S

V R V

U ,则相等关系成立的式子是( )

A.SU

S R V +=

B.

S R SU

V +=

C .

S R SU

V -=

D.

SU

S R V -=

19.关于x 的方程

x a x x 2

2+

=+

的根是( )

A.x=a

B.x=-a

C.x 1=a ;x 2=-a 2

D.x 1=a ;x 2=a 2

20.一个数和它的算术平方根的4倍相等,那么这个数是( )

A.0

B.16

C.0或16

D.4或16

21.335

311

2

-+=

-

-+x x x

x

x x ; 22.

2725=--

+x x ;

23.07129122

=+??? ??+-

??? ?

?+x x x x ; 24.46

112

42

2--+-=-+-x x x x x x ; 25.11

161

1

2

3

++-=-+

-x x x x

x ; 26.041312

=---???

??-x x x x

matlab解方程组

matlab解方程组 lnx表示成log(x) 而lgx表示成log10(x) 1-exp(((log(y))/x^0.5)/(x-1)) 1、解方程 最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB 中有两种方法: (1)x=inv(A)*b —采用求逆运算解方程组; (2)x=A\B —采用左除运算解方程组 PS:使用左除的运算效率要比求逆矩阵的效率高很多~ 例: x1+2x2=8 2x1+3x2=13 >>A=[1,2;2,3];b=[8;13]; >>x=inv(A)*b x = 2.00 3.00 >>x=A\B x = 2.00 3.00; 即二元一次方程组的解x1和x2分别是2和3。 对于同学问到的用matlab解多次的方程组,有符号解法,方法是:先解出符号解,然后用vpa(F,n)求出n位有效数字的数值解.具体步骤如下: 第一步:定义变量syms x y z ...; 第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN'); 第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。 如:解二(多)元二(高)次方程组: x^2+3*y+1=0 y^2+4*x+1=0 解法如下: >>syms x y; >>[x,y]=solve('x^2+3*y+1=0','y^2+4*x+1=0'); >>x=vpa(x,4); >>y=vpa(y,4); 结果是:

最新微分方程与差分方程

微分方程与差分方程

第八章微分方程与差分方程 一、作业题 1.?Skip Record If...? ?Skip Record If...? ?Skip Record If...?,?Skip Record If...?为任意常数 (2)?Skip Record If...? 设?Skip Record If...?,?Skip Record If...?,?Skip Record If...? (代入上式) ?Skip Record If...? ?Skip Record If...?,?Skip Record If...? ?Skip Record If...?,?Skip Record If...? (3)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? (4)?Skip Record If...? ?Skip Record If...? ?Skip Record If...? 满足?Skip Record If...?的特解为?Skip Record If...? (5)设?Skip Record If...?代入(1)式中, ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...? ?Skip Record If...?满足初始条件的特解为?Skip Record If...? (6)特征方程为?Skip Record If...?,解得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢70

代数方程知识点及经典习题

代数方程知识点 一.一元二次方程 1、一元二次方程的一般形式[20(a≠0)] 2、一元二次方程的判定方法 (1)根据定义判定。[即①是整式方程②只有一个未知数③未知数的最高次数是2 ] (2)根据一般形式判定。[即将整式方程进行去分母、去括号、移项、合并同类项等变形后,如果能化为一元二次方程的一般形式20(a≠0),那么它就是一元二次方程。] 二.因式分解 1、因式分解法的一般步骤:(1)将方程的右边化为零(2)将方程的左边分解为两个一次因式的乘积(3)令每个因式等于零,得到两个一元一次方程(4)解这两个一元一次方程,它们的解就是原方程的解。 2、一元二次方程解法的选择顺序:先考虑能否用直接开平方法和因式分解法,不能用这两种特殊方法时,再用公式法。 三.一元二次方程的根的判别式 1.一元二次方程的根的判别式的概念 2.一元二次方程的根的情况与判别式的关系 判别式定理和逆定理?>0 ?方程有两个不相

等的实数根 ?=0 ?方程有两个相等的实数根 ?<0 ?方程没有实数根 ?≥0 ?方程有两个实数根3.一元二次方程根的判别式的应用 1)不解方程,判定方程根的情况 2)根据方程根的情况,确定方程系数中字母的取值范围。 3)应用判别式证明方程根的情况(无实根、有实根、有不相等实根、有相等实根) 4)利用判别式解决一元二次方程的有关证明题。 四.根与系数的关系 1 一元二次方程的根与系数的关系(韦达定理) 如果方程20(a≠0)的两个实数根是x 1, x 2 ,那么 12 __, 12 = __, 2韦达定理的逆定理 如果实数x 1, x 2 满足 12 __, 12 =__, 那么x 1 , x 2 是一元 二次方程20的两个根. 3韦达定理的两个重要推论 推论1:如果方程20的两个根是x 1, x 2 , 那么 12__, 12 =__,

第七讲 MATLAB中求方程的近似根(解)

第七讲MATLAB中求方程的近似根(解) 教学目的:学习matlab中求根命令,了解代数方程求根求解的四种方法,即图解法、准解析法、数值方法以及迭代方法,掌握对分法、迭代法、牛顿切法线求方程近似根的基本过程;掌握求代数方程(组)的解的求解命令. 教学重点:求方程近似解的几种迭代方法,代数方程(组)的解的求解命令的使用方法.利用所学的编程知识,结合具体的实例,编制程序进行近似求根.掌握相关的代数方程(组)的求解命令及使用技巧. 教学难点:方程的近似求解和非线性方程(组)的求解. 一、问题背景和实验目的 求代数方程0 x f的根是最常见的数学问题之一(这里称为代数方程,主要是想和 (= ) 后面的微分方程区别开.为简明起见,在本实验的以下叙述中,把代数方程简称为方程),当) f为线性方程,否则称之为非线性方程.(x (= x ) f是一次多项式时,称0 当0 (x f的多样性,尚无一般的解析解法可使用,但如f是非线性方程时,由于) ) x (= 果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.同时对于多未知量非线性方程(组)而言,简单的迭代法也是可以做出来的,但在这里我们介绍相关的命令来求解,不用迭代方法求解. 通过本实验,达到下面目的: 1. 了解对分法、迭代法、牛顿切线法求方程近似根的基本过程; 2. 求代数方程(组)的解. 首先,我们先介绍几种近似求根有关的方法: 1.对分法 对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根. 设) a f ?b f,即()0 f a>,()0 f a<,()0 f b<或()0 f b>.则 ) , (< (x [b f在] a上连续,0 ( ) 根据连续函数的介值定理,在) fξ=. a内至少存在一点ξ,使()0 , (b 下面的方法可以求出该根:

代数方程 解法

代数方程 解法 化归思想:高次化低次:降次的方法:因式分解,换元 分式化整式:化整式的方法:去分母,换元 无理化有理:化有理方程的方法:平方法,换元 多元化一元:代入和加减消元 1.一元一次方程和一元二次方程的解法 一元二次方程的解法主要有四种: (1)直接开平方法: 适用于(mx+n )2 =h (h ≥0)的一元二次方程。 (2)配方法: 适用于所有化为一般形式后的一元二次方程。但是,具有二次项系数为1,一次项系数为偶数特点的一元二次方程,用配方法解才较简便。 配方法是通过配方将一元二次方程化成(mx+n )2 =h (h ≥0)的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法。 其基本步骤是: ①首先在方程两边同除以二次项系数,把二次项系数化为1; ②把常数项移到等式的右边; ③方程两边同时加上一次项系数一半的平方; ④方程左边写成完全平方式,右边化简为常数; ⑤利用直接开平方法解此方程 用配方法解一元二次方程要注意,当二次项系数不为1时,一定要化为1,然后才能方程两边同时加上一次项系数一半的平方 (3)公式法: 适用于解一般形式的一元二次方程。利用公式() 04242 2≥--±-=ac b a ac b b x 可以解 所有的一元二次方程。

注意:当b 2-4ac ≥0时,方程才有实数解;当b 2 -4ac <0时,原方程无实数解。 (4)因式分解法: 适用于方程右边是0,左边是易于分解成两个一次因式乘积的一元二次方程。 2.含字母系数的整式方程的解法 3.特殊的高次方程的解法 (1)二项方程)0,0(0≠≠=+b a b ax n 的解法 二项方程的定义: 如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另外一边是零,那么这样的方程叫做二项方程。 关于x 的一元n 次二项方程的一般形式是 ),0,0(0是正整数n b a b ax n ≠≠=+ 二项方程的解法及根的情况: 一般地,二项方程)0,0(0≠≠=+b a b ax n 可变形为a b x n - = 可见,解一元n 次二项方程,可以转化为求一个已知数的n 次方根,运用开方运算可以求出这个方程的根。 二项方程的根的情况: 对于二项方程)0,0(0≠≠=+b a b ax n , 当n 为奇数时,方程只有且只有一个实数根。 当n 为偶数时,如果0ab ,那么方程没有实数根。 (3)因式分解法解高次方程 解高于一次的方程,基本思想就是是“降次”,对有些高次方程,可以用因式分解的方法降次。 用因式分解的方法时要注意:一定要使方程的一边为零,另一边可以因式分解。 例题 解下列方程: (1)2x 3+7x 2-4x=0 (2)x 3-2x 2 +x-2=0 解:(1)方程左边因式分解,得 x(2x 2 +7x-4)=0 x(x+4)(2x-1)=0

解线性代数方程

解线性代数方程

————————————————————————————————作者:————————————————————————————————日期:

求解线性方程组的直接解法 5.3特殊矩阵的三角分解 ①实对称矩阵的LDL T分解 设A是实对称阵,且A的所有顺序主子式均不为零,则LDR分解中R=L T, 故可用以作LDL T分解.这就是说,当A的对角元素非零时,我们可 以作LU分解,也就得到LDL T分解,L相同,是单位上三角阵,U的对角元素 构成D.不过没有利用对称性,存储量运算量都未能节省—预计是一半。试 用n=3的计算表格说明如何实现节省。 d1=u11 =a11 u12=a12 l21=u12/d1 u13=a13 l31=u13/d1 d2=u22=a22-l21u12u23=a23-l21u13 l32=u23/d2 u33=a33-l31u13-l32u23 这样,可用上半部元素逐列计算D,L T。也可用下半部元素逐行计算L,D。引进輔助量t1, t2代替u1j,u2j,并利用对称性得到: d1=a11 t1=a21 l21= t1/d1 d2= a22-t1l21 t1=a31 l31=t1/d1t2=a32-t1l21 l32=t2/d2 d3=a33-t1l31-t2l32 据此不难写出LDL T分解A=LDL T的计算公式和程序(逐行计算L,D). d1=a11 for i=2:n for j=1:i-1 t j=a ij-l j1t1-l j2t2-…-l j,j-1t j-1 l ij=t j/d j end d i=a ii-l i1t1-l i2t2-…- l i,i-1t i-1 end 存储约n(n+1)/2单元,乘加运算各约n3/6. 利用LDL T分解解Ax=b分四步: 1.分解A=LDL T 2.解Lg=b 求g 3.解Dy=g 求y 4.解L T x=y 求x ②实对称正定矩阵的LL T分解 A实对称正定时顺序主子式皆正,可作LDL T,D的对角元素皆正,有正

第10章 微分方程与差分方程

第十章 微分方程与差分方程 A 级自测题 一、选择题(每小题5分,共20分) 1.下列方程中为可分离变量方程的是( ). A .xy y e '=. B .x xy y e '+=. C .22()()0x xy dx y x y dy +++=. D .0yy y x '+-=. 2.下列方程中为可降阶的方程是( ). A .1y xy y '''++=. B .2()5yy y '''+=. C .x y xe y ''=+. D .2(1)(1)x y x y ''-=+. 3.若连续函数()f x 满足关系式30()()ln 33 x t f x f dt =+?,则()f x 等于( ). A .ln 3x e . B .3ln 3x e . C .ln 3x e +. D .3ln 3x e +. 4.函数28x x y A =?+是差分方程( )的通解. A .21320x x x y y y ++-+=. B .12320x x x y y y ---+=. C .128x x y y +-=-. D .128x x y y +-=. 二、填空题(每小题5分,共20分) 1.微分方程2sin d d ρρθθ +=的阶数为 . 2.一阶线性微分方程()()y g x y f x '+=的通解为_________. 3.微分方程0y y e '+=满足初始条件(1)0y =的特解为_________. 4.差分方程12x x y y +-=的通解为 . 三、求下列微分方程的通解(每小题5分,共40分) 1.240ydx x dy dy +-=; 2.()220x y dx xydy +-=;

MATLAB 微分代数方程解法Microsoft Word 文档

微分代数方程(DAE)的Matlab解法 所谓微分代数方程,是指在微分方程中,某些变量满足某些代数方程的约束。假设微分方程的更一般形式 可以写成 前面所介绍的ODEs数值解法主要针对能够转换为一阶常微分方程组的类型,故DAE就无法使用前面介绍的常微分方程解法直接求解,必须借助DAE的特殊解法。 其实对于我们使用Matlab求解DAE时,却没有太大的改变只需增加一个Mass参数即可。描述f(t,x)的方 法和普通微分方程完全一致。 注意:ode15i没法设置Mass属性,换句话说除了ode15i外其他ode计算器都可以求解DAEs问题1.当M(t,y)非奇异的时候,我们可以将微分方程等效的转换为y'=inv(M)*f(t,y),此时就是一个普通的ODE(当 然我们可以将它当成DAEs处理),对任意一个给定的初值条件都有唯一的解 2.当m(t,y)奇异时,我们叫它为DAEs(微分代数方程),DAEs问题只有在同时提供状态变量初值y0和状态变量一阶导数初值py0,且满足M(t0,y0)*yp0=f(t0,y0)时才有唯一解,假如不满足上面的方程,DAEs解算器会将提供的y0和py0作为猜测初始值,并重新计算与提供初值最近的封闭初值 3.质量矩阵可是一个常数矩阵(稀疏矩阵),也可以是一个自定义函数的输出。但是ode23s只能求解Mass 是常数的DAEs 4.对于Mass奇异的DAEs问题,特别是设置MassSingular为yes时,只能ode15s和ode23t解算器 5.对于DAE我们还有几个参数需要介绍 a.Mass:质量矩阵,不说了,这个是DAE的关键,后面看例子就明白了 b.MStateDependence:质量矩阵M(t,y)是否是y的函数,可以选择none|{weak}|strong,none表示M与 y无关,weak和strong都表示与y相关 c.MvPattern:注意这个必须是稀疏矩阵,S(i,j)=1表示M(t,y)的第i行中任意元素都与第j个状态变量yi有 关,否则为0 d.MassSingular:设置Mass矩阵是否奇异,当设置为yes时,只能使用ode15s和ode23t e.InitialSlope:状态变量的一阶导数初值yp0,和y0具有相同的size,当使用ode15s和ode23t时,该属 性默认为0 下面我们以实例说明,看下面的例子,求解该方程的数值解 【解】 真是万幸,选取状态变量和求状态变量的一阶导数等,微分方程转换工作,题目已经帮我们完成。 可是细心的网友会发现,最后一个方程不是微分方程而是一个代数方程(这就是为什叫DAE的原因),其实 我们可以将它视为对三个状态变量的约束。 (1)用矩阵形式表示出该DAEs

matlab-解方程

1、解方程 最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MA TLAB中有两种方法: (1)x=inv(A)*b —采用求逆运算解方程组; (2)x=A —采用左除运算解方程组。 例: x1+2x2=8 2x1+3x2=13 >>A=[1,2;2,3];b=[8;13]; >>x=inv(A)*b x = 2.00 3.00 >>x=A x = 2.00 3.00; 即二元一次方程组的解x1和x2分别是2和3。 对于同学问到的用matlab解多次的方程组,有符号解法,方法是:先解出符号解,然后用vpa(F,n)求出n 位有效数字的数值解.具体步骤如下: 第一步:定义变量syms x y z ...; 第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN'); 第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。 如:解二(多)元二(高)次方程组: x^2+3*y+1=0 y^2+4*x+1=0 解法如下: >>syms x y; >>[x,y]=solve('x^2+3*y+1=0','y^2+4*x+1=0'); >>x=vpa(x,4); >>y=vpa(y,4); 结果是: x = 1.635+3.029*i 1.635-3.029*i -.283 -2.987 y = 1.834-3.301*i 1.834+3.301*i -.3600 -3.307。 二元二次方程组,共4个实数根;

matlab实验报告--求代数方程的近似根

数学实验报告 实验序号: 第二次 日期:2012 年 5月10日 班级 0920861 小组成员姓名 徐易斌;王勇 王康 学号 30 12 33 实验名称:求代数方程的近似根 问题背景描述: 求代数方程0)(=x f 的根是最常见的数学问题之一,当)(x f 是一次多项式时,称0)(=x f 为线性方程,否则称之为非线性方程. 当0)(=x f 是非线性方程时,由于)(x f 的多样性,尚无一般的解析解法可使用,但如果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求. 本实验介绍一些求方程实根的近似值的有效方法,要求在使用这些方法前先确定求根区间],[b a ,或给出某根的近似值0x .

实验目的: 1. 了解代数方程求根求解的四种方法:对分法、迭代法、牛顿切线法 2. 掌握对分法、迭代法、牛顿切线法求方程近似根的基本过程。 实验原理与数学模型: 1.对分法 对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根. 设)(x f 在],[b a 上连续,0)()(,()0f b <或()0f a <,()0f b >.则根据连续函数的介值定理,在),(b a 内至少存在一点 ξ,使()0f ξ=. 下面的方法可以求出该根: (1) 令02 a b x +=,计算0()f x ; (2) 若0()0f x =,则0x 是()0f x =的根,停止计算,输出结果0x x =. 若 0()()0f a f x ?<,则令1a a =,10b x =,若0()()0f a f x ?>,则令10a x =,1b b =;11 12 a b x +=. ……,有k a 、k b 以及相应的2 k k k a b x += . (3) 若()k f x ε≤ (ε为预先给定的精度要求),退出计算,输出结果2 k k k a b x +=; 反之,返回(1),重复(1),(2),(3). 以上方法可得到每次缩小一半的区间序列{[,]}k k a b ,在(,)k k a b 中含有方程的根. 当区间长k k b a -很小时,取其中点2 k k k a b x += 为根的近似值,显然有 1111111 ()()()2222 k k k k k k x b a b a b a ξ--+-≤-=??-==- 以上公式可用于估计对分次数k . 2. 迭代法 1) 迭代法的基本思想: 由方程()0f x =构造一个等价方程

代数方程 知识点

1 代数方程 整式方程 举例说明含字母的一元一次方程和一元二次方程 方程中只含有一个未知数且两边都是关于未知数的整式,那么这个方程叫做一元整式方程 经过整理之后的一元整式方程中含未知数的项 最高次数是n ,那么这个方程就叫做一元n 次方程。其中n>2的方程统称为一元高次方程,简称高次方程 题型:判断是否是整式方程,是一元几次方程? 二项方程,如果一元n 次方程的一边只含有未知数的一项和非零的常数项。另一边是零, 一般形式:0n ax b +=(0,0)a b ≠≠n 为正整数 解法:当n 当n 为偶数时,如果ab<0,那么方程有两个根,且他们互为相反数: 如果ab>0,那么方程没有祋根 题型:判断是否是二项方程,解二项方程, 分式方程 解分式方程的一般步骤:。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 (1) 考虑去掉方程中各分式的分母,把方程转化为整式方程 (2) 求解 (3) 判断所求的整式方程的根是不是原方程的根 用换元法解方程:例如:2223x x +=等: 注意解分式方程时要记得检验 无理方程(与根式有关的方程) 方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程 整式方程和分式方程统称为有理方程 有理方程和无理方程统称为代数方程 解无理方程的步骤:去根号,解有理方程,检验根 题型:解无理方程 二元二次方程 二元二次方程:仅含有两个未知数,并且含有未知数的项的最高次数是2,的整式方程 它的一般形式:220ax bxy cy dx ey f +++++=(a,b ,c,d,e,f 都是常数,a,b,c,中至少有一个不为零,当b 为0时,a 与d ,c 与e 分别不全为0) 方程组中,仅含有两个未知数,各方程式整式方程,并且含有未知数的项的最高次数为2,像这样的方程组叫做二元二次方程组, 能满足二元二次方程左右两边的值相等的一对未知数的值,叫做二元二次方程的解,方程组中所含各个方程的公共解叫做这个方程组的解 二元二次方程组的解法:(消元的思想将其转化为一元一次方程) 把一个未知数用另一个未知数的代数式表示----代入消元----解一元一次方程---带回---解出原方程的解,, 还可以利用方程本身的特点来解题! 列方程(组)解应用题

用Matlab解代数方程

一般的代数方程 函数solve用于求解一般代数方程的根,假定S为符号表达式,命令solve (S)求解表达式等于0的根,也可以再输入一个参数指定未知数。例: syms a b c x S=a*x^2+b*x+c; solve(S) ans= [ 1/2/a*(-b+(b^2-4*a*c)^(1/2))] [ 1/2/a*(-b-(b^2-4*a*c)^(1/2))] b=solve(S,b) b = -(a*x^2+c)/x

线性方程组 线性方程组的求解问题可以表述为:给定两个矩阵A和B,求解满足方程AX=B或XA=B的矩阵X。方程AX=B的解用X=A\B或X=inv (A)*B表示;方程XA=B 的解用X=B/A或X=B*inv (A)表示。不过斜杠和反斜杠运算符计算更准确,占用内存更小,算得更快。

线性微分方程 函数dsolve用于线性常微分方程(组)的符号求解。在方程中用大写字母D表示一次微分,D2,D3分别表示二阶、三阶微分,符号D2y相当于y关于t的二阶导数。 函数dsolve的输出方式 格式说明 y=dsolve(‘Dyt=y0*y’) 一个方程,一个输出参数[u,v]=dsolve(‘Du=v’,’Dv=u’) 两个方程,两个输出 参数 S=dsolve(‘Df=g’,’Dg=h’,’Dh=-2*f ‘)方程组的解以S.f S.g S.h结构数组的形式输出

例1 求 2 1u dt du += 的通解. 解 输入命令:dsolve('Du=1+u^2','t') 结 果:u = tg(t-c) 例2 求微分方程的特解. ???íì===++15 )0(',0)0(029422 y y y dx dy dx y d 解输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x') 结果为: y =3e -2x sin (5x )

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

双曲方程基于matlab的数值解法

双曲型方程基于MATLAB 的数值解法 (数学1201,陈晓云,41262022) 一:一阶双曲型微分方程的初边值问题 0,01,0 1.(,0)cos(),0 1. (0,)(1,)cos(),0 1. u u x t t x u x x x u t u t t t ππ??-=≤≤≤≤??=≤≤=-=≤≤ 精确解为 ()t x cos +π 二:数值解法思想和步骤 2.1:网格剖分 为了用差分方法求解上述问题,将求解区域{}(,)|01,01x t x t Ω=≤≤≤≤作剖分。将空间区间[0,1]作m 等分,将时间[0,1]区间作n 等分,并记 1/,1/,,0,,0j k h m n x jh j m t k k n ττ===≤≤=≤≤。分别称h 和τ为空间和时 间步长。用两簇平行直线,0,,0j k x x j m t t k n =≤≤=≤≤将Ω分割成矩形网格。 2.2:差分格式的建立 0u u t x ??-=?? 2.2.1:Lax-Friedrichs 方法 对时间、空间采用中心差分使得 2h 1 1111)(2 1u u x u u u u u t u k j k j k j k j k j k j -+-++-= +=-= ????τ τ 则由上式得到Lax-Friedrichs 格式 1 11111()202k k k k k j j j j j u u u u u h τ+-+-+-+-+=

截断误差为 ()[]k k k j h j j R u L u Lu =- 1 11111()22k k k k k k k j j j j j j j u u u u u u u h t x τ+-+-+-+-??=+-+?? 23222 3 (),(0,0)26k k j j u u h O h j m k n t x ττ??= -=+≤≤≤≤?? 所以Lax-Friedrichs 格式的截断误差的阶式2()O h τ+ 令/s h τ=:则可得差分格式为 1111 11(),(0,0)222 k k k k k j j j j j s s u u u u u j m k n +--++=-+++≤≤≤≤ 0cos()(0)j j u x j m π=≤≤ 0cos(),cos(),(0)k k k m k u t u t k n ππ==-≤≤ 其传播因子为: ()()()e e G h i h i s h i h i σσσστσ---=-+e e 221, 化简可得: ()()()()()h s G h is h G στσσστ σsin 11,sin cos ,2 2 2--=-= 所以当1s ≤时,()1,≤τσG ,格式稳定。 * 2.2.2:LaxWendroff 方法 用牛顿二次插值公式可以得到LaxWendroff 的差分格式,在此不详细分析,它的截断误差为() h 2 2 +O τ ,是二阶精度;当2s ≤时,()1,≤τσG , 格式稳定。在这里主要用它与上面一阶精度的Lax-Friedrichs 方法进行简单对比。 2.3差分格式的求解

微分方程与差分方程 详解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点内容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+? ? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

实验差分方程

实验八差分方程 [实验目的] 1. 掌握差分的性质,多项式求和; 2. 差分方程的解法; 3. 用差分方程解代数方程; 4. 用差分方程分析国民经济。 §1 基本理论 1.差分 2. 任意数列{x n },定义差分算子Δ如下: Δx n=x n+1-x n 对新数列再应用差分算子,有 Δ2xn=Δ(Δk x n). 性质 性质1 Δk(x n+y n)=Δk x n+Δk y n 性质2 Δk(cx n)=cΔk x n 性质3 Δk x n=∑(-1)jC j k X n+k-j 性质4 数列的通项为n的无限次可导函数,对任意k>=1,存在η,有Δk xn=f(k)(η) 差分方程 定义8。1 方程关于数列的k阶差分方程: x n-a1x n-1-a2x n-2-……a B x n-k=b(n=k,k+1,……) 其中a1,a2,------ak 为常数,ak≠0. 若b=0,则该方程是齐次方程 关于λ的代数方程 λk-a1λk-1-------a k-1λ-a k=0 为对应的特征方程,根为特征值。 1.实验内容与练习 2.1 差分 例1Xn={n3 可见,{n},三阶差分数列为常数数列,四阶为0。

练习1 对{1},{n},{n 2},{n 4},{n 5}, 分别求各阶差分数列。 练习2 {C 0n-1}{C 1n-1}{C 2n-1},{C 4n-1},分别求各阶差分数列. {Xn}的通项为n 的三次函数, Xn=a 3n 3+a 2n 2+a 1n+a 0 证明它为常数数列。 证明 由Xn=a 3n 3+a 2n 2+a 1n+a 0可直接计算 。 定理8。1 若数列的通项是关于n 的k 次多项式,则 k 阶差分数列为非零数列,k+1阶差分数列为0。 练习3 证明定理8。1 。 定理8。2 若{Xn}的 k 阶插分为非零常数列,则{Xn}是 n 的 k 次多项式, 练习4 根据插分的性质证明定理8。2 例2。求∑i 3 例3 例4 解 设Sn=∑i 3 表 设Sn=a 4n4+a 3n 3+a 2n 2+a 1n+a 0, s 1=1,s 2=9,s 3=36,s 4=100,s 5=225,得 a 0=0, a 1=0, a 2=1/4, a 3=1/2, a 4=1/4. 所以, Sn=(1/4)n 4+(1/2)n 3+(1/4)n 2. 练习 {Xn}的通项Xn 为n 的k 次多项式,证明∑x i 为n 的 k+1次多项式;求 ∑i 4. 由练习 2 {C r n-1}可得。 2.2差分方程 对于一个差分方程,如果能找出这样的数列通项,将它带入差分方程后,该方程成 为恒等式,这个通项叫做差分方程的解。 例3 对差分方程21,x x x n -5x n-1+6x n-2=0,可直接验证x n =c13n +c22n 是该方程的解。 例3中的解中含有任意常数,且任意常数的个数与差分方程的阶数相同。这样的解

大连理工大学 高等数值分析 偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+ ??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2 22122212212C u C C u C C u C u ??+???+???+??= 22 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

差分方程的解法

1、常系数线性差分方程的解 方程 a 0x n k a 1x n k 1 ... a k x n b(n) 其中 a 0 , a 1,..., a k 为常数,称方程( 8)为常系数线性方程。 又称方程 a 0x n k a 1x n k 1 ... a k x n 为方程( 8)对应的齐次方程。 第三节 差分方程常用解法与性质分析 9) n 如果( 9)有形如 x n 的解, 带入方程中可得: k k 1 a 0 a 1 ... a k 1 a k 0 10) 称方程( 10)为方程( 8)、 9)的特征方程。

n n n c 1 1 c 2 2 ... c k k , 若(10) 有 m 重根 ,则通解中有构成项: (c 1 m 1 n c 2 n ... c m n ) 显然, 如果能求出( 10)的根,则可以得到( 9)的解。 基本结果如下: 1) 若(10) 有 k 个不同的实根,则( 9)有通解:

(3)若(10)有一对单复根 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:X n 如果能得到方程(8)的一个特解:X n ,则(8)必有通解: * X n X n + 焉 (11) (1)的特解可通过待定系数法来确定。 例如:如果b (n )bk m (n ), pMn )为门的多项式,则当b 不是特征 根 时,可设成形如 bq m (n ) 形式的特解,其中 q m (n ) 为m 次多项式;如 果b 是 r 重根时,可设特解:b n n r q m (n ) ,将其代入(8)中确定出系 数即可。 arcta n — ,则(9) 的通解中有构成项: C l n . cos n C 2 sin (4)若有 m 重复根: i e ,则 (9)的通项中有成 项: cos n (C m 1 C m 2 n m 1 、 n ? c 2m n ) sin n

常微分方程与差分方程知识点

常微分方程与差分方程知识点 考试纲要 常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 微分方程的简单应用 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 考试要求 1、了解微分方程及其阶、解、通解、初始条件和特解等概念 2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法 3、会解二阶常系数齐次线性微分方程 4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程 5、了解差分与差分方程及其通解与特解等概念 6、了解一阶常系数线性差分方程的求解方法 7、会用微分方程求解简单的经济应用问题 重要知识点 1、微分方程通解中任意常数的个数与微分方程的阶数相同 2、变量可分离微分方程解法 g(y)dy f (x)dxg(y)dy f(x)dx G(y) F(x) C 3、齐次微分方程解法 dy(y)T殳u y- dU dx T再用y代替u dx x x (u) u x x 附:可化为齐次的方程 c C| 0,可化为齐次微分方程 a b . . a1 bi dy ax by c dx ax by c c或c o a b a b x X h 0,设h,带入原方程解出h,k,可化为齐次微分方程y Y k 设印b,dy ax by c ,令ax a b dx (ax by) c 则可化为史的变量可分离微分方程 dx by v, 0,

7、二阶常系数非齐次线性微分方程的解法 齐次方程y t 1 ay t 0的通解为y t C a ,其中C 是一个任意常数。 若给定初始条件y 0 C o ,则y 0 C 0 a t 即为满足该初始条件的特解。 对于非齐次方程 y t 1 ay t f (t),其通解也是非齐次方程的一个特解 y t*与对应齐次方程通解之和。即: ? t y t y t C a 。

相关文档