文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线的综合应用及其求解策略 (1)

圆锥曲线的综合应用及其求解策略 (1)

圆锥曲线的综合应用及其求解策略 (1)
圆锥曲线的综合应用及其求解策略 (1)

圆锥曲线的综合应用及其求解策略

有关圆锥曲线的综合应用的常见题型有:①、定点与定值问题;②、最值问题;③、求参数的取值范围问题;④、对称问题;⑤、实际应用问题。

解答圆锥曲线的综合问题,应根据曲线的几何特征,熟练运用圆锥曲线的相关知识,将曲线的几何特征转化为数量关系(如方程、不等式、函数等),再结合代数知识去解答。解答过程中要重视函数思想、方程与不等式思想、分类讨论思想和数形结合思想的灵活应用。

一、定点、定值问题:

这类问题通常有两种处理方法:

①、第一种方法:是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;

②、第二种方法:是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。

1、不论a 为何值时,直线(a -1)x -y +2a +1=0恒过定点P ,则过P 点的抛物线的标准方程为__________.

2、已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点__________.

3、在平面直角坐标系xoy 中,如图,已知椭圆15

92

2=+y x 的左、右顶点为A 、B ,右焦点为F 。设过点T (m t ,)的直线TA 、TB 与此椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。

(1)设动点P 满足422=-PB PF ,求点P 的轨迹;

(2)设3

1,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关)。

4、已知动直线l 与椭圆C :x 23+y 2

2

=1交于P (x 1,y 1),Q (x 2,y 2)两不同点,且△OPQ 的面积S △OPQ =62

,其中O 为坐标原点. (1)证明:x 21+x 22和y 21+y 22

均为定值; (2)设线段PQ 的中点为M ,求|OM |·|PQ |的最大值;

(3)椭圆C 上是否存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62

?若存在,判断△DEG 的形状;若不存在,请说明理由.

二、最值问题:

常见解法有两种:几何法与代数法。

① 若题目中的条件或结论能明显体现某种几何特征及意义,或反映出了某种圆锥曲线的定

义,则直接利用图形的性质或圆锥曲线的定义来求解,这就是几何法; ② 将圆锥曲线中的最值问题通过建立目标函数,转化为二次函数或三角函数的最值问题,

再充分利用均值不等式、函数的单调性或三角函数的有界性等相关知识去求解。

1、椭圆22221(0)x y a b a b

+=>>上的点到焦点F (C ,0)的最大距离为______ 2、已知平面内有一固定线段AB ,其长度为4,动点满足|PA|-|PB|=3,O 为AB 的中点,则

|OP|的最小值为_________

3、以椭圆短轴的一端点和椭圆的两焦点为顶点的三角形的面积为1,则椭圆长轴的最小值为__________

4、P 为抛物线x 2

=4y 上的一动点,定点A (8,7),则P 到x 轴与到A 点的距离之和的最小值为________

▲抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是__________

5、设实数x 、y 满足22221169x y +=,则3x +4y 的最大值是______最小值是_____

6、抛物线x 2

=4y 的焦点F 和点A(-1,8),P 为抛物线上一点,则|PA|+|PF| 最小值是( )

A 6

B 9

C 12

D 16

▲若将上题中点A 的条件改为A(3,1),其它不变,则应为____

7、设F 是抛物线2:4G x y =的焦点.设A 、B 为抛物线G 上异于原点的两点,且满足0FA FB =,延长AF ,BF 分别交抛物线G 于点C 、D ,求四边形ABCD 面积的最小值.

8、已知椭圆E :22

12516

x y +=,点P (,)x y 是椭圆上一点。 (1)求22x y +的最值。

(2)若四边形ABCD 内接于椭圆E ,点A 的横坐标为5,点C 的纵坐标为4,求四边形面积的最大值。

9、已知点M (-2,0),N (2,0),动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .

(Ⅰ)求W 的方程;

(Ⅱ)若A ,B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值.

10、已知椭圆C 的左、右焦点坐标分别是(2,0)-,(2,0),离心率是

6,直线y t =与椭圆C 交与不同的两点M ,N ,以线段MN 为直径作圆P,圆心为P .

(Ⅰ)求椭圆C 的方程;(Ⅱ)若圆P 与x 轴相切,求圆心P 的坐标;

(Ⅲ)设Q (x,y )是圆P 上的动点,当t 变化时,求y 的最大值.

11、在平面直角坐标系xOy 中,直线l :x =-2交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足∠MPO =∠AOP .

(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;

(2)已知T (1,-1).设H 是E 上动点,求|HO |+|HT |的最小值,并给出此时点H 的坐标;

(3)过点T (1,-1)且不平行于y 轴的直线l 1与轨迹E 有且只有两个不同的交点.求直线l 1的斜率k 的取值范围.

12、设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.

(1)求C 的圆心轨迹L 的方程;

(2)已知点M ???

?355,455,F (5,0),且P 为L 上动点.求||MP |-|FP ||的最大值及此时点P 的坐标.

13、已知椭圆G :x 24

+y 2=1,过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点. (1)求椭圆G 的焦点坐标和离心率;

(2)将|AB |表示为m 的函数,并求|AB |的最大值.

14、已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.

(1)求动点P 的轨迹C 的方程;

(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨

迹C 相交于点D ,E ,求AD →·EB →的最小值.

三、求参数的取值范围范围问题:

求参数的取值范围问题,常用的解决方法有两种:

①、第一种是不等式(组)求解法?根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式(组)再得出参数的变化范围;

②、第二种?是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围。

1、已知a >b >0,e 1,e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2

b

2=1的离心率,则lg e 1+lg e 2的值( ) A .大于0且小于1 B. 大于1 C. 小于0 D. 等于0 2、已知点F 是双曲线x 2a 2-y 2

b

2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A 、B 两点,△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )

A .(1,+∞)

B .(1,2)

C .(1,1+2)

D .(2,1+2)

3、若直线2x -y +a =0与圆(x -1)2+y 2=1有公共点,则实数a 的取值范围为( )

A .-2-5

B .-2- 5 ≤a ≤-2+ 5

C .- 5 ≤a ≤ 5

D .-5

4、若圆x 2+(y-1)2= 1上的任一点P(x,y),有不等式x+y+c ≥0恒成立,则c 的取值范围是_____

5、已知向量(,3),(1,0),(3)(3)a x y b a b a b ==+⊥-且.

(Ⅰ)求点(,)Q x y 的轨迹C 的方程;

(Ⅱ)设曲线C 与直线y kx m =+相交于不同的两点M 、N ,又点(0,1)A -,当AM AN =时,求实数m 的取值范围。

6、在直角坐标系xOy 中,以O 为圆心的圆与直线34x =相切.

(1)求圆O 的方程;

(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使PA PO PB ,,成等比数列,

求PA PB 的取值范围. 7、如图,已知(1

0)F ,,直线:1l x =-,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ =.

(Ⅰ)求动点P 的轨迹C 的方程; O y l F

(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . (1)已知1MA AF λ=,2MB BF λ=,求12λλ+的值;

(2)求MA MB 的最小值.

四、对称问题:

包括两种情形:

①、中心对称问题:常利用中点坐标公式求解;

②、轴对称问题:主要抓住以下两个条件去处理-----?垂直,即已知点与对称点的连线与对称轴垂直;?中点,即连结已知点和对称点的线段的中点在对称轴上。

1、如图, 直线y=21x 与抛物线y=8

1x 2-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=-5交于Q 点.

(1) 求点Q 的坐标;

(2) 当P 为抛物线上位于线段AB 下方(含点A 、B) 的动点时, 求△OPQ 面积的最大值.

2、在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物

线22x py =(0p >)相交于A B ,两点.

(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面

积的最小值;

(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径

的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,

说明理由.

五、实际应用问题:

此类问题要建立好平面直角坐标系,建立好数学模型,实现应用问题向数学问题的转化。 ★ 【例题9】如图,B 地在A 地的正东方向4 km 处,C 地在B 地的

北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点

到A 的距离比到B 的距离远2 km 。现要在曲线PQ 上选一处M 建一座

码头,向B 、C 两地转运货物。经测算,从M 到B 、M 到C 修建公路的费用

分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是( )

A .(27-2)a 万元

B .5a 万元

C .(27+1) a 万元

D .(23+3) a 万元

总之,圆锥曲线的常见综合问题的处理思路和方法可归纳概括如下:

1、 直线与圆锥曲线的位置关系:

① 、要解决直线与圆锥曲线的位置关系问题,通常把直线方程与圆锥曲线方程联立,消

去y (或消去x )得到关于x (或关于y )的一元二次方程,再考查其△,从而确定直线与圆锥曲线的的交点个数:(1)若△<0,则直线与圆锥曲线没有公共点;②若△=0,则直线与圆锥曲线有唯一的公共点;③若△>0,则直线与圆锥曲线有两个不同的公共点;

N O A C B

y x

② 、从几何角度来看:直线与圆锥曲线的位置关系对应着相交(有两个交点)、相切(有

一个公共点)、相离(没有公共点)三种情况;这里特别要注意的是:当直线与双曲

线的渐近线平行时、当直线与抛物线的对称轴平行时,属于相交的情况,但只有一个公共点。

2、 直线被圆锥曲线截得的弦长问题:

①、直线与圆锥曲线有两个交点A (x 1,y 1)、B(x 2,y 2) ,一般将直线方程L :y=kx+m 代入曲线方程整理后得到关于x 的一元二次方程?则应用弦长公式:

221212(1)[()4]k x x x x ++-L:x= 1k

y +t 代入曲线方程整理后得到关于y 的一元二次方程?则应用弦长公式:2121221(1)[()4]y y y y k

++-; ②、过焦点的弦长的求解一般不用弦长公式去处理,而用焦半径公式会更简捷;

③ 、垂直于圆锥曲线的对称轴的焦点弦长称为圆锥曲线的通径,其中椭圆、双曲线的通

径长都为2b 2

a

,而抛物线的通径长为2p ; ④ 、对于抛物线y 2=2px (p>0)而言,还有如下的焦点弦长公式,有时用起来很方便:

|AB|=x 1+x 2+p ;|AB|=2p sin 2α

(其中α为过焦点的直线AB 的倾斜角) 3、 直线与圆锥曲线相交的中点弦的的问题,常用的求解方法有两种:

①、设直线方程为y=kx+m ,代入到圆锥曲线方程之中,消元后得到一元二次方程,

再利用根与系数的关系去处理(由于直线方程与圆锥曲线方程均未定,因而通常计算量较大); ②、利用点差法:例如在椭圆22

221x y a b

+=内有一定点P (x 0,y 0),求以P 为中点的弦的直线方程时,可设弦的两端点为A (x 1,y 1)、B(x 2,y 2) ,则A 、B 满足椭圆方程,即有221122

222222

11x y a b x y a b ?+=????+=??两式相减再整理可得:(x 1+x 2) (x 1-x 2)a 2 = - (y 1+y 2) (y 1-y 2)b 2;从而可化出k= y 1-y 2x 1-x 2

= (x 1+x 2) (y 1+y 2)·-b 2a 2 = x 0y 0·-b 2a

2; 对于双曲线也可求得:k= y 1-y 2x 1-x 2 = (x 1+x 2) (y 1+y 2)·b 2a 2= x 0y 0·b 2a

2;抛物线也可用此法去求解,值得注意的是,求出直线方程之后,要根据图形加以检验。

4、 解决直线与圆锥曲线问题的一般方法是:

①、解决焦点弦(过圆锥曲线的焦点的弦)的长的有关问题,注意应用圆锥曲线的定义和焦半径公式;

②、已知直线与圆锥曲线的某些关系求圆锥曲线的方程时,通常利用待定系数法;

③、圆锥曲线上的点关于某一直线的对称问题,解决此类问题的方法是利用圆锥曲线上的两点所在的直线与对称直线垂直,则圆锥曲线上两点的中点一定在对称直线上,再利用根的判别式或中点与曲线的位置关系求解。

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

高三数学 圆锥曲线的应用

第六节 圆锥曲线的应用 一、基本知识概要: 解析几何在日常生活中应用广泛,如何把实际问题转化为数学问题是解决应用题的关键,而建立数学模型是实现应用问题向数学问题转化的常用常用方法。本节主要通过圆锥曲线在实际问题中的应用,说明数学建模的方法,理解函数与方程、等价转化、分类讨论等数学思想。 二、例题: 例1、 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨 道的焦点处,当此慧星离地球相距m 万千米和m 34万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32π π和,求该慧星与地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为12222=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何意义可知,彗星A 只能满足)3 (3/ππ=∠=∠xFA xFA 或。作m FA FB Ox AB 3 221B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(3 4)(22 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31c c c m c a m a c m =-==∴?=代入第一式得 .32.32m c c a m c ==-∴=∴

答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。 思考讨论:椭圆上任一点到焦点的距离的最大值和最小值是多少?怎样证明? 例2:A ,B ,C 是我方三个炮兵阵地,A 在B 正东6Km ,C 在B 正北偏西ο30,相距4Km ,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B ,C 两地比A 距P 地远,因此4s 后,B ,C 才同时发现这一信号,此信号的传播速度为1s Km /,A 若炮击P 地,求炮击的方位角。(图见优化设计教师用书P249例2) 解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则)32,5(),0,3(),0,3(--C A B ,因为PC PB =,所以点P 在线段BC 的垂直平分线上。 因为3-=BC k ,BC 中点)3,4(-D ,所以直线PD 的方程为)4(31 3+=-x y (1) 又,4=-PA PB 故P 在以A ,B 为焦点的双曲线右支上。设),(y x P ,则

2021-2022年高考数学二轮复习 攻克圆锥曲线解答题的策略 新人教版

2021-2022年高考数学二轮复习 攻克圆锥曲线解答题的策略 新人教版 摘要:为帮助高三学生学好圆锥曲线解答题,提高成绩,战胜高考,可从四个方面着手:知识储备、方法储备、思维训练、强化训练。 关键词:知识储备 方法储备 思维训练 强化训练 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率 ②点到直线的距离 ③夹角公式: (3)弦长公式 直线上两点间的距离: =或 (4)两条直线的位置关系 ①=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程: 22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程: (2)、双曲线的方程的形式有两种 标准方程: 距离式方程:2a =

(3)、三种圆锥曲线的通径你记得吗? 22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知是椭圆的两个焦点,平面内一个动点M 满足则动点M 的轨迹是( ) A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122 tan 2 F PF P b θ ?=在椭圆上时,S 122cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减, 上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y + +抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设、,为椭圆的弦中点则有 ,;两式相减得 ()()03 4 2 22 1 2 2 2 1 =-+-y y x x ()() ()() 3 4 21212121y y y y x x x x +-- =+-= 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式,以及根与系数 的关系,代入弦长公式,设曲线上的两点,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。一旦设直线为,就意味着k 存在。 例1、已知三角形ABC 的三个顶点均在椭圆上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上). (1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为,AD 垂直BC 于D ,试求点D 的轨迹方程. 分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。第二问抓住角A 为可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程; 解:(1)设B (,),C(,),BC 中点为(),F(2,0)

圆锥曲线常见题型与答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值围为____ (答:11(3,)(,2)22---U ); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

高考数学(精讲+精练+精析)专题10_4 圆锥曲线的综合应用试题 文(含解析)

专题10.4 圆锥曲线的综合应用试题 文 【三年高考】 1. 【2016高考四川文科】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为 '2222 ( ,)y x P x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: 若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. 单元圆上的“伴随点”还在单位圆上. 若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 线分别为2222( ,)0y x f x y x y -=++与 2222 (,)0y x f x y x y --=++的图象关于y 轴对称,所以②正确;③令单位圆上点的坐标为(cos ,sin )P x x 其伴随点为(sin ,cos )P x x '-仍在单位圆上,故③正确;对于④,直线 y kx b =+上取点后得其伴随点2222 ( ,)y x x y x y -++消参后轨迹是圆,故④错误.所以正确的为序号为②③. 2.【2016高考山东文数】已知椭圆C :(a >b >0)的长轴长为4,焦距为2 . (I )求椭圆C 的方程;

(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B . (i)设直线PM 、QM 的斜率分别为k 、k',证明为定值. (ii)求直线AB 的斜率的最小值. (Ⅱ)(i)设()()0000,0,0P x y x y >>,由()0,M m ,可得()()00,2,,2.P x m Q x m - 所以 直线PM 的斜率 002m m m k x x -= = ,直线QM 的斜率0023'm m m k x x --==-.此时'3k k =-,所以' k k 为定值3-. (ii)设()()1122,,,A x y B x y ,直线PA 的方程为y kx m =+,直线QB 的方程为3y kx m =-+.联立 22142 y kx m x y =+???+ =?? ,整理得()222214240k x mkx m +++-=.由20122421m x x k -=+可得()()212 02221m x k x -=+ ,所以() ()2112 02221k m y kx m m k x -=+= ++,同理() ()() ()22222 2 2262,181181m k m x y m k x k x ---= = +++.所以 () ()() ()() ()()2222212 2 2 2 00 22223221812118121m m k m x x k x k x k k x -----= - = ++++, ()()()()()()()() 2 2 2 2 21 2 2 2 2 622286121812118121k m m k k m y y m m k x k x k k x ----+--=+--=++++ ,所以2212161116.44AB y y k k k x x k k -+??===+ ?-?? 由00,0m x >>,可知0k >,所以1626k k +≥,等号当且仅

高考圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 , ,代入方程,然 后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线。过A (2,1)的直线与双曲线交于两点 及 ,求线段 的中点 P 的轨迹方程。 (2 构成的三角形问题,常用正、余弦定理搭桥。 ,为焦点,,。 (1 (2)求 的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

高中理科数学解题方法篇(圆锥曲线)

攻克圆锥曲线解答题的策略 摘要:为帮助高三学生学好圆锥曲线解答题,提高成绩,战胜高考,可从四个方面着手:知识储备、方法储备、思维训练、强化训练。 关键词:知识储备 方法储备 思维训练 强化训练 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- =或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种(三种形式) 标准方程:22 1(0,0)x y m n m n m n + =>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n + =?< 距离式方程:2a = (3)、三种圆锥曲线的通径你记得吗

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:122tan 2 F PF P b θ ?=在椭圆上时,S 122cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左 加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y + +抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗 第二、方法储备 1、点差法(中点弦问题) 设 () 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗经典套路是什么如果有两个参数 怎么办 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式 0?≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。一旦设直线为y kx b =+,就意味着k 存在。

高考圆锥曲线中的定点与定值问题(题型总结超全)

专题08解锁圆锥曲线中的定点与定值问题 一、解答题 1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标. 【答案】(1)(2) 【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得 。设x轴上的定点为,可得 ,由定值可得需满足,解得可得定点坐标。 解得。 ∴椭圆的标准方程为. (Ⅱ)证明: 由题意设直线的方程为, 由消去y整理得, 设,,

要使其为定值,需满足, 解得 . 故定点的坐标为 . 点睛:解析几何中定点问题的常见解法 (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2 :2C y px =(0,p p >为常数)交于不同的两点,M N ,当1 2 k =时,弦MN 的长为15(1)求抛物线C 的标准方程; (2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()() 2221122,2,,2,,2M t t N t t Q t t ,则1 2 MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++= ()1212:220NQ x t t y t t -++=. 由()1,0-在直线MN 上1 1 t t ?= (1); 由()1,1-在直线MQ 上22220t t tt ?+++=将(1)代入()121221t t t t ?=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ?-+-+-=,即可得出直线NQ 过定点.

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

圆锥曲线解题技巧和方法综合(经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式: 2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种

标准方程:22 1(0)x y m n m n +=?< 距离式方程 :|2a = (3)、三种圆锥曲线的通径你记得吗? 22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足 221=-MF MF 则动点M的轨迹是( ) A、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1) 00 ;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有

圆锥曲线解题技巧经典实用最新

圆锥曲线―概念、方法、题型、及应试技巧总结 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如 (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .4 21=+PF PF B .621=+PF PF C .10 21=+PF PF D .122 2 2 1 =+PF PF (答:C ) ; (2)方程8=表示的曲线是_____(答:双曲线的左 支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>)? { cos sin x a y b ??==(参数方程, 其中?为参数),焦点在y 轴上时2222b x a y +=1(0a b >>)。方程22 Ax By C +=表示椭 圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 如(1)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____(答: 11 (3,)(,2)22 ---) ; (2)若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2y x +的最小值是 ___2) (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1 (0,0a b >>)。方程22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A , B 异号

圆锥曲线在生活中的应用(高2012级43班 叶容杉)

圆锥曲线在生活中的应用 班级:高2012级43班 姓名:叶容杉 指导老师:何志开

圆锥曲线在生活中的应用 高2012级43班 叶容杉 指导老师:何志开 摘要:在初等数学中,圆锥曲线主要指:椭圆、双曲线、抛物线,它是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。本文总结了三类圆锥曲线的基本概念,并将它在日常生活中的应用进行了简要说明。 关键词:圆锥曲线;基本概念;生活应用 正文: 一、基本概念 圆锥曲线是用一个不垂直于圆锥的轴的平面截圆锥,当截面与圆锥的轴夹角不同时,可得到的不同的截口的曲线,分别是: ①椭圆: 定义1:平面内与两定点F 1、F 2的距离的和等于常数|)|2(221F F a a >的动点P 的轨迹叫做椭圆。即a PF PF 2||||21=+ 定义2:动点M 到定点)0,(c F 的距离和它到直线l :c a x 2=的距离的比是常数a c ,)0(>>c a 时,M 点的轨迹即为椭圆。即到定点距离与到定直线的距离的比等于定值)10(<

等于常数2a |)|2(21F F a <的点的轨迹叫做双曲线,即a PF PF 2||||21=- 定义2:动点M 到定点)0,(c F 的距离和它到直线l :c a x 2=的距离的比是常数a c ,)0(>>a c 时,M 点的轨迹即为椭圆。即到定点距离与到定直线的距离的比等于定值)1(>e e 的点的轨迹叫椭圆。我们把定值a c e =)1(>e ,叫做椭圆的离心率。 ③抛物线: 定义1:平面内与一个定点和一条直线(定点不在定直线上)的距离相等的点的轨迹,叫做抛物线。 定义2:与椭圆、双曲线第2定义相似,仅比值e 不同,当1=e 时为抛物线。 二、在生活中的应用 随着新课程理念的深入,一些以圆锥曲线在生活和生产实际中的应用为背景的应用问题已经进入了我们的教材,并且越来越受到重视.利用椭圆、双曲线、抛物线可以有效地解决数学、物理及生活实际中的许多问题.下面举例说明圆锥曲线在实际生活中的应用 1、生活中的椭圆:油罐车的横截面。 圆柱形的容器在同样容器的要求下,它的表面积最小也就是容器所用的材料最少,在装入物品后尤其是液体,对罐内壁各部分的受力大小情况也比较平均,而在高度和宽度(即车的允许高度和车的宽度)都有限制的情况下,其横截面作成椭圆形就可以达到既节省了罐体材料,也保证了容积,由利用了有限的“空间”和保证了罐体的稳定性。 2、双曲线的应用:火电厂及核电站的冷却塔

高中数学解题策略专题精编--圆锥曲线

高中数学解题策略专题--圆锥曲线 直线与圆锥曲线的问题是解析几何解答题的主要题型,是历年高考的重点和热点。欲更快地解题,需要解决好以下两个问题:(1)条件或目标的等价转化;(2)对于交点坐标的适当处理。 一、条件或目标的认知与转化 解题过程是一系列转化过程,解题就是要将所解题转化为已经解过的题。转化的基础是——认知已知、目标的本质和联系。有了足够的认知基础,我们便可化生为熟或化繁为简。 1、化生为熟 化生为熟是解题的基本策略。在直线与圆锥曲线相交问题中,弦长问题及弦中点问题是两类基本问题。因此,由直线与圆锥曲线相交引出的线段间的关系问题,要注意适时向弦长或弦中点问题转化。 (1)向弦中点转化 例1.已知双曲线 =1(a>0,b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点间的距离为(1)求双曲线方程; (2)若直线(km≠0)与双曲线交于不同两点C、D,且C、D两点都在以A为圆心的同一个圆上,求m的取值范围。 略解:(1)所求双曲线方程为 (2)由消去y得: 由题意知,当时,① 设中点 则C、D均在以A为圆为的同一圆上 又 ∴② 于是由②得③ 由②代入①得,解得m<0或m>4 ④ 于是综合③、④得所求m的范围为 (2)向弦长转化

例2.设F是椭圆的左焦点,M是C1上任一点,P是线段FM上的点,且满足 (1)求点P的轨迹C2的方程; (2)过F作直线l与C1交于A、D两点,与C2交点B、C两点,四点依A、B、C、D顺序排列,求使成立的直线l 的方程。 分析:为避免由代换引发的复杂运算,寻觅替代的等价条件:设弦AD、 BC的中点分别为O1、O2,则,故,据此得于是,所给问题便转化为弦长与弦中点问题。 略解:椭圆C1的中心点P分所成的比λ=2。 (1)点P的轨迹C2的方程为 (2)设直线l的方程为① ①代入椭圆C1的方程得, 故有故弦AD中点O1坐标为 ②①代入椭圆C2的方程得,又有故弦BC中点O2坐标为, ③∴由②、③得④ 注意到⑤ 于是将②、③、④代入⑤并化简得:由此解得。 因此,所求直线l的方程为 2.化繁为简 解析几何是用代数方法解决几何问题,因此,解答解析几何问题有这样的感受:解题方向或途径明朗,但目标难以靠近或达到。解题时,理论上合理的思路设计能否在实践中得以实现?既能想到,又能

圆锥曲线的综合应用及其求解策略

圆锥曲线的综合应用及其求解策略 有关圆锥曲线的综合应用的常见题型有:①、定点与定值问题;②、最值问题;③、求参数的取值范围问题;④、对称问题;⑤、实际应用问题。 解答圆锥曲线的综合问题,应根据曲线的几何特征,熟练运用圆锥曲线的相关知识,将曲线的几何特征转化为数量关系(如方程、不等式、函数等),再结合代数知识去解答。解答过程中要重视函数思想、方程与不等式思想、分类讨论思想和数形结合思想的灵活应用。 一、定点、定值问题: 这类问题通常有两种处理方法:①、第一种方法:是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;②、第二种方法:是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。 ★【例题1】(2007年高考〃湖南文科〃19题〃13分)已知双曲线222x y -=的右焦点为F ,过点F 的 动直线与双曲线相交于A 、B 两点,又已知点C 的坐标是(10),.(I )证明CA 〃CB 为常数;(II )若动 点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程. ◆解:由条件知(20)F , ,设11()A x y ,,22()B x y ,. (I )当AB 与x 轴垂直时,可求得点A 、B 的坐标分别为(2 ,(2, ,此时则有 (12)(11CA CB =?=-,. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=,则有 2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根, 所以212241k x x k +=-,2122421 k x x k +=-,于是 212121212(1)(1)(1)(1)(2)(2) CA CB x x y y x x k x x =--+=--+--2 2 2 1212(1)(21)()41k x x k x x k =+-++++22222 22 (1)(42)4(21)4111 k k k k k k k +++=-++--22(42)411k k =--++=-. ∴ 综上所述,CA CB 为常数1-. (II )设()M x y ,,则(1)CM x y =-,,11(1)CA x y =-,,22(1)CB x y =-,,(10)CO =-,,由 CM CA CB CO =++得:121213x x x y y y -=+-??=+?,即1212 2x x x y y y +=+??+=?,于是AB 的中点坐标为222x y +?? ???,.

高中数学圆锥曲线解题技巧方法总结

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数 2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝 对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|, 则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方 程8=表示的曲线是_____(答:双曲线的左支) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时1 22 22=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。方程22 Ax By C +=表示椭圆的充要条 件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,2 2 y x +的最小值是___ ) (2)双曲线:焦点在x 轴上: 2 2 22b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22 Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 如设中心在坐标原点O ,焦点1F 、2F 在坐标轴 上,离心率2= e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=) (3)抛物线:开口向右时2 2(0)y px p =>,开 口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在 分母大的坐标轴上。 如已知方程1212 2=-+-m y m x 表示焦点在y 轴 上的椭圆,则m 的取值范围是__(答:)2 3 ,1()1,( --∞) (2)双曲线:由x 2,y 2 项系数的正负决定,焦 点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长 为2a ,短轴长为2b ;④准线:两条准线2 a x c =± ; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆 越圆;e 越大,椭圆越扁。 如(1)若椭圆152 2 =+m y x 的离心率510 = e ,则m 的值是__(答:3或 3 25); (2)以椭圆上一点和椭圆两焦点为顶点的三角 形的面积最大值为1时,则椭圆长轴的最小值为__(答: 22) (2)双曲线(以22 22 1x y a b -=(0,0a b >>)为 例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等 时,称为等轴双曲线,其方程可设为 2 2 ,0x y k k -=≠;④准线:两条准线2 a x c =±; ⑤ 离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大; ⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围: 0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几 何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线: 一条准线2 p x =-; ⑤离心率:c e a =,抛物线 ?1e =。 如设R a a ∈≠,0,则抛物线2 4ax y =的焦点坐标为 ________(答:)161 , 0(a ); 5、点00(,)P x y 和椭圆122 22=+b y a x (0a b >>)的 关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>;(2) 点00(,)P x y 在椭圆上?220 220b y a x +=1;(3)点 00(,)P x y 在椭圆内?2200 221x y a b +< 6.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交; 0?>?直线与双曲线相交,但直线与双曲线相交不一定有0?>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0?>是直线与双曲线相交的充分条件,但不是必要条件;0?>?直线与抛物线相交,但直线与抛物线相交不一定有0?>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0?>也仅是直线与抛物线相交的充分条件,但不是必要条件。 (2)相切:0?=?直线与椭圆相切;0?=?直线与双曲线相切;0?=?直线与抛物线相切; (3)相离:0?中, 以00(,)P x y 为中点的弦所在直线的斜率k=0 p y 。 提醒:因为0?>是直线与圆锥曲线相交于两点的必要 条件,故在求解有关弦长、对称问题时,务必别忘了检验0?>! 11.了解下列结论 (1)双曲线1 2 222 =-b y a x 的渐近线方程为0=±b y a x ; (2)以x a b y ±=为渐近线(即与双曲线 12222=-b y a x 共渐近线)的双曲线方程为λ λ(22 22=-b y a x 为参数,λ≠0)。 (3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为2 2 1mx ny +=; (4)椭圆、双曲线的通径(过焦点且垂直于对称 轴的弦)为2 2b a ,焦准距(焦点到相应准线的距离) 为2b c ,抛物线的通径为2p ,焦准距为p ; (5)通径是所有焦点弦(过焦点的弦)中最短的弦; (6)若抛物线2 2(0)y px p =>的焦点弦为AB , 1122(,),(,)A x y B x y ,则①12||AB x x p =++; ②2 21212,4 p x x y y p ==- (7)若OA 、OB 是过抛物线2 2(0)y px p =>顶点O 的两条互相垂直的弦,则直线AB 恒经过定点(2,0)p 12.圆锥曲线中线段的最值问题: 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)

相关文档
相关文档 最新文档