文档库 最新最全的文档下载
当前位置:文档库 › 抛石护岸工程试验研究

抛石护岸工程试验研究

抛石护岸工程试验研究
抛石护岸工程试验研究

收稿日期:2005Ο01Ο25

作者简介:姚仕明(1974Ο)男,安徽庐江人,博士研究生,主要从事河流模拟及河道整治研究,(电话)027Ο82829870(电子邮箱)yzhshymq @

https://www.wendangku.net/doc/da4996308.html, 。

文章编号:1001Ο5485(2006)01Ο0016Ο04

抛石护岸工程试验研究

姚仕明1,2,卢金友1

(1.长江科学院河流研究所,武汉 430010;2.清华大学水利水电系,北京 100084)

摘要:抛石护岸历史悠久,在长江中下游及国内外各大河流中应用较为普遍。通过对块石与小颗粒石料的不同铺护方案及块石定点投抛的试验研究,结果表明,抛石是较为理想的护岸材料,能很好地适应河床变形,粒径越小,其适应河床变形的能力越强。抛石护岸工程效果与其粒径、覆盖率及石方量等有关。抛石在施工过程中,在水深流速大的地方可做到在床面分布上相对比较均匀。关 键 词:抛石护岸工程;块石;水槽试验中图分类号:TV853 文献标识码:A

在长江中下游干流河道综合治理工程措施中,护岸工程是一项最基本的整治工程。在航道整治工程中,护岸工程也是稳定河势的基本河道整治手段。抛石护岸工程在长江中下游应用最为普遍,据不完全统计,建国50多年来,长江中下游护岸工程抛石总量约8959.7万m 3。另外,在国内外其它河流中,抛石护岸工程应用也较为普遍。

20世纪70年代以后,在河势控制及河道整治

的护岸工程中,普遍采用抛石护岸,并在江苏镇扬河段及无为大堤大拐段的护岸工程中曾采用小粒径块石与废矿渣进行试验,取得了一定的效果。20世纪60年代,长江科学院曾对单颗粒块石进行了位移特

性试验。70,80年代,长江科学院又进行过单双层块石均匀铺护的试验研究,同期还进行了抛石落距与施工方法比较试验,取得了不少研究成果[1]。但迄今为止,对块石不均匀铺护、小颗粒石料以及轻质石料的护岸工程进行试验研究尚未见报道。为此,本文在总结过去已有成果的基础上,通过水槽试验,深入分析与研究抛石护岸工程的护岸效果、破坏机理与适用条件,同时还对抛石体在水下的分布情况进行了试验研究,获得了一些有益的认识,为护岸工程设计提供参考。

1 水槽模型设计及块石模拟

水槽长40m 、宽2.5m 、高1.5m ,其中试验段长16m 。水槽模型为正态模型,其比尺为40。模型横

断面形态为不等腰梯形断面,相当于仅模拟半江断面。河床铺沙厚50cm (原型20m ),动岸侧为试验

守护段,水深设计为0.3~0.5m (原型12~20m ),

模型断面平均流速不大于0.474m/s (原型3m/s ),动岸岸坡为1∶2。

水槽模型设计应满足几何相似,水流运动相似和泥沙运动相似。

(1)几何相似:平面比尺αL =40;垂直比尺αH =40。

(2)水流运动相似:满足水流运动相似的流速

比尺为

αV =α1/2

H

=6.32。 (3)泥沙运动相似:试验只模拟床沙的运动,因

此泥沙运动相似应主要满足起动相似,扬动相似。

①起动相似:经多方面比较,选烘干后ρs =1.05t/m 3的木屑作为模型沙。木屑的起动流速采

用本水槽试验的起动流速资料,即在水深为0.3~0.5m 以及中值粒径为0.52mm 情况下,其起动流速为11.5~12.4cm/s ,原型床沙的中值粒径取为0.20mm ,在水深为12~20m 条件下,根据沙玉清的起动流速公式可算得[1],其起动流速为0.695~0.758m/s ,对应模型需要的起动流速为11.0~12.0cm/s ,与中值粒径为0.52mm 模型沙的起动流速一致,能够满足起动相似。

②扬动相似:模型还应考虑底沙扬动相似,即

αυf =αυ=6.32。 原型床沙的扬动流速采用沙玉清公式计算[1],V f =

280[(

γs γ-1)gd ]1/5

?

ω2/5?H 0.2,

式中:d 为粒径;ω为沉速;可分别计算不同水深处的扬动流速。根据本次护岸工程的水槽检验,在水

第23卷第1期长 江 科 学 院 院 报

Vol.23No.12006年2月Journal of Yangtze River Scientific R esearch Institute Feb.2006

深为0.3~0.5m情况下,木屑中值粒径为0.52mm 时,其扬动流速为18.60~21.05m/s,对应的扬动流速比尺为7.22~6.37,比要求的比尺稍大,有利于泥沙的扬动,因此,可认为模型沙基本能够满足扬动相似要求。

根据模型设计要求及相似性原理,因块石尺寸较大,可按散粒体考虑。因此其起动流速公式可表示为

V0=k γ

s

γd(

h

d

1

m

) (m=5~7),

α

d

=

α

h

α2m/5

k

αm/5

s

-γ)/γ

取αk=1,α(γ

s -γ)/γ

=1,则有αd=αh。

对于大颗粒散粒体(位于紊流区)的沉降相似可按下式考虑:

ω=k γ

s

γgd,

αd=

α2ω

α2

k

α(γ

s

-γ)/γ

=

α

h

α2

k

α(γ

s

-γ)/γ

取αk=1,α(γ

s -γ)/γ

=1,则有αd=αh。

因此,对于块石而言,几何相似、起动相似与沉降相似可同时满足,本次试验中块石的粒径比尺为α

d

=αh。

2 试验成果分析

单、双层块石均匀铺护方案试验成果与以往的研究成果是一致的,文中不再述及。本文主要对块石不均匀铺护方案与小颗粒石料及轻质石料的护岸效果及破坏机理进行试验研究。

2.1 块石不均匀铺护方案的护岸效果及破坏机理

块石不均匀铺护试验分别考虑了坡面块石覆盖率为50%,70%,80%的3种不同情况,但坡面铺护的总石方量与双层均匀铺护的石方量相等。试验过程中发现,坡面块石空隙之间及坡脚前沿因无块石保护而受水流冲刷,导致局部坡度变陡,引起上层块石下滑填补。块石在水流与泥沙的相互作用下不断自行调整,但由于块石并没有完全覆盖于坡面,其在调整过程中,总是由坡面上层向下层滑滚,调整相对稳定后,块石分布表现为中下层比上层厚,且较为密实。坡面上层的块石因向下滑滚,且无块石补给,因此,在坡面上层会出现一定范围的空白区。坡脚前沿形成相对稳定的坡度,一般在1∶1.46~1∶2.05之间,基本由块石覆盖;坡面由于岸坡上块石在调整后不能完全覆盖于坡面上层发展的空白区,故对护岸工程效果产生不利影响,其影响程度与块石的覆盖率成反比,覆盖率越高,影响程度越轻,覆盖率越低,影响程度越严重。研究结果表明,块石覆盖率为50%的破坏最为严重,无论有无备填石,其坡面块石经调整后均在近岸形成一定范围的空白区,空白区中的泥沙会在水流作用下发生淘刷,从而使已护工程遭到一定程度的破坏(图1(b));而块石覆盖率为80%时,其坡面块石经调整后在坡面上层有一定范围的空白区,在有备填石情况下,其空白区的范围较小,其破坏程度相对较轻(图1(a),图2);块石覆盖率为70%时,其坡面块石的调整变化情况介于二者之间。根据以上不均匀铺护试验成果分析,当覆盖率在80%以上时,且在坡脚前沿加备填石,岸坡上块石经水流调整后,基本能够覆盖坡面,仅在坡面上层有较小范围的空白区,其对护岸工程的损坏程度较轻,基本形成较为稳定的护岸工程,对于近岸的损坏,可通过近岸适量加固来保护工程的稳定,或在抛石护岸工程中加抛适量接坡石。但对于覆盖率小于50%的护岸工程,坡面上的块石经水流作用后发生调整,中下层变得相对密实,而上层出现一定范围的空白区,在近岸水流作用下,

坡面上层的守护受到较大的损坏,若不及时加固会出现水流“抄后路”现象,严重影响护岸工程的效果。由块石不均匀铺护方案试验可看出,抛石护岸在施工过程中,不仅要保证足量,而且要使其坡面块石覆盖率不能低于80%,否

则,抛石护岸工程易遭到破坏。

图1 不同块石覆盖率的护岸工程效果横断面图

Fig.1 E ffects of bank protection works of block

stone with different percentages of coverage

图2 块石不均匀铺护(覆盖率80%)

试验前后的变化情况

Fig.2 Photos showing changes before and after

experimrnts,respectively,under nonΟuniform coverage

(percentage of coverage being80%)

在块石不均匀铺护试验中,为了研究块石在岸坡上的位移情况,特地在坡面上、中、下层分别采用不同颜色的块石铺护。试验结果表明,坡面下层块

71

第1期姚仕明等 抛石护岸工程试验研究

石位移较大,特别是坡脚附近的位置,因水流冲刷河床使块石基本沿坡向发生较大位移,而坡面中上层块石仅在附近空白区内与坡面上发生滑滚,相对位移较小。试验中还发现坡面块石在发生位移时有间歇性、连贯性,也就是说,坡面块石的位移是逐时逐层发展,几乎不会出现坡面上层的块石跳过中层而运动到下层的现象。试验过程中,还观察到大多数块石在坡面的运动方向与岸坡方向一致或稍偏下游。也有少量的块石向上游滑滚,这主要与块石所处的位置及其周围地形变化有关。图3 小颗粒石料三层均匀铺护试验结果

Fig.3 Experimental result of three Οlayer uniform

coverage with little block stones

2.2 小颗粒石料的护岸效果及破坏机理

小颗粒块石护岸工程试验分两种方案。小颗粒块石的粒径为d 50= 4.2mm (原型d 50=

16.8mm ),密度ρs =2.65t/m 3

(1)3层均匀铺护,备填石方量按0.3m (原型2m )宽、6层厚(原型0.94m )考虑。试验过程中,发

现在水流作用下河床纵向不断冲刷下切,坡脚前沿河床冲刷,坡度变陡,由附近上层碎石下滑填补,形成新的碎石覆盖层坡度,一般在1∶1.52~1∶2.05之间。同时坡面上的碎石也在调整,但调整幅度比大颗粒块石的要小,主要是因为小颗粒碎石对近底水流的扰动要小,加上小颗粒在铺护过程中易密实,颗粒之间及颗粒与床面之间孔隙尺度小。经过一段时间的水流作用后,护岸工程趋于稳定,护岸效果较好(图3)。

(2)3层方量不均匀铺护方案,小颗粒块石覆

盖率为80%,备填石方量同上。试验过程中发现,在水流作用下河床纵向不断下切,坡脚前沿河床冲刷,坡度变陡,由附近上层碎石下滑填补,形成新的碎石覆盖层坡度,其坡度大小与均匀铺护方案基本一致。同时坡面上的碎石也在调整,调整幅度大于均匀铺护方案,主要是因空隙处的部分泥沙被淘刷,由附近上层的碎石填补。这样,使坡面的碎石分布趋于均匀密实,仅在坡面上层形成较小范围的缝隙,形成相对比较稳定的护岸工程。

根据试验现象与结果分析,小颗粒块石不均匀铺护的工程效果比块石的要好,因小颗粒在水流作用下更易密实,对水流扰动相对较小,有利于河床泥沙不被淘刷。当然,其前提条件是小颗粒块石在同样水流条件下不能起动。2.3 抛石定点投抛试验

为了表明抛石落距既有一定的规律性,又呈现出一定的随机性,我们进行了定点投抛试验,投抛的碎石每次在500颗左右,其粒径几乎在原型26~34

cm (原型,下同)之间,垂线平均流速在0.95~3.29m/s 之间,水深在11.6~20.4m 之间,结果发

现这些碎石在水下形成一定长度与宽度的离散抛石体,且垂线平均流速与水深越大,形成的抛石体就越长,宽度也越大。但抛石体宽度的变化幅度小于长

度的变化幅度(见表1)。试验中还观察到在水浅流速较小的情况下,易形成石堆,如流速小于0.51m/s ,投抛到水下的碎石堆成堆,主要原因是在

低流速情况下,水流的脉动强度、横向扩散以及纵向流速大小相对较小,因此,抛投到水下的碎石被限制在更小的范围内,易成堆。根据以上试验结果,有理由相信实际抛石护岸工程中,在水深流速大的位置,只要按设计要求施工,抛石分布可达到相对均匀;但在水浅流速小的位置,则可能会出现石堆与石埂现象,因此,在水浅流速小的位置施工要更加注意施工质量,以便使块石在岸坡上尽可能均匀分布。

表1 抛石定点投抛试验成果表

Table 1 experimental results of stone riprap

at the fixed point

水深/m

垂线平均流速/(m ?s -1)

抛石体

长度/m

宽度/m

20.0

3.0521.61020.4 2.5220.09.220.0 1.9617.28.420.0 1.5216.07.620.4 1.0110.4 6.811.6

1.08

8.8

5.6

2.4 关于已建抛石护岸工程加固问题的探讨

由于受多种因素的制约,天然河流抛石护岸工程的变形过程较为复杂。目前,只有在室内试验中才能对在近岸水流与泥沙的相互作用下抛石护岸工程的变形过程进行分析。根据块石不均匀铺护及小颗粒石料护岸工程的试验可看出,抛石在坡面上的运动甚至导致护岸工程失败的原因主要包括两个方面:一是由于抛石护岸工程边缘位置遭冲刷与已护

工程中间的空白区中的泥沙遭淘刷而导致块石在岸坡上的运动;二是因岸坡自身不稳定、护岸工程边缘位置遭冲刷与已护工程中间的空白区中的泥沙遭淘

81长江科学院院报2006年

刷后而引起的局部岸坡失稳,块石是由岸坡的失稳

而发生位移。另外,试验结果也表明,抛石护岸工程的空白区也是不断向坡面上层发展,对于抛石护岸工程量不足和抛护覆盖率较低,会出现图1(b )的情况,就是坡面块石在水流与泥沙作用下由于自身调整而相对集中于坡面的中下层,坡面上层出现较大的空白区,且其坡度也明显陡于起始的坡度,若不及时加固就更容易使坡面上层在水流作用下发生崩塌,也就是通常所谓的水流“抄后路”现象。

根据多组不同方案的抛石护岸工程试验研究表明,抛石护岸工程经过水流与泥沙的相互作用后,对该工程效果起负面作用主要位于护岸工程边缘位置与坡面上层。护岸工程边缘位置主要是由于水流加剧对未护位置泥沙的冲刷,使坡度变陡,并且变幅也较大,从而使附近块石发生调整;在边缘附近位置,调整后的局部坡面特别是在备填石方量不足的条件下未必能由块石较好地覆盖,而且在有些位置甚至会出现陡于1∶1.5的坡度,因此,护岸工程边缘附近是需考虑加固的。坡面上层则是由于坡面块石的调整及空白区的发展形成的空挡,坡面上层空档的大小与施工质量有直接关系,若施工质量好,坡面上层可通过加抛适量接坡石调整使其达到稳定;反之,可能使坡面上层出现破坏,严重情况下会出现水流“抄后路”现象,因此,该位置也是需考虑加固的。根据抛石护岸工程的变形过程及对工程效果起负面作用位置的分析,不难看出,对抛石护岸工程的加固应集中在工程的边缘附近与坡面上层。

3 结 论

(1)块石不均匀铺护与小颗粒石料的护岸工程

试验研究表明,抛石是一种较理想的护岸材料,能很好地适应河床变形。只要抛石方量适当、抛护相对均匀(覆盖率在80%以上)、有适量备填石与接坡石,其护岸工程是比较稳定的;在水流作用下,只要小颗粒石料不被起动,并有足够厚度覆盖床面,其护岸工程也是稳定的。

(2)抛石护岸工程遭破坏的主要原因是边缘交接位置遭冲刷与坡面空隙泥沙的淘刷引起坡面块石的调整,进而使坡面上的空白区逐渐向上发展,若坡面上层无足够块石补给,在水流作用下会出现破坏现象。根据对抛石护岸工程的变形过程分析可看出,对已建抛石护岸工程的加固应主要集中在它的边缘位置附近与坡面上层。

(3)由定点投抛试验表明,抛石在水深流速大的情况下,其离散度较大,有利于块石在床面上均匀分布;反之,则不利于块石在床面上的均匀分布,易形成石堆或石埂,因此,在施工过程中要更加注意。参考文献:

[1] 潘庆 ,余文畴,曾静贤.抛石护岸工程的试验研究

[J ].泥沙研究,1981(1):56-60.[2] 余文畴.平顺抛石护岸若干问题水槽定性实验[C]∥.

长江中下游护岸工程经验选编.北京:科学出版社.1978:18-22.[3] 沙玉清.泥沙运动学引论[M ].北京:中国工业出版

社,1965.[4] 余文畴.抛石护岸稳定坡度与粒径的关系[J ].泥沙研

究,1984(3):71-76.[5] 姚仁明,金 琨.抛石护岸工程稳定性分析[C ]∥.长

江护岸工程(第六届)及堤防防渗工程经验交流会论文集.北京:中国水利水电出版社,2003:26-30.

(编辑:聂 文)

Experimental Study on Riprap Protection of Slope

YAO Shi Οming 1,2,L U Jin Οyou 1

(1.Changjiang River Scientific Research Institute ,Wuhan 430072,China ;

2.Department of Hydroelectric Engineering ,Tsinghua University ,Beijing 100084,China )

Abstract :Riprap protection of bank was applied in the middle and lower Yangtze River and many other rivers at home and abroad.The experiments on many riprap protection schemes of different diameters were carried out.The test results are summarized as follows :It could better adapt change of river bed.The less the diameter of block stone is ,the stronger the ability adapting change of river bed is.Effect of riprap protection is related to the diameter ,percentage of coverage and cubic meter quantity of block stones.During the process of revetment construction ,it has a uniform distribution on bank slope at the place of high water depth and big velocity.K ey w ords :riprap protection ;block stone ;flume experiment

9

1第1期姚仕明等 抛石护岸工程试验研究

河流护岸工程施工方案

川气东送管道穿越河河流护岸工程施工方案

目录 一.工程概况及施工条件 (2) 1.工程概况 (2) 2.施工条件 (2) 二.编制依据 (2) 三.施工总体计划 (4) 1.工程质量目标 (4) 2.计划工期目标 (4) 3.安全生产 (4) 4.文明施工 (4) 四、施工方案 (5) 五、施工方法、施工工艺及施工工序流程 (5) 1.施工方法 (5) 2、施工工序及操作工艺流程 (6) 六、施工准备 (6) 1、组织机构 (6) 2、技术准备和组织管理保证措施 (7) 3、原材料准备 (7) 4、主要机械设备配备 (7) 5、施工队伍及劳动 (8) 七、施工质量控制及要求 (8) 1、原材料质量控制 (8) 2、施工质量控制要求 (8) 八、质量控制要点: (10) 九、质量安全保证措施: (10) 1、施工安全保证措施 (10) 2、质量保证措施 (10) 川气东送管道穿越秋浦河河道护岸工程

施工方案 一、工程摡况及施工条件: 1、工程概况:该工程位于安徽省池州市殷汇镇、肖滩村、万子村,35标段桩号WGC039G-WGC40G,主河道宽度约145m,左、右岸漫滩长200m,宽100m,2009年11月01日勘测时左右岸滩头距水面高度为20m,主河道水平均深在2-3m。右岸漫滩与耕地交界处有长100m,土坎高7m。左岸漫滩处有长200m高度为3m的土坎,迎水面坡度约40~50°,据调查河道水位汛期时,水位可上升至堤顶,水流湍急,另根据管线勘设资料,河道水流量受降雨影响,变化幅度较大,汛期流量猛增,涨水落水时间短,枯水期流量小,管道穿越处,地质以粉质土和粉质流砂为主,基础施工难度非常大,需要进行软基处理。 由于管道采用大开挖直埋式敷设:管道开挖在河床以下4.5-6.0m左右,在河床顶最大开挖宽度约为8-10m,堤顶最大破坏的约为85-90m,同时由于采用机械开挖,机械的进出造成两侧未开挖的坡面表面土遭到松动破坏流失严重,两侧破坏长度不等,左岸处有长90m,宽2m,深15m的水土流失,右岸处有长50m,宽15m,深20m的崩岸水土流失,需外运土回填夯实。 由于管道采用大开挖直埋式敷设管道,造成河道深度土层和表面土层破坏程度较大水土流失严重,需对其进行水工保护,以满足水土保持的要求,达到保护天然气管道安全运行的目的。 水保工程措施:依据管道敷设开挖实际地貌特征,水保工程初设方案,在河堤的迎水面处修建M7.5水泥砂浆,MU30块石挡墙护坡,石块底部碎石垫层,在河床管沟最大开挖宽度两侧各5m,采用浆砌块石护床,防止水流下切,保护天然气管道。软基处理采用CQDSSB-DX-14以防止基础被水流冲刷和基础下沉,保证护岸护堤工程安全,和天然气管道安全运行。左、右漫滩需植种草植被恢复,土坎需做植生袋进行临时保护。 2、施工条件:该工程距村民居住点最近约为500m,左、右两岸均没有便道可到河堤,车辆无法到达施工现场,需砍伐树木征用临时便道长1500m,宽3m,敷设碎石子15公分压实后,便于材料二次倒运至左岸,右岸所需要材料需租用货船从左岸运至右岸。河堤内外均有滩地可满足施工临时用地。施工用电主要靠柴油发电机组解决,秋浦河河水满足施工用水要求。 二.编制依据 1.川气东送管道工程WGC039G-WGC040G秋浦河河流护岸设计图。 2.《中华人民共和国水土保持法》(全国人大常委会,1991年6月29日);

堤防护岸工程施工方案

1.概况 堤防护岸工程主要是防止水流和波浪对岸坡基土的冲蚀和淘刷造成的侵蚀、塌岸等现象,以保证堤坡的安全的一种措施。本标段施工项目主要包括水上水下抛石护脚、碎石垫层、模袋混凝土(设计图纸收到后施工前编制专项施工方案)、手摆石、干砌石、浆砌石、岸边清基、土方回填、播草籽。主要施工工程量为:抛石护岸、基础换填抛石工程量共19.9万m3,包括水下护岸抛石7.29万m3;水上护岸抛石7.83万m3;干砌石工程量共3.38万m3,其中:护岸干砌石2.27万m3;护岸手摆块石1.11万m3;C20模袋混凝土护岸(200mm厚)约2.29万m2,4580m3。 岸边有内部冲刷坑,抛石底部最低高程为▽-5.8m,设计抛石护岸顶部高程为▽3.5m。2005年施工起止桩号为27+400~31+150,全长3750m。水上水下抛石护岸长3.75km,宽10m~37m,抛石量15.9万m3。水下抛石迎水面设有护脚平台和枯水平台(见图1)。根据河床地形坡度控制在1:2~1:3,水上抛石迎水 面坡度为1:2.5。背水面按设计要求抛石坡度控制在1:2,并附有土工布。抛石上部为碎石垫层厚100mm,手摆石300mm。外坡坡脚至岸边为回填平台,清基200mm厚,土方回填至设计高程▽3.5m,最大回填深度为5m。外坡脚至护岸抛石边线宽度为19.75m~83.29m,有部分水坑。 图1 抛石护岸示意图 2.施工方法 2.1抛石护岸 抛石护岸按设计要求从护脚到岸坡逐层抛填,多年最低水位线(现状)做为水上水下抛石分界线。施工程序如下: 施工测量抛投试验 图2-1 抛石护岸施工程序图 抛石护岸施工过程的关键是测量控制,并贯穿整个抛投施工。抛投前,做好有效的测量控制网和测量措施;根据抛石时水位、流速和块石的大小情况,选取不同的位置,做好抛投试验,为抛投施工提供技术参数,以确保抛投的准确性。

(完整版)堤坝抛石固脚施工方案

堤坝抛石固脚施工方案 一、抛石工艺流程: 地形测量→施工区段划分→测量、放样→石料的石质检查→机械抛石→人工整坡→进入下道工序。 1、抛前地形测量:在施工前进行抛前地形测量报监理工程师审批。 2、施工区段划分 抛石施工的关键是合理划分区段,根据我公司多年从事抛石施工的经验,结合目前我公司从事抛石施工的具体情况,可将本工程抛石划分为三施工段,即:1+800-2+100施工段,2+100-2+400施工段和2+400-2+550施工段进行施工,根据设计图纸中每个抛石区的厚度以及抛前地形测量成果,计算出每个施工段的抛石数量。 3、测量、放样:抛石需在与施工位置对应的堤防上设立标志,以确定施工位置。 (1)测量放样方法 1)在抛区附近的岸边,根据建设单位提供的控制点,采用前方交会或后方交会的方法在岸上测设一点,由此点放出施工基线。 2)根据测设的已知点设立一条正基线(平行于抛区长度方向)或斜基线(不平行于抛区长度方向)。 3)在基线上根据各施工段的长度划分放出各基线桩。 4)由基线桩上测设出各断面桩(方向桩),方向桩应垂直于抛区长度方向。 4、石料石质检查 抛石要把好石料质量关,块石供应先经试验,确定其符合设计及规范要求,经监理确认合格后,方可选用。杜绝风化石、水解、碎石等不合格的石料。 5、抛石固脚 (1)抛石方法选择:堤脚抛石可先用人工抛石和机械抛石,人工抛石劳动强度大,劳动力多、安全隐隐也多、施工进度慢,机械抛石受地形条件限制,施工进度快,效率高,本工程选用机械抛石与人工抛石相结合,凡是满足机械抛石的堤段先用挖掘机抛石,凡不能满机械做业堤段选用人工抛石,机械抛石采用自卸汽车运石料到各施工区段,挖机抓挖到抛石区;人工抛石采用抬石到抛石区。 (2)本工程抛石在原抛石的基面上进行,且抛石宽度和深度均不大,机械和人工抛石均可一次成形,如抛石较深则可采用分层抛石,但第一层最好抛出水面,为第二层抛石创造条件。

农村河道护岸工程施工方案

农村河道护岸工程施工方案-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

农村河道护岸工程施工方案 一、石料 1 、砌体石料必须质地坚硬、新鲜,不得有剥落层或裂纹。其基本物理力学指标应符合设计规定。 2 、石料从采石场专门开采,表面的泥垢等杂质,砌筑前应清洗干净。 3 、石料的规格要求 粗料石:包括条石、异形石,要求棱角分明,六面基本平整,同一面最大高差不超过1.0cm,其尺寸视料场择优选定,但其长度宜大于50cm,块高宜大于25cm,长厚比不宜大于3。粗料石的外露面,宜修琢加工,保持大致平整。 块石:一般由成层岩石爆破面成或大块石料锲切而得,要求上下两面大致平整且平行,无尖角、薄边,块厚宜大于20cm。 毛石:无一定规则形状,单块重量应大于25kg,中厚不小于15cm。 二、胶结材料 1 、砌石体的胶结材料,主要有水泥砂浆和混凝土。水泥砂浆是由水泥、砂、水按一定的比例配合而成。用作砌石胶结材料的混凝土是由水泥、水、砂和最大粒径不超过 40mm的骨料按一定的比例配合而成。 2 、水泥:应符合国家标准及部颁标准的规定,水泥标号不低于275号;水位变化区、溢流面和受水流冲刷的部位,其水泥标号应不低于325号。 3 、水:拌和用的水要求符合国家标准规定。 4、水泥砂浆的沉入度应控制在4~6cm,混凝土的坍落度应为5~8cm。 三、砌筑要求 1、挡墙基础按设计要求开挖后,进行清理,并请工程师进行验收。 2 、已砌好的砌体,在抗压强度未达到2.5Mpa前不得进行上层砌石的准备工作。 3 、砌石必须采用铺浆法砌筑,砌筑时,石块宜分层卧砌,上下错缝,内外搭砌。砌体的砌缝宽应符合下表的规定。

护岸工程施工方案

2.施工方法 2.1抛石护岸 抛石护岸按设计要求从护脚到岸坡逐层抛填,多年最低水位线(现状)做为水上水下抛石分界线。施工程序如下: 图2-1 抛石护岸施工程序图 抛石护岸施工过程的关键是测量控制,并贯穿整个抛投施工。抛投前,做好有效的测量控制网和测量措施;根据抛石时水位、流速和块石的大小情况,选取不同的位置,做好抛投试验,为抛投施工提供技术参数,以确保抛投的准确性。 抛投施工的原则:先上游后下游,实行分段分层施工;先施工水下护岸抛石,后施工水上护岸抛石。 (1)施工测量 水下抛石施工前及完工后,委托有资质且专业的测量单位进行水下测量。抛石工程开工前,实测抛石区1/500地形图和抛石放样剖面图(沿堤轴线方向每25m 测一横断面),经监理人批准后,进行抛石。施工期间所有施工定线、进度、工程量等测量原始记录、计算成果等资料均及时整理、校核、分类、整编成册。按20m×10m网格划分抛投区域,并根据划分的单元和岸上控制桩,在抛投区起始点之间顺水流方向在测船上用GPS测深仪每隔40m测一个水下地形断面并绘制抛前水下抛投断面地形图。 (2)材料准备 本标段的石料运输主要靠水上运输,即块石从石场利用东风车或拖拉机运到码头装船,由运输船水运到施工现场。抛下的石料,因长期受水流的冲刷和浸蚀。因此,抛石护脚材料按设计要求采用块石,块石要求石质坚硬,遇水不易破碎或水解,石头强度等级≥MU80,软化系数Kd≥0.75。密度不小于2.65t/m3。不允许使用薄片、条状、尖角等形状的块石。风化石、泥岩等亦不得用作抛填石料。抛投块石料粒径、重量要求:粒径为0.15~0.45m,单块重量不得小于10kg/块。 (3)抛投试验

水下抛石护脚施工方案

3.5、水下抛石护脚 3.5.1、概述 本标段设计水下抛石23593m3,工程采用平顺守护型式,枯水平台以下采用抛石固脚,平顺护岸型式水流对岸坡的冲刷角小,对水下岸坡及水下护坡稳定很有利,不会造成对上、下游的回流冲刷。水下抛石宽度为10m~50m,分区抛护,抛厚1.0—1.2m。抛石粒径0.15 m~0. 5m。 3.5.2、施工工艺流程

3.5.3、施工方法 本工程的施工方法为:划分网格、准确定位、掌握落距、合理挂档、定量抛投、多次抛匀。 (1)抛前水下地形测量 开工前,对抛护区水下地形进行测量,并及时将测量成果报送监理工程师。

(2)施工网格划分 水下抛石施工的关键是合理划分施工网格,根据我单位多次从事水下抛石施工的经验,结合目前我单位从事抛石施工的装石船的具体情况,可将施工网格划分为20m(垂直水流方向)×20m(顺水流方向)的标准网格,人工抛石时,将施工网格划分为10米(垂直水流方向)×20米(顺水流方向)的标准网格。每个标准网格再分为一、二、三、四共4个档位进行抛布,不足标准宽度的抛区可划分为定宽的小区进行施工,根据设计图纸中每个抛区的厚度以及抛前水下地形测量成果,计算出每个网格应抛石数量,编制施工档位图。 (3)测量、放样 测量放样方法:据我单位护岸工程的施工经验,水下测量采用普通经纬仪和电子经纬仪难以达到施工精度要求,所以本工程采用GPS配合数字式测深仪进行水下抛石前后的地形测量和施工定位,从而做到水下抛石均匀到位,完全符合设计要求。 具体测量方法如下:在抛区附近的岸边,根据建设单位提供的控制点,采用前方交会或后方交会的方法在岸上测设一点,由此点放出施工基线。根据测设的已知点设立一条正基线(平行于抛区长度方向)或斜基线(不平行于抛区长度方向)。在基线上根据各施工小区的长度划分放出各基线桩。由基线桩上测设出各断面桩(方向桩),方向桩应垂直于抛区长度方向。 测量放样技术要求:测量放样放出的基线桩与方向桩应与定位船通视良好。测量采用红外线测距仪。利用测设点作控制点,采用极坐标法放出基线桩和方向桩,桩位距离误差小于5mm。 (4)定位船定位 定位船的选用:据我单位护岸工程的施工经验,采用200吨的定位船进行定位,从而可以加快工程进度,减小劳动强度,我单位拟准备1艘200吨钢质定位船,本工程拟投入1艘定位船设备状况良好,并配有专业操作人员。 定位船锚、缆的选用:上游锚选用1000kg重的锚,下游锚选用500kg重的锚,顶头锚选用250kg的锚。在施工中,可根据实际情况,里锚可在岸上设置地牛,这样可减少抛锚次数,提高抛投效率。锚缆:上游缆选用φ21.5mm以上的锚缆,一根顶头缆和两根下游缆规格也不应小于φ16.5mm。 抛锚顺序:外上游锚(领水锚)→里上游锚→外顶头锚→里下游锚→外下游锚。应注意的是上、下游锚应成八字形,以利定位船里外移动。

护岸抛石施工方案

护岸抛石施工方案 This model paper was revised by the Standardization Office on December 10, 2020

东山后林陆岛交通码头工程 码 头 护 岸 基 床 抛 石 和 抛 石 棱 体 方 案 厦门港务疏浚工程有限公司

东山后林陆岛交通码头工程项目部 2013年8月1日 护岸基床抛石和抛石棱体施工方案 1.综合说明 1.1.工程概况 、工程地理位置 本工程位于漳州市东山县杏陈镇后林村。该村地理坐标为东径117°24′,北纬23°46′,位于东山岛西北岸,东山湾与诏安湾相连接的一段水域。 、工程主要内容及工程量 漳州市东山后林陆岛交通码头工程驳岸抛填块石约,墙后抛石棱体约为,块石的尺寸在10~100Kg之间,预备5台自卸汽车,一台装载车,一台挖掘机。由于码头有多处护岸,各护岸抛石顶面高度不一,预留5厘米的沉降量。 1.2.工期要求 本工程计划于2012年12月20日开工,2013年12月20日完工。 1.3.工程质量标准 回填工程的质量标准执行《水运工程质量检验评定标准》(JTJ257-2008)、交通部《疏浚岩土分类标准》JTJ/T320-96;及其条文说明和有关部颁标准,达到国家质量检验合格标准。

1.4.自然条件 气象 本工程的气象资料系根据位于东山岛的东山气象台长期气象观测资料统计而得。气象台地理坐标为东径117°30′,北纬23°47′。 (1)气温 年平均最高气温℃(出现在8月份) 年平均最低气温℃(出现在2月份) 年平均气温℃ 历年极端最高气温℃(出现在1956年8月1日) 历年极端最低气温℃(出现在1957年2月12日) (2)降水 本海域多年平均降水量为、最大降水量为。 全年的降水主要集中在5月~8月的春夏季节,约占全年降水量的61%,而每年1月至翌年2月降水量较少,仅占全年降水量的9%。 (3)雾 本地区每年3月~4月为雾季,每月雾日数为2~8d。多年平均雾日为,历年最多雾日数为46d。

水利工程中河道堤防护岸工程施工技术

水利工程中河道堤防护岸工程施工技术 发表时间:2019-07-30T15:30:31.153Z 来源:《防护工程》2019年8期作者:张海涛 [导读] 堤防工程的建设能够有效地保障人民生命财产的安全,特别是近年来,各地洪水频繁发生。 桂林利源水电建设有限责任公司广西桂林 541001 摘要:水利工程建设和施工技术的发展,正在改变着我国传统的河道防护施工的建设方式,也提高了施工的效率,增强了河道堤岸的防护能力。要不断研究施工的具体技术,完善各项施工工艺,提高施工质量监督与管理,适应市场化浪潮下的工程建设,推动我国水利工程建设不断前进。本文对水利工程中河道堤防护岸工程施工技术进行了探讨。 关键词:水利工程;河道堤防护岸;施工技术 堤防工程的建设能够有效地保障人民生命财产的安全,特别是近年来,各地洪水频繁发生。防洪形势日益严峻,对堤防工程建设提出了更高的要求。为了有效地保证路堤防护的施工质量,必须在施工中充分利用先进的施工技术。采用切实可行的施工方法,加强路堤施工的完整性和安全性,最大限度地发挥路堤防护工程的作用,更好地保护一方的安全。 1水利工程堤防护岸的重要作用 从严格意义上来说,水利工作中的堤防和护岸属于两种不同的结构工程。堤防作为一种常用的挡水建筑物,在水利工程中发挥的作用主要包括:一是约束、限制洪水,尤其是在雨季河流径流量突然增加或是湖泊水位暴涨等情况下,堤防可以将洪水限制在行洪道内,减少了洪水对水利工程主体结构的冲击影响。二是在临海水利工程中,堤防还能够有效抵挡风浪或海潮的冲击影响,并在一定程度上避免了海水对水利工程主体结构的侵蚀。 工程型护岸指确定加固处理岸坡方案仅出于防洪、输水和航运等工程需要,将原有天然岸坡改造为混凝土、砌石等为代表的刚性工程护坡。混凝土、浆砌块石等建筑材料的广泛采用原因是这些材料的抗冲、抗侵蚀性及耐久性好,同时对于输水的人工运河,还可减低糙率,提高输水效率,减少渗透损失。 2水利工程河道堤防建设中堤身填筑技术 2.1土料的选择和开采 在堤防护岸工程施工时,土料的选取将会对施工质量产生直接性的影响。在选取土料之时,应当遵循就近原则来进行选取。依据设计要求规定,将土料水分、土质、开采条件、运输距离等相关要素予以充分考量,而后明确出在何地进行土料开采。通常而言粘性相对较大的土料适宜于应用在心墙及铺盖部分,而堤后重盖则可选用砂性土质。将淤土及时清除,做好排水处理措施之后再实施土料开采作业,通常选用以截为主的排水形式,应用立面亦或是平面进行土料开采,进行开采之时必须要能够将土料质量加以严格把控以保证所开采的土料能够完全达到施工标准的要求。 2.2 路堤填筑施工技术 2.2.1 堤基清理 堤防建设之前,需要对表面做好清洁工作,要从堤身、铺盖及基面三部分入手。基床表层和堤防周围的杂物清理干净,对一些老堤,要加高加厚处理,当清洁工作完成后,需要做好压实工作,并对土壤实干密度也要严格控制,确保其符合设计要求。 2.2.2 进行填充操作 在这项工作中,需要注意几点:如果地面不平,应水平分层进行,总是从低到高层填充,但不能够在斜坡之处实施铺填;如果截面比1:5 的斜坡陡峭,就需要进行相应的处理,以保证边坡比为1:5 可以稍缓该步操作的长度,根据实际情况,可适当缩短人工施工段的长度,而进行机械施工之时其工段的长度最好长于100m 为宜,;辊的工作表面,结合土壤,为了避免边沟,可以重叠对接口的实现;如果在软土地基上开展相关工作的路堤,对含有一套两侧压切平面,然后根据截面设计实施分层填筑,并尽量选择对堤填土高水分含量的土壤材料,在这个过程中,施工时必要的速度控制好,也要注意相关的基础和位移观测点,结合观测数据的正确分析,对相关的安全建设工作实施指导和科学。 2.3铺料作业的技术及要求 铺料前应将已压实层的压光面层刨毛,含水量应适宜,过于时要洒水湿润。铺料要求均匀、平整。每层铺料厚度和土块直径的限制尺寸应通过碾压试验确定。另外还严禁砂( 砾) 料或其他透水料与粘性土料混杂,上堤土料中的杂质应当清除。砂砾料分层铺填的厚度不宜超过30~35cm,用重型振动碾时,可适当加厚,但不超过60~80cm。铺料至堤边时,应在设计边线外侧各超填一定余量,机械铺料一般是30cm,而人工铺料一般是10cm,土料铺填与压实工序要连续进行,避免土料含水量变化过大影响填筑的整体质量水平。 2.4压实作业相关要求 施工前应先做碾压试验,确定碾压参数,以保证碾压质量能达到设计干密度值。碾压时要严格控制土料含水率。土料含水率应控制在最优含水率为1%-3%范围内,分段填筑,各段应设立标志,以防漏压、欠压和过压。同时,上下层的分段接缝位置应错开,分段、分片碾压时,相邻作业面的搭接碾压宽度,平行堤轴线方向不应小于0.5m,垂直堤轴线方向不应小于3m,砂砾料压实时,洒水量宜为填筑方量的20%~40%,中细砂压实时的洒水量,应按最优含水率控制。 3 护岸工程施工技术与方法 3.1 坝式护岸 当采用大坝保护方法保护堤防时,可将水流沿堤坝和支坝引水,使水流与堤岸分离一定距离,从而减少水流。潮汐和波浪对边坡的侵蚀效应。虽然目前护岸形式比较多样,不仅有顺坝、丁顺坝,还有潜水坝,无论是哪种坝体,其结构都是相同的。目前,在比较常见的护堤中,堤防是最常用的护堤,丁坝护岸在调节河床缓流和宽河段水流方面起着极其重要的作用。 3.2 坡式护岸 护坡主要是指在一定程度上覆盖岸坡及其脚下的抗冲刷材料。这种护岸方式更常用。它不会对水流和河床边界产生太大的影响。护脚工作是护坡的重要组成部分。护岸工程的稳定与否对护岸工程的稳定性有着至关重要的影响。这就要求保证护脚工程的整体质量,因为它

抛石护岸施工方案

水下抛石施工 本工程水下抛石工程量为13500m3,选用50~100T驳船3艘,运输能力完全能够保证施工需要。抛石施工受水位、流量、流速、流向、冲距、航运等因素的影响,为了保证抛投块石的进度和质量,拟采用1艘200T定位船分区分段进行网格抛投,根据施工现场的条件,将块石用驳船运至施工现场抛投水域范围后采用人工抛投,由专职施工人员进行抛投指挥,同时搞好安全施工。每个断面从江心向岸边,先脚后坡,但对崩坍较快的地段宜由近至远,先坡后脚,连续施工,突击完成。水下抛石施工程序分述如下: 水下抛石施工程序如下: 抛石前准备→抛石前测量→抛投试验→定位船定位→抛石船挂档→人工抛投→抛后测量检查→合格后移到下一抛投位置。 (1)抛石前准备 器材设备准备。测量仪器:经纬仪、G.P.S、全站仪、回声仪、流速仪、测绳、皮尺、标旗等;定位器材;500T定位驳船2艘、铁锚、钢丝绳、铰车和铁丝等;安全设备:救生圈、救生衣、导航标、灯、扩音喇叭等和其它一些必需设施。 (2)水下地形测量 采用GPS全球定位测量系统及海洋成图软件对抛石区水下地形测量后,绘制出水下原始地形图,其水下断面测量的比例为1:200,沿堤轴线方向40m测量一横断面,测点的水平间距控制在5m内。根据测量成果对抛投区进行划档分格,绘制小区抛投网络图,抛石网格拟采取10m×10m的小网格比较合适。且能够满足一次性抛投到位的要求。局部岸线不顺直的地方可采用变网格,但其网格大小不能超过20m×10m,各网

格的抛投量应根据图纸按网格上下断面方向的平均值求得按抛投断面计算出每个抛投小区的抛石数量,并对小区进行统一编号,报监理工程师核实后,作为抛石施工依据。 (3)抛投试验 用流速仪和回声仪测量施工部位的水流流速V和水深H,并对试抛块称重W,量测出石块的落距S,点绘S与VH/w1/6的曲线,推算出冲距公式S=kVH/W1/6中的系数K值。 (4)定位船定位 定位船的稳定性是定位作业的关键。可采用同一抛石区使用一艘定位船定位,于岸上设地锚的方法进行;根据抛区水深、流速、抛投试验确定的冲距参数计算出每一抛投小区的抛石提前量,得出石料船水面定位坐标,采用GPS全球定位放样,建立水中浮标,在岸边每隔一定距离埋设坚固的地锚,用以锚固船体。 放样结束后,将施工定位船(趸船)拖到施工地点进行抛锚定位。用全站仪测出定位船至断面杆的距离,以确定抛石船的位置。 定位船的抛锚顺序为:外上游主锚→里上游锚→里下游锚→外下游锚。

水下抛石护岸专项施工方案

水下抛石护岸专项施工 方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

安庆市安广江堤马窝崩岸应急治理 工程 水下抛石护岸专项施工方案 批准: 审核: 编制: 编制单位:安徽省博信达建设集团有限公司 安庆市安广江堤马窝崩岸应急治理工程项目经理部编制日期: 2014年5月

水下抛石护岸施工方案 1、抛前水下地形测量 在施工前进行抛前水下地形测量报监理工程师审批。 2、施工小区(网格)划分 水下抛石施工的关键是合理划分施工小区(网格),根据我公司多年从事水下抛石施工的经验,结合目前我公司从事抛石施工的装石船的具体情况,可将施工小区(网格)划分为10m(垂直水流方向)×20m(顺水流方向)的标准网格,每个标准网格再分为上、下两个半区进行抛布,不足10m宽度的抛区可划分为定宽的小区进行施工,根据设计图纸中每个抛区的厚度以及抛前水下地形测量成果,计算出每个网格应抛石数量,编制施工档位图。 3、测量、放样 由于抛石施工位置是位于水中,无法在水中确立施工位置,因而需在与施工位置对应的岸上设立标志,以确定施工位置。 (1)测量放样方法 a.在抛区附近的岸边,根据建设单位提供的控制点,采用前方交会或后方交会的方法在岸上测设一点,由此点放出施工基线。 b.根据测设的已知点设立一条正基线(平行于抛区长度方向)或斜基线(不平行于抛区长度方向)。 c.在基线上根据各施工小区的长度划分放出各基线桩。 d.由基线桩上测设出各断面桩(方向桩),方向桩应垂直于抛区长度方向。 (2)测量放样技术要求

a.测量放样放出的基线桩与方向桩应与定位船通视良好。 b.测量采用红外线测距仪。 c.利用测设点作控制点,采用极坐标法放出基线桩和方向桩,桩位距离误差小于5mm。 4、位船定位 (1)定位船选用 本工程拟投入1艘200t钢质定位船,定位船设备状况良好,并配有专业操作人员。 (2)定位 船锚、缆的选用 使定位船定位准确、牢固,首先必须选用合适的锚具及锚缆。 a.锚具的选用:上游锚选用1000kg重的锚,下游锚选用600kg重的锚,顶头锚选用400kg的锚。 b.锚缆 二根上游缆和二根下游缆选用Φ以上的锚缆,二根顶头缆规格也不应小于Φ。 (3)抛锚顺序及定位船抛锚定位 a.抛锚顺序 外上游锚(领水锚)——里上游锚——外顶头锚——里顶头锚——里下游锚——外下游锚。应注意的是上、下游锚应成八字形,以利定位船里外移动。

新建河道及护岸工程施工组织设计_secret

目录 第一章技术标编制总说明 (1) 1.1概述 (1) 1.2编制依据 (1) 1.3编制指导思想 (2) 1.4编制内容 (2) 1.5项目施工目标及承诺 (3) 第二章工程概况及施工条件 (4) 2.1工程概况 (4) 2.2工程结构特点 (4) 2.3水文、地质条件 (5) 2.4对外交通条件 (6) 2.5施工用水、电条件 (6) 2.6本工程施工特点 (6) 第三章施工总平面布置及全场性临设工程 (7) 3.1布置说明 (7) 3.2砼生产系统 (8) 3.3砂石料系统 (8) 3.4临时用房 (8) 3.5施工供水、供电 (10) 3.6场外交通及场内施工便道 (10) 3.7通讯与办公自动化 (10) 3.8施工总平面布置图 (11) 第四章施工总进度计划及工期保证措施 (11) 4.1工期目标 (11) 4.2施工进度安排原则 (11) 4.3本工程施工顺序 (11) 4.4本工程施工控制节点 (12) 4.5确保本工程工期的保证措施 (13) 4.6施工总进度计划横道图及网络图 (14) 第五章主要分部分项工程施工技术方案 (15) 5.1施工测量方案 (15) 5.1.1测量施工准备工作 (15) 5.1.2施工测量的内容和要求 (16) 5.1.3平面控制测量 (17) 5.1.4水准控制测量 (18) 5.1.5施工测量质量控制 (19) 5.2施工便道、围堰方案 (20) 5.2.1概述 (20) 5.2.2施工便道施工 (20) 5.2.3围堰施工 (21) 5.3土方施工方案 (22) 5.3.1概述 (22) 5.3.2护岸土方工程量 (23) 5.3.3土方挖填施工 (23) 5.3.4土方平衡方案 (25) 5.5砼及钢筋砼工程施工方案 (26)

抛石挤淤专项施工方案

阳新莲花湖大桥及接线工程 抛 石 挤 淤 专 项 施 工 方 案

一、抛石挤淤工程概况及特点 本工程所属地质条件差,因在莲花湖湖边,施工车辆无法通行,挖除的淤泥、表土、垃圾和淤泥清运困难;工程工期紧、任务重、淤泥放量大,给我方施工带来很大不不便。根据现场条件,需对湖边路基先期处理,抛石挤淤填筑一条施工便道,方可将弃土运至指定场地。 东岸接线路基填湖段(K0+110~330.8),设计长220.8m,此时段莲花湖湖水处于丰水期,施工水位较高,采用临时袋装土围堰不仅工期长,施工难度大,施工质量不易保证,而且清除的淤泥量达1.4万立方米,两侧均为池塘,需新建运输便道,经多次倒运方可把淤泥清运出场,施工投入也比较大。同时淤泥弃置需要指挥部提供大面积的弃渣场,淤泥运输过程会也对环境造成污染,因此我项目部建议,此段路基施工采用“抛石挤淤”的施工方案,可以控制施工进度,施工质量也容易保证,同时也将施工对环境的污染程度降到了最低。

三、施工工艺框图 施放中边、线地表清理抛填块石 20T碾压 路基填筑 购买块石 块石试验报验合格 四、施工方法 1、施工流程图 整修便道→机械抛石→整平→碾压→铺15cm碎石找平层→路基填筑。 2、主要材料的选定 抛石用料为当地所产的块石,主要采用滑石村为主,银山为辅的方式选取石料。为使挤淤效果明显,抛石厚应均匀,石料粒径应控制在≤500mm 范围,且将石料的石屑清除,最短边尺寸不小于30cm,抗压强度大于20Mpa。在抛石施工前,先将开石材切制成7*7*7cm试件并进行强度试验,达到规范及设计要求方可使用。

3、测量放样 按道路及坡脚实际范围要求须测量放线,确定其抛石范围并经业主或监理工程师现场检查界线。并由业主及监理工程师现场签认,作为工程量签证依据。 4、地表的清理 抛石之前,抛填范围内的杂土、有机土、建筑垃圾、树根、树墩等表层土及有机物要进行清除。并经监理工程师认可才能进行下一步施工。 5、块石运输及挤淤 5- 1、因施工现场路况不佳,块石运输过程中,应安排专人指挥运输块石车辆至施工场地指定石料投放地点。 5-2、抛石采用挖掘机进行。由挖掘机抛石,以东侧道路K1+110为起点向K1+330.8为终点方向进行抛石。抛石应以路基中部开始,然后逐渐向两边展开,使淤泥向两边挤出,每10M-20M为一个抛石标段,抛石边坡采用1:2的边坡系数进行放坡处理。当每抛石标段抛出的块石露出水面1M高度后,遂采用用20T压路机进行碾压,并观测其沉降,若块石沉降量较大,则需再抛一层块石进行碾压,直至块石沉降量较小为止。可向前延伸进行下一抛石标段施工。 5-3、碾压 待抛石露出湖面1M后,首先由自重较大的挖掘机来回走动进行碾压,使块石沉入基本稳定,待作业范围展开后,可采用20T的振动式压路机进行碾压,碾压应匀速进行,第一遍先静压,然后先慢后快,先弱振后强振,碾压速度应控制在4km/h内,振动碾压4-5遍,纵、横向碾压接头必须重叠,压实路线对于轮碾应纵向平行,反复碾压,行与行之间应重叠40-50CM,前后相邻区段应重叠100-150CM,做到无漏压、无死角,确保碾压均匀。碾压过程中,用人工将片石空隙以小石或石屑填满铺平,直至抛石层顶面平整无明显空隙。

河道护坡工程

河道护坡工程 现阶段,我国建筑企业实施河道护坡工程施工过程中,基本情况怎么样?以下是河道护坡基本内容如下: 河道护岸工程是保护江河堤岸免受水流、风浪侵袭和冲刷所采取的工程措施。按结构材料类型主要有块石护岸、柳石护岸、石笼护岸、沉排护岸、增工护岸、混凝土块护岸、土工织物护岸、透水桩护岸、草皮护岸等。 河道护坡工程基本概况: 块石护岸具有就地取材、施工简易灵活、适应河床变形、能分期实施、逐步加固等优点;柳石护岸有柳石枕和柳石搂厢两种型式,优点是有柔韧性,节约石料,防护效果好;沉排护岸一般用于工程护脚或护底,具有整体性强,韧性大,适应河床变形,抗冲等优点;增工护岸具有体质轻,取材容易,施工快等优点;混凝土护岸主要用于较稳定河道的堤、坝、岸上防护风浪;透水桩坝有一定的缓流落淤效果,适用于水浅流缓处;草皮护岸主要用于漫水时间短,流速和波浪较小,流向与河岸基本平行的堤(岸)坡上。 河道护坡工程基本原则: 生态护坡系统将植物生长基质固定在袋体内,同时利用植物根系的”锚固”作用而使护坡更稳定和具有抗冲刷能力,同时生态护坡还具有造价低、能美化环境的独特效果,在国外已得到了广泛的应用,在国内也有一些应用。生态护坡设计的基本原则为:

1) 生态边坡必须能够营造一个适合陆生植物、水陆两生植物、水生动植物生长的生命环境; 2) 生态护坡应满足渠道功能和堤防的稳定要求,并降低工程造价: 3) 尽量减少刚性结构,增强护坡在视觉中”软效果”,美化工程环境: 4) 进行水文分析,确定水位变幅范围,结合植物调查结果,选择合适的植物: 5) 尽量采用自然的材料,避免二次环境污染: 6) 布置时考虑人们的亲水要求。

抛石护岸施工方案(工程科)

水下抛石施工 本工程水下抛石工程量为,选用~驳船艘,运输能力完全能够保证施工需要。抛石施工受水位、流量、流速、流向、冲距、航运等因素的影响,为了保证抛投块石的进度和质量,拟采用艘定位船分区分段进行网格抛投,根据施工现场的条件,将块石用驳船运至施工现场抛投水域范围后采用人工抛投,由专职施工人员进行抛投指挥,同时搞好安全施工。每个断面从江心向岸边,先脚后坡,但对崩坍较快的地段宜由近至远,先坡后脚,连续施工,突击完成。水下抛石施工程序分述如下:水下抛石施工程序如下: 抛石前准备→抛石前测量→抛投试验→定位船定位→抛石船挂档→人工抛投→抛后测量检查→合格后移到下一抛投位置。 ()抛石前准备 器材设备准备。测量仪器:经纬仪、、全站仪、回声仪、流速仪、测绳、皮尺、标旗等。定位器材。定位驳船艘、铁锚、钢丝绳、铰车和铁丝等。安全设备:救生圈、救生衣、导航标、灯、扩音喇叭等和其它一些必需设施。 ()水下地形测量 采用全球定位测量系统及海洋成图软件对抛石区水下地形测量后,绘制出水下原始地形图,其水下断面测量的比例为:,沿堤轴线方向测

量一横断面,测点的水平间距控制在内。根据测量成果对抛投区进行划档分格,绘制小区抛投网络图,抛石网格拟采取×的小网格比较合适。且能够满足一次性抛投到位的要求。局部岸线不顺直的地方可采用变网格,但其网格大小不能超过×,各网格的抛投量应根据图纸按网格上下断面方向的平均值求得按抛投断面计算出每个抛投小区的抛石数量,并对小区进行统一编号,报监理施工全过程管理人员核实后,作为抛石施工依据。 ()抛投试验 用流速仪和回声仪测量施工部位的水流流速和水深,并对试抛块称重,量测出石块的落距,点绘与的曲线,推算出冲距公式中的系数值。 ()定位船定位 定位船的稳定性是定位作业的关键。可采用同一抛石区使用一艘定位船定位,于岸上设地锚的方法进行。根据抛区水深、流速、抛投试验确定的冲距参数计算出每一抛投小区的抛石提前量,得出石料船水面定位坐标,采用全球定位放样,建立水中浮标,在岸边每隔一定距离埋设坚固的地锚,用以锚固船体。 放样结束后,将施工定位船(趸船)拖到施工地点进行抛锚定位。用全站仪测出定位船至断面杆的距离,以确定抛石船的位置。

施工方案-水下抛石护岸施工方案

珠海市西区海堤白蕉联围达标加固工程 新八顷险段加固工程 水下抛石护岸施工方案 批准: 审核: 编制: 编制单位:广东省水电三局珠海市西区海堤白蕉联围新八顷险段加固工程项目经理部 编制日期:二〇一〇年六月

目录 一、工程概况 (1) 二、水下抛石护岸施工 (1) 1.抛石前准备 (1) 2.水下地形测量 (1) 3.铺设土工布 (2) 4.抛投试验 (3) 5.定位船定位 (3) 6.石料船的石质检查、计量 (4) 7.抛石船挂档(就位) (5) 8.挖掘机抛投 (5) 9.潜水员水下作业 (5) 10.竣工水下地形测量 (5) 11.开始下一抛区抛石 (5) 12.抛石施工质量控制 (6) 三、施工技术要求 (7) 1.严格控制各施工段长度 (7) 2.确保抛石准确、抛投均匀 (8) 四、水上施工作业安全措施 (8)

一、工程概况 新八顷险段是珠海市西区海堤白蕉联围东堤内的一个堤段,北起金湖钢厂码头附近,南至东南卡水闸,全长1.9km,合同工期212个日历天。该工程的任务是解决堤身及岸坡自身稳定问题和解决防冲问题,使新八顷险段不再发生险情,满足50年一遇的防洪要求,达到达标加固的目的,与整个白蕉联围所有堤防一道,共同捍卫白蕉联围的安全。本工程水下抛石工程量约为31.8万m3,拟选用100~200T驳船3艘,运输能力完全能够保证施工需要。抛石施工受水位、流量、流速、流向、冲距、航运等因素的影响,为了保证抛投块石的进度和质量,拟采用1艘200T定位船分区分段进行网格抛投,根据施工现场的条件,将块石用驳船运至施工现场抛投水域范围后采用挖掘机抛投,由专职施工人员进行抛投指挥,同时搞好安全施工。每个断面从江心向岸边,先脚后坡,但对崩坍较快的地段宜由近至远,先坡后脚,连续施工,突击完成。 二、水下抛石护岸施工 抛石前准备→抛石前测量→铺设土工布→抛投试验→定位船定位→抛石船挂档→挖掘机抛投→抛后测量检查→合格后移到下一抛投位置。 1.抛石前准备 器材设备准备。测量仪器:G.P.S、全站仪、回声仪、流速仪、测绳、皮尺、标旗等;定位器材:200T定位驳船1艘、铁锚、钢丝绳、铰车和铁丝等;安全设备:救生圈、救生衣、导航标、灯、扩音喇叭等和其它一些必需设施。 2.水下地形测量 (1)抛前水下地形测量 在施工前进行抛前水下地形测量报监理工程师审批。 (2)施工小区(网格)划分 采用GPS全球定位测量系统及海洋成图软件对抛石区水下地形测量后,绘制出水下原始地形图,其水下断面测量的比例为1:200,沿堤轴线方向50m测量一横断面,测点的水平间距控制在2m内。根据测量成果对抛投区进行划档分格,绘制小区抛投网络图,抛石网格拟采取10m×10m的小网格比较合适。且能够满足一次性抛投到位的要求。局部岸线不顺直的地方可采用变网格,但其网格大小不能超过20m×10m,各网格的抛投量应根据图纸按网格上下断面方向的平均值求得按

抛石施工方案

洋山深水港(一期工程)东海大桥港桥连接段海堤工程 抛石施工方案 宁波交通工程建设集团有限公司 洋山深水港海堤工程项目经理部 二 O O 三年五月十五日

水抛石施工方案 东海大桥港桥连接段海堤工程位于大乌龟岛和颗珠山岛之间,轴线总长度1220m,石方抛填总量为2096030m3,其中:抛石护底(200~300kg)47748m3;抛石护底(100~200kg)17432m3;水抛棱体(600~800kg)316818m3;水抛棱体(300~500kg)14005m3;堤心石抛填(10~200kg)1700027m3(以上方量仍按旧图纸暂计,准确方量待新图纸明确后再计)。 由于由我公司施工的石方处在0.0m高程以下,故均采用施工船只水抛的方法进行施工。 一、原材料控制与材料计划 本工程抛石分类较多,共有5种类型的石料(未包含护面块体下的块石垫层),在施工中必须按设计要求选取各种规格的石料进行投抛。石料的选择在大乌龟山和颗珠山石料场进行,由葛洲坝集团公司、香港惠记集团公司将开采出的石料按设计块重要求分类,并用自卸汽车将块石运输到码头卸入我公司的液压对开驳船中。 根据施工进度的安排,块石材料的总用量及材料计划见附表 二、施工流程 见:图一施工流程图 三、抛投分层及边线标记设立 1、抛投分层 根据该项目的特点和设计要求,在软基上施工,分层均衡投抛是

确保地基稳定不受损、不扰动的关键性环节,对整个海堤能否按时形成是起到决定性作用的。为此,在施工中必须严格掌握好第一层的抛石厚度和第二层的抛石时间及加荷厚度。拟将全断面分为两层或三层进行抛投块石,施工时先抛投第一层,待第一层抛后地基基本固结稳定后(初定2个月时间)再加抛第二层,分层按以下方法进行:(1)堤心石以高程-4.0m为界,以下为第一层,以上为第二层; (2)外侧棱体以高程-9.0m为界,以下为第一层,以上为第二层; (3)内侧棱体、护底块石在第一层抛填时一次性抛投到设计高程要求; (4)堤心石上面的两侧水抛棱体在第二层施工时一次性抛填到设计要求的高程要求; (5)大乌龟山及颗珠山已经清淤的部分因持力层大部分已到基岩部位,只要分层均匀水抛至设计高程就可,对加荷速率不作重要控制,但对控制断面和排水板断面的交接过渡段施工必须严格控制均匀分层抬高。 2、抛投边线标记设立 按照上述的平面分层办法,根据不同的设计断面,计算出各边线的坐标点,用测量艇在现场定出各坐标点的位置,并投入事先准备好能发光(以备夜间施工)的浮筒,以控制不同部位抛石的边线。 四、抛投方法 采用装有GPS定位系统的定位船只进行定位,以对开驳抛投各种

河道护岸工程实例论述?

河道护岸工程实例论述 作者:任立强 来源:《中华建设科技》2014年第10期 【摘要】文章阐述了护岸工程的常用方法,并通过工程实例对直立式护岸方法的具体施工顺序和施工方法进行详细的论述。 【关键词】河道;护岸工程;直立式护岸;施工技术 Examples of river bank protection works discussed Ren Li-qiang (MWR IOC Bureau from Zhangweinan XunxianJunxianHenan456250) 【Abstract】Article describes common methods of bank protection works, and discussed in detail the method of vertical concrete revetment construction sequence and construction methods by engineering examples. 【Key words】River;Revetment works;Upright revetment;Construction Technology 1. 前言 河道是排泄洪水的通道,堤防是防御洪水的屏障,河道属于自然边坡。在水流、泥沙、地质和人为等多种因素作用的影响下,岸坡常发生不稳定和遭受侵蚀破坏,严重者岸坡崩塌形成险工,危及河道堤防和防洪安全。研究探索河流泥沙运动规律,采取有效的护岸工程措施是河道堤防和防洪安全的重要保障。文章阐述了护岸工程的常用方法,并通过工程实例对直立式护岸方法的具体施工顺序和施工方法进行详细的论述。 2. 护岸工程常用的方法分析 护岸工程有着多种分类方法,其中最常见的是按照平面布置形式分类和按照护岸机理分类。 2.1平面布置分类。一般按照平面布置形式可分为平顺护岸、矶头群护岸、丁坝护岸等。 (1)平顺护岸。平顺护岸是用抗冲材料直接覆盖在河道岸坡上,以抵抗河道水流的冲刷。平顺护岸包括自然岸坡护岸、斜坡式岸坡护岸和直立式岸坡护岸。自然岸坡护岸适用于水流、风浪较小的小型河道,利用树木、灌木、芦苇、草皮等植物增加河岸的耐侵蚀能力,同时起到保护生态、美化环境的作用。斜坡式护岸的护面材料主要有块石(抛石、砌石、石笼),

相关文档