文档库 最新最全的文档下载
当前位置:文档库 › 1.7 简化阶梯形矩阵--线性代数PPT

1.7 简化阶梯形矩阵--线性代数PPT

1.7 简化阶梯形矩阵

.T 设是阶梯形矩阵,一个非零元??????

? ??---00000310003011040101??????? ??---000003100001110

41211定义T 如果的主元所在列只有.T 简化阶则为梯形矩阵称

,A 对任意矩阵4定理A T 与是行等价的,T 化为简化阶梯形矩阵0,T A 设为的阶梯形证明12,,,.

r j j j 标号为01,2,

,1,T r r 将的第行乘以适当常数加到第行.

r j 可使第列上主元以外的元素都为零使得,T 存在简化阶梯形矩阵(A 或者可以经有限次初等行变换).T A 称为的简化阶梯形0,T r 有个主元主元所在列的

1,2,

,2,r -第行.

都为零,.A T 依此类推就可以得到的简化阶梯形证毕1r -然后将所得矩阵的第行乘以适当常数加到1r j -使得第列上主元以外的元素

11214246482311236979A -?? ?- ?= ?-- ?-??

12140110000300000111-?? ?- ?- ? ???

阶梯形 ??→

12070103000300000111-?? ?- ?- ? ???

????→?+-+-2313)1()1(R R R R 01040103.000300001110-?? ?- ?- ? ???

????→?+-12)1(R R 简化阶梯形 ▌ 12140110000300000111-?? ?- ?- ? ???

任意矩阵的简化阶梯形是唯一的

.

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值与特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都与特征值有关,在工程技术及其理论研究方面都有很重要的应用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值与特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。

线性代数应用案例资料

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮 食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,, x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列 方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在 一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入=实际收入+支付服务费)

解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题 意,建立方程组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得 x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴 需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

线性代数论文设计(矩阵在自己专业中地应用及举例)

矩阵在自己专业中的应用及举例

摘要: I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。 II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等容。 III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。 关键词: 矩阵可逆矩阵图形学图形变换 正文: 第一部分引言 在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的容,而这些容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重要地位,

与行列式、方程、向量、二次型等容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。 图形变换是计算机图形学领域的主要容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果 1. 矩阵的概念 定义:由n m ?个数排列成的m 行n 列的矩阵数表 ????? ???????ann an an n a a a n a a a ΛM ΛM M K Λ212222111211 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。 下面介绍几种常用的特殊矩阵。 (1)行距阵和列矩阵 仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为 a=(a11,a12,.....a1n). 仅有一列的矩阵称为列矩阵(也称为列向量),如

线性代数的应用论文

论文:线性代数的应用与心得体会班级: 姓名: 学号: 指导老师: 完成时间:2014年10月20日

目录 【摘要】 (2) 【关键词】 (2) 一、线性代数被广泛运用的原因 (2) 二、线性代数在实际中的应用 (2) 1. 用二阶行列式求平行四边形面积,用三阶行列 式求平行六面面体 (2) 2. 希尔密码 (2) 3.在人们平常日常生活的应用——减肥配方的实 现 (3) 4、在城市人们出行的应用——交通流的分析 (4) 5、马尔可夫链 (5) 6、在人口迁移的应用人口迁徙模型 (5) 三、心得与体会 (7)

【摘要】我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛。下面就是看一些具体实例应用,和一些心得体会。 【关键词】线性代数;实际生活;应用实例;心得体会; 。 一、线性代数被广泛运用的原因 为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢? 原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系。例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动。而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程。再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。 原因之二,之后随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用。 原因之三,在数学中线性代数与几何和代数有着不可分割的联系。线性代数所体现的几何观念与代数方法之间的联系,从具体概念变为抽象出来的公理化方法,对于强化人们的数学训练,增强科学性是非常有用的。 二、线性代数在实际中的应用 1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 2.希尔密码 希尔密码(Hill Password)是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n 的矩阵相乘,再将得出的结果模26。注意用作加密的矩阵(即密匙)在\mathbb_^n必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。 例题、 设明文为HPFRPAHTNECL,密钥矩阵为:

线性代数在企业生产中的应用

线性代数在企业生产中的应用 小组:第五组 系部:工商管理系 专业:市场营销 指导老师:赵梅春 提交日期:2015年5月27日

目录 线性代数在企业生产中的应用 (1) 摘要 (2) 简介 (3) 什么是线性代数 (3) 线性代数在经营管理领域中的应用 (4) 线性代数应用广泛的原因 (4) 相关知识 (5) 实例分析 (9) 1、价格平衡模型 (9) 2、生产总值问题 (11) 3、产品成本计算 (13) 4、投入产出数学模型 (14) 参考文献 (15) 致谢 (15)

摘要 线性代数是一门讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的学科。当代,睡着线性代数在企业生产领域的广泛应用,线性代数显得日益的重要。通过对线性代数知识的运用,企业可以预测市场变化、计算投资与回报、调节最优的生产模式等。科学地运用线性代数可以使企业生产更加适应当今不断变化的市场环境。可见,对线性代数研究的深浅将直接影响我国企业是否能在未来的生产中顺利发展。本文将围绕线性代数在企业生产中的应用,通过四个线性代数在企业生产中应用的实例,即运用线性代数建立投入产出模型、运用线性代数计算产品成本、运用线性代数解决生产总值问题等四个实例,目的在于通过对这四个实例的分析,来说明线性代数在企业生产中有着那些应用,并解释为什么这些应用对企业生产有着不可替代的重要作用,以及解答如何在企业生产中科学地运用小小大,而更重要的是,我们希望本文的研究成果,能为企业在运用线性代数解决生产问题这一方面提供科学有效的参考价值。 关键词:线性代数企业生产数学模型预测市场 Abstract

Linear algebra is a discussion of matrix theory, matrix binding and subject finite-dimensional vector space linear transformation theory. Contemporary, asleep linear algebra is widely used in the production field, linear algebra is becoming increasingly important. Through the use of linear algebra, companies can predict market changes, and return on investment calculation, adjusting optimal production mode. Scientific use of linear algebra can make production more responsive to today's ever-changing market environment. Seen on the depth of linear algebra will directly affect whether the smooth development of Chinese enterprises in the future production. This article will focus on linear algebra in the enterprise production, by way of example in the production of four linear algebra applied, that the use of linear algebra establish input-output model, using linear algebra calculation of product cost, using linear algebra to solve the problem of GDP four instances, the aim of the analysis by these four examples to illustrate the production of linear algebra with those applications, and explain why these applications on the production plays an irreplaceable role, and how to answer in enterprise production Little Big scientific use, but more importantly, we hope that results of this study can provide

线性代数第五章 相似矩阵

第五章 相似矩阵 §1 特征值和特征向量 特征值是方阵的一个重要特征量,矩阵理论的很多结果都和特征值有关,在 工程技术及其理论研究方面都有很重要的使用。 定义1:设A 为n 阶方阵,如果存在数λ和n 维非0列向量X ,满足: (1)AX X λ=。 则称λ是方阵A 的特征值(也称为特征根),X 是方阵A 的属于特征值λ的特征向量。 例如矩阵1000A ??= ? ??,取11= 0X ?? ???,20=1X ?? ???,则有 11=1AX X ?,22=0AX X ?,所以1,0是A 的特征值,12,X X 是分别属于特征值1和0的特征 向量。 (1)式又可以写成 ()0 (2)E A X λ-=。 即特征向量是齐次线性方程组(2)的非零解,从而有 ||0 (3)E A λ-=。 (3)称为方阵A 的特征方程,求解方程(3)即得矩阵A 的特征值。||E A λ-称为方阵A 的特征多项式。 对求出的特征值0λ,代入方程组(2)求解即得属于0λ的特征向量。 例1:已知方阵A 满足 2A E =,证明:A 的特征值只能为1或1-。 证明:设λ是A 的任一特征值,则有非零向量X ,使得 AX X λ=。 两边左乘以A ,有22()()A X A A AX X λλλ===。又 2A E =,所以 2(1)0X λ-=。由于0X ≠,从而 21λ=,即 1λ=±。 例2:求矩阵110430102A -?? ?=- ? ??? 的特征值和特征向量。 解:因 21 10||430(2)(1)1 02 E A λλλλλλ+--= -=----。 所以矩阵A 的特征值2λ= 或 1λ=。 当2λ=时,

线性代数知识点总结

第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在;

线性代数在现实生活中的应用

线性代数在现实生活中的应用 【摘要】线性代数理论有着悠久的历史和丰富的内容,其理论应用,是研究现代科学技术的重要方法,在众多的科学技术领域中应用都十分广泛。本文通过对线性代数的定义的解释,和应用实例的列举,分析了线性代数被广泛运用于各个领域的原因。并对在这些领域中,线性代数的具体应用做了简要论述。 【关键词】线性代数;实际生活;应用实例 一、什么是线性代数 线性代数(Linear Algebra)是数学的一个分支,也是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。 [1]也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的是为了解决问题的方便,为了提高效率,通过线性代数可以把一些看似不相关的问题化归为一类问题。线性代数的研究内容包括行列式,矩阵和向量等,其主要处理的是线性关系的问题,随着数学的发展,线性代数的含义也不断的扩大。它的理论不仅渗透到了数学的许多分支中,而且在理论物理、理论化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用。 二、线性代数被广泛运用的原因 为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢? 原因之一,大自然的许多现象恰好是线性变化的。以物理学为例,整个物理世界可以分为机械运动、电运动、还有量子力学的运动。而机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,这是一个基本的线性微分方程。电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。而量子力学中描绘物质的波粒二象性的薜定谔方程,也是线性方程组。 其二,随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而科学研究中的非线性模型通常也可以被近似为线性模型,另外由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因成为了解决这些问题的有力工具而被广泛应用。如量子化学(量子力学)是建立在线性Hilbert空间的理论基础上的,没有线性代数的基础,不可能掌握量子化学。而量子化学(和分子力学)的计算在今天的化学和新药的研发中是不可缺少的。 其三,线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。 三、线性代数在实际中的应用 下面将从几个领域出发简要谈一下线性代数在实际生活中的应用。

线性代数-相似矩阵

第五章相似矩阵及二次型 §1 向量的内积、长度、正交性一、向量空间的内积、长度和夹角1.内积的定义: 内积的符号:括号或方括号

: : 证(3)

二、向量空间的单位正交基 1.正交向量组定义 2.定理1 正交向量组线性无关 P113 解设a3= (x1, x2, x3), 由正交的定义, a3应满足 (a1,a3)= 0, (a2, a3)= 0 即x1 +x2 +x3 = 0, x1-2x2 +x3=0

这是一个齐次线性方程组AX= 0, 即??? ? ??=???? ? ?????? ??-00121111321x x x , 由??? ? ?????? ??-???? ??-=010101~030111~121111A , 得???=-=0231x x x ,方程组的通解为??? ??==-=c x x c x 3210,即????? ??-=????? ??101321c x x x 取c = 1, 则a3=??? ? ? ??-101即为所求。 3.正交基、规范正交基(单位正交基) 正交基——由正交向量组构成的基称为正交基。 规范正交基(单位正交基)——正交基中的向量是单位向量。 4.向量正交化 施密特方法:将基改造为正交基(P114)

例2 用施密特方法把基正交化(P114) 例3 已知 T a )1,1,1(1=,求一组非零向量32,a a ,使32,1,a a a 两两正交。 解 32,a a 应满足01 =x a T ,即 0321=++x x x 解这个齐次线性方程组得213 x x x --=,通解为 ?????--===2 13221 1c c x c x c x ,即? ?? ?? ??-+????? ??-=????? ??11010121321c c x x x ,基础解系为 ??? ? ? ??-=????? ??-=110,10121ξξ,把基础解系正交化 111212312) ,(),(,ξξξξξξξ-==a a ,于是得 ?? ???? ? ? ??--=??? ?? ??--????? ??-=????? ??-=2112110121110,101232a a 三、正交矩阵 1.定义4 因为 1A A E -= 所以 A 是正交矩阵←→1 T A A -= (充分必要) 2.正交矩阵的构造

线性代数解决生活中实际问题举例

线性代数解决生活中实际问题举例 课程名称:线性代数 专业班级 成员组成 联系方式: 2012年月日

摘要:代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。如果掌握的线性代数及线性规划,那么你就可以讲实际生活中的大量问题抽象为线性规划问题。以得到最优解。 关键词:线性代数,线性规划,运筹学,矩阵,应用,向量。 Linear algebra to solve practical problems in life Abstract: Algebra is the function of a lot of seemingly unrelated things "together", also is in the abstract. If the mastery of the linear algebra and linear programming, so you can speak in real life, a lot of problems abstract for linear programming problem. In order to get the optimal solution. Key words: Linear algebra, linear programming, operations research, matrix, application, vector.

线性代数是代数的一个重要学科,线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。把一些看似不相关的问题化归为一类问题。线性代数中的一个重要概念是线性空间(对所谓的“加法”和“数乘”满足8条公理的集合),而其元素被称为向量。也就是说,只要满足那么几条公理,我们就可以对一个集合进行线性化处理。可以把一个不太明白的结构用已经熟知的线性代数理论来处理,如果我们可以知道所研究的对象的维数(比如说是n),我们就可以把它等同为R^n,量决定了质!多么深刻而美妙的结论!上面我说的是代数的一个抽象特性。这个对我们的影响是思想性的!如果我们能够把他用在生活中,那么我们的生活将是高效率的。 线性代数研究最多的就是矩阵了。矩阵实质上就是一张长方形的数表,无论是在日常生活中还是科学研究中,矩阵是一种非常常见的数学现象。学校课表、成绩单、工厂里的生产进度表、车站时刻表、价目表、故事中的证劵价目表、科研领域中的数据分析表,它是表述或处理大量的生活、生产与科研问题的有力的工具。矩阵的重要作用主要是它能把头绪纷繁的十五按一定的规则清晰地展现出来,使我们不至于背一些表面看起来杂乱无章的关系弄得晕头转

线性代数习题相似矩阵及二次型

5-1向量的内积与方阵的特征值 1.设λ为矩阵A 的特征值,且0≠λ,则 λ A 为 的特征值。 ;.; .; .; .1*1--A d A c A b A a λλ 2.设A 为n 阶实对称阵,21,x x 为A 的不同特征值对应的特征向量,则 。 1.21=x x a T 1.x b 与2x 线性相关; 1.x c 与2x 线性无关; 0.21=+x x d 3.设21,λλ都为n 阶矩阵A 的特征值)(21λλ≠,且21,x x 分别为对应于21,λλ的特征向量,则当 满足时,2211x k x k x +=必为A 的特征向量。 0.1=k a 且02=k ; 0.1=k b 且02≠k ; 0.1≠k c 且02≠k ; 0.21=?k k d 4.设n 阶方阵A 的特征值全不为零,则 。 n A r d n A r c n A r b n A r a <≤≠=)(.;)(.;)(.;)(. 5.设矩阵??? ? ? ??--=314020112A ,求A 的特征值及特征向量.

6.试用施密特法把向量组?? ??? ???? ???---=011 101110 11 1),,(321a a a 正交化。 7.设A 与B 都为n 阶正交阵,证明:AB 也是正交阵。 8.证明:正交阵的行列式必定等于1或—1。 9.设x 为n 维列向量且1=x x T ,而T xx E H 2-=,试证H 是对称的正交矩阵。

习题5-2 相似矩阵与对称矩阵的对角化 1.设A 与B 为n 阶方阵,则B A =是A 与B 相似的 。 .a 充分条件; .b 必要条件; .c 充要条件; .d 无关 条件 2.对实对称阵?? ? ???-=???? ??=10 01,10 01 B A ,有A 与B 。 .a 互为逆矩阵; .b 相似; .c 等价; .d 正交 3. n 阶矩阵A 与对角阵相似的充要条件是 。 a. 矩阵A 有n 个特征值; b. 矩阵A 有n 个线性无关的特 征向量; c. 矩阵A 的行列式0≠A ; d. 矩阵A 的特征多项式有重根 4. 设n 阶矩阵A 与B 相似,则 。 a.A 与B 正交; b. A 与B 有相同的特征向量; c. A 与B 等价; d. A 与B 相同的特征值。 5.若A 与B 是相似矩阵,证明T A 与T B 也相似。

线性代数在专业的应用及举例论文范文

华北水利水电学院 线性代数在专业的应用及举例 课程名称:线性代数 专业班级: 成员组成: 联系方式:

2012年11月9日星期五 线性代数在专业的应用及举例 摘要:线性代数作为高等院校各专业一门重要的数学基础课程,它不但广泛应用于 微分方程、概率统计、控制理论等数学分支,而且其知识已渗透到自然科学的其他学科,如工程技术、科学计算、经济管理等领域,因此,线性代数在加强学生逻辑思维和创造性思维,培养学生创新能力方面,无疑起着至关重要的作用。 关键词:线性代数原因应用内容作用 正文: 一.线性代数被广泛运用的原因 大自然的许多现象恰好是线性变化的。以物理学为例整个物理世界可以分为机械运动、电运动、还有量子力学的运动。而机械运动的基本方程是牛顿第二定律即物体的加速度同它所受到的力成正比这是一个基本的线性微分方程。电运动的基本方程是麦克思韦方程组这个方程组表明电场强度与磁场的变化率成正比而磁场的强度又与电场强度的变化率成正比因此麦克思韦方程组也正好是线性方程组。而量子力学中描绘物质的波粒二象性的薜定谔方程也是线性方程组。随着科学的发展我们不仅要研究单个变量之间的关系还要进一步研究多个变量之间的关系因为各种实际问题在大多数情况下可以线性化而科学研究中的非线性模型通常也可以被近似为线性模型另外由于计算机的发展线性化了的问题又可以计算出来所以线性代数因成为了解决这些问题的有力工具而被广泛应用。如量子化学量子力学是建立在线性Hilbert空间的理论基础上的没有线性代数的基础不可能掌握量子化学。而量子化学和分子力学的计算在今天的化学和新药的研发中是不可缺少的。线性代数所体现的几何观念与代数方法之间的联系从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等对于强化人们的数学训练增益科学智能是非常有用的。

线性代数矩阵的性质及应用举例

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

线性代数在量子力学中的应用实例

线性代数在量子力学中的应用实例 作者:寿立夫 摘要:利用泡利自旋矩阵可以简化电子自旋这一双态系统,并且具备相当的普遍意义,可以适用于一般的量子系统;我们试图在N态系统中寻找一组基础态使之标准正交,为此我们仿照实对称矩阵的证明,证明含复数的哈密顿矩阵总是可以被相似对角化的,并且可以通过Gram-Schmidt法则将其化为标准正交向量组。在此基础上,我们研究了具有四个基础态的氢的超精细分裂问题并由所得结果计算出氢的两个超精细态之间的“21cm谱线“。 关键词:泡利矩阵;N态系统;氢的超精细分裂;线性代数 引言 自海森堡创立矩阵力学以来,随着叠加原理在量子力学中的广泛使用,使得线性代数成为了描述和研究量子系统的强有力工具,在初步学习了相关线性代数知识后,我们已经有了足够的知识储备去探究量子世界的奥妙,在此选取几个例子粗浅地展示下线性代数在量子力学中的一些简单应用。 1 泡利自旋矩阵 1.1背景知识 1.1.1振幅与态矢量 由于量子力学本身的特殊性,所以它有一套独特的符号体系。下面引述维基百科的概念: [1]在量子力学里,一个量子系统的量子态可以抽象地用态矢量来表示。态矢量存在于内积空间。定义内积空间为增添了一个额外的内积结构的矢量空间。态矢量满足矢量空间所有的公理。态矢量是一种特殊的矢量,它也允许内积的运算。态矢量的范度是1,是一个单位矢量。标记量子态的态矢量为。每一个内积空间都有单范正交基。态矢量是单范正交基的所有基矢量的线性组合: ; 其中,是单范正交基的基矢量,是单范正交基的基数,

是的分量,是投射于基矢量的分量,也是处于的概率幅。1换一种方法表达: 。 在狄拉克标记方法里,态矢量称为右矢。对应的左矢为,是右矢的厄米共轭,用方程表达为;其中,象征为取厄米共轭。设定两个态矢量,。定义,的内 积为。结果是一个复数。 1.1.2哈密顿矩阵 现在我们令C i(t)=iφt表示时刻t处在基础态i的振幅,则在只考虑态矢随时间变化的简单情况下,我们可以得到以下齐次线性微分方程组: 因为量子系统的幺正性,所以H ij=H ji?. 1.2 泡利矩阵 1.2.1磁场中电子自旋的自旋方程 通过观察我们可以写出如下泡利自旋矩阵: [1]维基百科“态矢量词条”.

线性代数应用实例

线性代数应用实例 求插值多项式 右表给出函数f(t)上4个点的值,试求三次插值多项式 p(t) a 0 a-|t a 2t 2 a 3t 3 , 并求f (1.5)的近似值。 角军:令三次多项式函数 p(t) a 0 a 1t a 2t 2 表中已知的4点,可以得到四元线性方程组: a 。 3 a o a 1 a 2 a 3 0 a o 2a 1 4a 2 8a 3 1 a o 3a 1 9a 2 27a 3 6 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: 2 3 2,a 3 1,三次多项函数为 p(t) 3 2t 2t t ,故f(1.5)近 似等于 p(1.5) 3 2(1.5) 2(1.5)2 (1.5)3 1.125。 在一般情况下,当给出函数 f(t)在n+1个点t i (i 1,2,卅,n 1)上的值f(tj 时,就可 以用n 次多项式p(t) a 。a 1t a ?t 2 卅 a n t n 对f (t)进行插值。 在数字信号处理中的应用——数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都 限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线 性算子,它的标注符号为z 1 o 根据这样的结 构图,也可以用 类似 于例 7.4的方法,求它 的输入输出之间的传递函数,在数字信号处 理中称为系统函 数。 图1表示了某个数字滤波器的结构图, 现在要求出它的系统函数,即输出 y 与输入 u 之比。先在它的三个中间节点上标注 信号 的名称x1,x2,x3,以便对每个节点列写方程。 t i 0 1 2 3 f(t i ) 3 -1 6 得到x = 1 0 0 0 3 0 1 0 -2 0 0 1 0 -2 0 0 0 1 1 u m --- 2 X 1 y -i ---- 11 -- 1 — z 1 ■ V 1/4 J 1 1/4 ■ * x 2 二―]X 3 z 1 ,. 3/8 图1某数字滤波器结构图 >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到 a 0 3,a 1 2, a 2

判定线性代数中矩阵相似关系的原理和方法

一[收稿日期]2018G09G28;一[修改日期]2018G12G04一[基金项目]国家自然科学基金青年项目(11601470);云南省高等学校卓越青年教师特殊培养计划项目(C 6152704) ;云南大学校级教改项目(WX 162072);云南大学校级本科教材建设项目(WX 162072 )一[作者简介]李源(1978-),男,硕士,副教授,从事计算数学和大学数学课程的教学和研究.E m a i l :l i y u a n @y n u .e d u .c n 第35卷第2期大一学一数一学V o l .35,?.22019年4月C O L L E G E MA T H E MA T I C S A p r .2019判定线性代数中矩阵相似关系的 原理和方法 李一源1,一郝小枝2(1.云南大学数学与统计学院,昆明650500;一2.云南中医药大学信息学院,昆明650021 )一一[摘一要]指出教育部考试中心2019版考研数学考试分析中关于矩阵相似试题解答中的一个错误. 系统梳理了高等代数和线性代数课程中关于相似矩阵刻画的角度和方法,明确了在线性代数课程体系中3类可以作出相似判定的矩阵类别及其对应的判别方法,给出不能一般判定相似关系的第4类矩阵的基本特征,并结合实例给出在特殊情形下解决第4类矩阵相似关系判定的方法.[关键词]线性代数;相似矩阵;相似对角化;特征多项式[中图分类号]O 177.5一一[文献标识码]C 一一[文章编号]1672G1454(2019)02G0122G05 1一引一一言 矩阵相似的判定是近年考研数学命题的热点问题,也是线性代数教学中的难点之一.由于所需方法 具有较高的综合性,学生在判定矩阵相似时的各种错误逻辑频现,甚至在教育部考试中心2019年版的数学考试分析中对2018年全国硕士研究生招生考试数学科考试( 数学一二二二三)中的一道试题的解答均出现疏误!为明确起见,将其摘录如下: 下列矩阵中,与矩阵110011001?è?????÷÷÷相似的为[1](一一)(A )11-1011001?è?????÷÷÷.一(B )10-1011001?è?????÷÷÷.(C )11-1010001?è?????÷÷÷.一(D )10-1010001?è????? ÷÷÷.解一易知矩阵110011001?è?????÷÷÷的特征值为λ=1(3重),其线性无关的特征向量只有1个,即ξ1=100?è????? ÷÷÷.对于选项中的4个矩阵,都是以λ=1为3重特征值的矩阵.选项(A )中的矩阵11-1011001?è?????÷÷÷只有1个线性无关的特征向量ξ1=100?è????? ÷÷÷;

相关文档