文档库 最新最全的文档下载
当前位置:文档库 › 平面向量基本定理及经典例题

平面向量基本定理及经典例题

平面向量基本定理及经典例题
平面向量基本定理及经典例题

平面向量基本定理

一.教学目标:

了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件;

教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习

1.已知a =(x,2),b =(1,x),若a //b ,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2

2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-= ()B (2,3),(3,2)a b ==

()C (1,2),(7,14)a b =-= ()D (3,2),(6,4)a b =-=-

3.已知点)4,3(),1,3(),4,2(----C B A ,且CB CN CA CM ?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为 三.知识归纳

1. 平面向量基本定理:如果12,e e 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+成立。其中12,e e 叫做这一平面的一组____________,即对基底的要求是向量___________________;

2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ,j

作基底,

则对任一向量a ,有且只有一对实数x ,y ,使j y i x a +=、就把_________叫做向量a

的坐标,记作____________。

3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量OA 的坐标为OA =___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标.

4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有:

OM =________________,M 点的坐标为_____________.

5.两个向量平行的充要条件是:向量形式:_____________)0(//?≠

b b a ;

坐标形式: _____________)0(//?≠

b b a .

6. a

=(x,y ), 则a

=___________.与a

共线的单位向量是:a

a e ±

=

四.例题分析:

例1.(1)、 已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→?PN =-2?→

?PM ,则P

点的坐标为( )

A (-14,16) (

B )(22,-11) (

C )(6,1) (

D ) (2,4) (2)、已知两点A(4,1), B(7,-3), 则与向量AB 同向的单位向量是 ( )

(A )??

? ??-54,5

3 (B)??

? ??-54,53 (C)??? ??-53,54 (D)??

? ??-53,54

(3)、若a =(2,3),b =(-4,7),则a 在b 方向上的投影为____________。

例2.(1)已知向量(1,2),(,1),2a b x u a b ===+,2v a b =-,且//u v ,求实数x 的值。 (2) 已知向量a =(,1),b =(0,-1),c =(k ,)。若a -2b 与c 共线,则k=______

例3.已知(1,0),(2,1)a b ==,(1)求|3|b a +;(2)当k 为何实数时,k -a b 与b a

3+平

行, 平行时它们是同向还是反向?

例4.如图,平行四边形ABCD 中,,E F 分别是,BC DC 的中点,G 为交点,若AB a =,=

AD b ,

(1)试以a ,b 为基底表示DE 、BF ;(2)求证:A 、G 、C 三点共线。

例5. 如图,平行四边形ABCD 中,BE=41BA ,BF=5

1BD ,求证:E ,F ,C 三点共线。(利用向量证明)

33A B

C

D

E F

五.课后作业:

1.31

(,sin ),(cos ,)23

a b αα==且//a b ,则锐角α为 ( )

()A 30 ()B 60 ()C 45 ()D 75

2.平面内有三点(0,3),(3,3),(,1)A B C x --,且AB ∥BC ,则x 的值是 ( )

()A 1 ()B 5 ()C 1- ()D 5-

3.如果1e ,2e 是平面α内所有向量的一组基底,那么下列命题中正确的是( )

()A 若实数12,λλ使11220e e λλ+=,则 120λλ==

()B 空间任一向量a 可以表示为1122a e e λλ=+,这里12,λλ是实数

()C 对实数12,λλ,向量1122e e λλ+不一定在平面α内

()D 对平面内任一向量a ,使1122a e e λλ=+的实数12,λλ有无数对

4.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )

4

3

,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是( ) A .① B .①③ C .②③ D .①②③

5.若A(-1,-2),B(4,8),且CB AC 3-=,则C 点坐标为 ;

6.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= ; 7.已知向量(1,2)a =-,b 与a 方向相反,且||2||b a =,那么向量b 的坐标是_ _ 8.已知(5,4),(3,2)a b ==,则与23a b -平行的单位向量的坐标为 。 9.已知(3,1),(1,2),(1,7)a b c =-=-=,求p a b c =++,并以,a b 为基底来表示p 。 10.向量(,12),(4,5),(10,)OA k OB OC k ===,当k 为何值时,,,A B C 三点共线?

平面向量的数量积

一、教学目标:掌握平面向量的数量积及其性质,掌握两向量夹角及两向量垂直的

充要条件和向量数量积的简单运用.

教学重点:平面向量数量积及其应用 二、课前预习:

1.已知向量(3,4),(2,1)a b ==-,如果向量a xb +与b 垂直,则x 的值为( )

()

A 323 ()

B 233 ()

C 2 ()

D 25- 2.下列命题正确的是 ___________

①0AB BA +=; ②00AB ?=; ③AB AC BC -=; ④00AB ?=

3.平面向量,a b 中,已知(4,3),||1a b =-=,且5a b ?=,则向量b =___ __ ____. 4.已知向量,a b 的方向相同,且||3,||7a b ==,则|2|a b -=___ ____。

5.已知向量a 和b 的夹角是120°,且2||=a ,5||=b ,则a b a

?-)2(= 。 三、知识归纳

1.平面向量的数量积:

(1)定义:a ·0

,0__(__________ ≠≠=b a b ,θ为a

与b 的夹角,)0πθ≤≤; 特例:0 ·0=a ,a 2 =a ·a =|a

|2;

()

cos cos a b θθ叫做向量()

a b b a 在方向上在方向上的________________; 注:._________cos b ,cos =?=

θθ同理b

b a a

(2).坐标运算:若a =(1x ,1y ),b =(2x ,2y )则a

·b =______________.

2.两个向量的夹角与长度

已知向量a

=(1x ,1y ),b =(2x ,2y )

(1)两个向量a

与b 的夹角θ:向量形式:θcos =__________________;

坐标形式:θcos =__________________.

注: 0

.0cos ,2

a ,0cos ,2

;0cos ,2

0

>?><

θπ

θθπ

θ

b a b a b a b a ?-=?=?=?=,,0,即反向时;,即同向时πθθ

(2)向量a 的长度|a |2=a 2 =a ·a =___________。|a |=___________其中a

=),(y x ;

θ

c o s 2)(2

22??++=+=+b a b a b a b a 两点间的距离公式:|21P P |=___________________ 其中1P =(1x ,1y ),2P =(2x ,2y ). 3.向量的平行、垂直

如果,两个向量a

=(1x ,1y ),b =(2x ,2y )那么,

(1)两个向量平行的充要条件是:向量形式:_____________)0(//?≠

b b a ;

坐标形式: _____________)0(//?≠

b b a .

(2)两个向量垂直的充要条件是:向量形式:a

⊥b ?____________;

坐标形式:a

⊥b ?____________.

四:例题分析:

例1.已知平面上三个向量a

、b 、c 的模均为1,它们相互之间的夹角均为120°,

(1)求证:)(b a -⊥c ;(2)若1||>+b a k

)(R k ∈,求k 的取值范围.

例2.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (1)若|c |52=,且a c //,求c 的坐标; (2)若|b |=,2

5

且b a 2+与b a -2垂直,求a 与b 的夹角θ.

例3.1.若向量a,b,c满足a∥b且a⊥c ,则 A .4 B .3 C .2 D .0

2.已知单位向量,的夹角为60°,则__________

3.在正三角形中,是上的点,,则 。

4.已知向量满足

,且

,则a 与b 的夹角为 .

5.在边长为1的正三角形ABC 中, 设则__________________.

例4.(1) 已知由向量AB =(3,2),AC =(1,k )确定的△ABC 为直角三角形,求k 的值。 (2) 设OA =(3,1),OB =(-1,2),OC ⊥OB ,BC ∥OA ,试求满足 OD +OA =OC 的OD 的坐标(O 为原点)。

(2)c a b ?+=

1e 2e 122e e -=

ABC D BC 3,1AB BD ==AB AD ?=,a b

()()a b a b +2?-=-6

1

a =2

b =2,3,BC BD CA CE ==AD BE ?=

五.课后作业:

1.平面内有三点(0,3),(3,3),(,1)A B C x --,且AB ∥BC ,则x 的值是 ( ) ()A 1 ()B 5 ()C 1- ()D 5- 2.已知3a =,23b =,3a b ?=-,则a 与b 的夹角是( ) A 、150? B 、120? C 、60? D 、30?

3.已知向量)75sin ,75(cos =a ,)15sin ,15(cos

=b ,那么||b a -的值是( )

()

A 21 ()

B 2

2 ()C 2

3 ()D 1 4.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )

()A 0,24 ()B 24,4

()C 16,0 ()D 4,0

5.在ABC ?中,0

,若3||=AB ,5||=AC ,则BAC ∠=

()A 6π ()

B 3

()C 43π ()D 65π 6.在ΔABC 中,若060,4,3=∠==BAC AC AB ,则=?AC BA ( )

A 、6

B 、4

C 、-6

D 、-4

7.已知向量(1,2)a =-,b 与a 方向相反,且||2||b a =,那么向量b 的坐标是_ _ 平面上有三个点A(1,3),B(2,2) ,C(7,x),若B=ο90,则x=_______

8.已知|a |=1,|b | =2,且向量a + b 与2a -b 互相垂直,则b 与a 的夹角=____

9.已知(5,4),(3,2)a b ==,则与23a b -平行的单位向量的坐标为 。

10.(1)已知向量(6,2)a =与(3,)b k =-的夹角是钝角,则k 的取值范围是 。

(2)已知向量(6,2)a =与(3,)b k =-的夹角大于ο90,则k 的取值范围是 。

11.(1) 已知向量(3,4),(2,1)a b ==-,则a 在b 上的投影为____________

(2) 已知|a |=|b |=2,a 与b 的夹角为600,则a +b 在a 上的投影为 。

12.设,,,O A B C 为平面上四个点,a OA =,b OB =,c OC

=,且0 =++c b a ,c b b a ?=?=a

c ?1-=,则||||||c b a

++=___________________。

13.已知|a |=1,|b | =2,(1)若a 与b 平行,求b a

?; (2)若a 与b 的夹角为600 求|a b +| (3) 向量a + b 与a 互相垂直,求a 与b 的夹角.

14.已知1e 、2e 是夹角为60°的两个单位向量,1232a e e =-,1223b e e =-,求:

(1) a b ?; (2)|a b +|与|a b -|;(3)a b +与a b -的夹角.

15.向量,a b 都是非零向量,且(3)(75),(4)(72)a b a b a b a b +⊥--⊥-,求向量a 与b 的夹角.

代数式知识点、经典例题、习题及答案

代数式 【考纲说明】 1、理解字母表示数的意义及用代数式表示规律。 2、用代数式表示实际问题中的数量关系,求代数式的值。 【知识梳理】 1、代数式:指含有字母的数学表达式。 2、一个代数式由数、表示数的字母、运算符号组成。单个字母或数字也是代数式。 3、代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。 4、用字母表示数的规范格式: (1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。 (2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。如:100a或100?a,na或n?a。 (3)、后面接单位的相加式子要用括号括起来。如:( 5s )时 (4)、除法运算写成分数形式。 (5)、带分数与字母相乘时,带分数要写成假分数的形式。 5、列代数式时要注意: (1)语言叙述中关键词的意义,如“大”“小”“增加”“减少”。 “倍”“几分之几”等词语与代数式中的运算符号之间的关系。 (2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等。 (3)在同一问题中,不同的数量必须用不同的字母表示。

【经典例题】 【例1】(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成。其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中的五角星的个数为( ) 【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2,4,6,…,6,4,2,故第⑥个图形中五角星的个数为2+4+6+8+10+12+10+8+6+4+2=72。 答案:D 【例2】(2011甘肃兰州,20,4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n 个矩形的面积为 . 【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的1 2 ,故后一个矩形的面积是前一个矩形的 1 4 ,所以第n 个矩形的面积是第一个矩形面积的1 22 1142n n --????= ? ??? ?? ,已知第一个矩形面积为1,则第n 个矩形的面积为22 12n -?? ? ?? 。 【例3】按一定规律排列的一列数依次为111111 ,,,,,,2310152635 …,按此规律,第7个数是 。 【解析】先观察分子:都是1;再观察分母:2,3,10,15,26,…与一些平方数1,4,9,16,…都差1,2=12 +1,3=22 -1,10=32 +1,15=42 -1,26=52 +1,…,这样第7个数为2 11 7150 =+。 答案: 150 【例4】已知: 114a b -=,则2227a ab b a b ab ---+的值为( ) A .6 B .--6 C .215- D .2 7 - 【解析】由已知114a b -=,得 4b a ab -=,

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

一元二次方程应用题经典题 型汇总含答案

z一元二次方程应用题经典题型汇总 一、增长率问题 例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解 设这两个月的平均增长率是x.,则根据题意,得200(1-20%) (1+x)2=193.6, 即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答 这两个月的平均增长率是10%. 说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少? 解 根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31. 因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答 需要进货100件,每件商品应定价25元. 说明 商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

三、储蓄问题 例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 解 设第一次存款时的年利率为x. 则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得 90x2+145x-3=0. 解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去. 答 第一次存款的年利率约是2.04%. 说明 这里是按教育储蓄求解的,应注意不计利息税. 四、趣味问题 例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗? 解 设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为 (x+0.1+1.4)m. 则根据题意,得 (x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0. 解这个方程,得x1=-1.8(舍去),x2=1. 所以x+1.4+0.1=1+1.4+0.1=2.5. 答 渠道的上口宽2.5m,渠深1m.

解析几何经典例题

解析几何经典例题 圆锥曲线的定义是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1. 如图1,P为椭圆上一动点,为其两焦点,从 的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2. 如图2,为双曲线的两焦点,P为其上一动点,从的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3. 如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地, 求抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4. ①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为() A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5. 如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

代数式知识点、经典例题、习题及答案(供参考)

1.2 代数式 【考纲说明】 1、理解字母表示数的意义及用代数式表示规律。 2、用代数式表示实际问题中的数量关系,求代数式的值。 【知识梳理】 1、代数式:指含有字母的数学表达式。 2、一个代数式由数、表示数的字母、运算符号组成。单个字母或数字也是代数式。 3、代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。 4、用字母表示数的规范格式: (1)、数和表示数的字母相乘,或字母和字母相乘时,乘号可以省略不写,或用“.”来代替。(2)、当数和字母相乘,省略乘号时,要把数字写到前面,字母写后面。如:100a或100?a,na或n?a。 (3)、后面接单位的相加式子要用括号括起来。如:(5s )时 (4)、除法运算写成分数形式。 (5)、带分数与字母相乘时,带分数要写成假分数的形式。 5、列代数式时要注意: (1)语言叙述中关键词的意义,如“大”“小”“增加”“减少”。 “倍”“几分之几”等词语与代数式中的运算符号之间的关系。 (2)要理清运算顺序和正确使用括号,以防出现颠倒等错误,例如“积的和”与“和的积”“平方差”“差的平方”等等。 (3)在同一问题中,不同的数量必须用不同的字母表示。 【经典例题】 【例1】(2012重庆,9,4分)下列图形都是由同样大小的五角星按一定的规律组成。其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五

角星,…,则第⑥个图形中的五角星的个数为( ) 【解析】仔细观察图形的特点,它们都是轴对称图形,每一行的个数都是偶数,分别是2,4,6,…,6,4,2,故第⑥个图形中五角星的个数为2+4+6+8+10+12+10+8+6+4+2=72。 答案:D 【例2】(2011甘肃兰州,20,4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩形的面积为1,则第n 个矩形的面积为 . 【解析】由中点四边形的性质可知,每次所得新中点四边形的面积是前一个图形的 12,故后一个矩形的面积是前一个矩形的14 ,所以第n 个矩形的面积是第一个矩形面积的1221142n n --????= ? ?????,已知第一个矩形面积为1,则第n 个矩形的面积为2212n -?? ???。 【例3】按一定规律排列的一列数依次为 111111,,,,,,2310152635 …,按此规律,第7个数是 。 【解析】先观察分子:都是1;再观察分母:2,3,10,15,26,…与一些平方数1,4,9,16,…都差1,2=12+1,3=22-1,10=32+1,15=42-1,26=52+1,…,这样第7个数为 2117150=+。 答案:150 【例4】已知: 114a b -=,则2227a ab b a b ab ---+的值为( ) A .6 B .--6 C .215- D .27 - 【解析】由已知114a b -=,得4b a ab -=, ∴4,4, 2()242 6.2272()787b a ab a b ab a ab b a b ab ab ab a b ab a b ab ab ab ∴-=-=-------∴===-+-+-+答案:A 【课堂练习】 1、(2012湖北武汉,9,3分)一列数a1,a2,a3,…,其中a1= 111,21n n a a -=+(n 为不

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

代数式经典测试题及答案

代数式经典测试题及答案 一、选择题 1.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( ) A .﹣1 B .1 C .﹣2 D .2 【答案】A 【解析】 【分析】 先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值. 【详解】 解:∵(x+1)(x+n)=x 2+(1+n)x+n , ∴x 2+(1+n)x+n=x 2+mx-2, ∴12n m n +=??=-? , ∴m=-1,n=-2. 故选A . 【点睛】 本题考查了多项式乘多项式的法则以及类比法在解题中的运用. 2.下列各运算中,计算正确的是( ) A .2a?3a =6a B .(3a 2)3=27a 6 C .a 4÷a 2=2a D .(a+b)2=a 2+ab+b 2 【答案】B 【解析】 试题解析:A 、2a ?3a =6a 2,故此选项错误; B 、(3a 2)3=27a 6,正确; C 、a 4÷a 2=a 2,故此选项错误; D 、(a+b )2=a 2+2ab +b 2,故此选项错误; 故选B . 【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键. 3.下列运算正确的是( ) A .21ab ab -= B 3=± C .222()a b a b -=- D .326()a a = 【答案】D 【解析】 【分析】 主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.

解: A 项,2ab ab ab -=,故A 项错误; B 3=,故B 项错误; C 项,222()2a b a ab b -=-+,故C 项错误; D 项,幂的乘方,底数不变,指数相乘,32236()a a a ?==. 故选D 【点睛】 本题主要考查: (1)实数的平方根只有正数,而算术平方根才有正负. (2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+. 4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( ) A .7500 B .10000 C .12500 D .2500 【答案】A 【解析】 【分析】 用1至199的奇数的和减去1至99的奇数和即可. 【详解】 解:101+103+10 5+107+…+195+197+199 =22119919922++????- ? ????? =1002﹣502, =10000﹣2500, =7500, 故选A . 【点睛】 本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题. 5.下列各式中,计算正确的是( ) A .835a b ab -= B .352()a a = C .842a a a ÷= D .23a a a ?= 【答案】D 【解析】 【分析】 分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

七年级数学二元一次方程经典练习题及答案

二元一次方程组练习题100道(卷一) (范围:代数: 二元一次方程组) 一、判断 1、??? ??-==312y x 是方程组?????? ?=-=-9 1032 6 5 23y x y x 的解 …………( ) 2、方程组? ? ?=+-=5231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( ) 4、方程组???????=-++=+++2 5323 473 5 23y x y x ,可以转化为???-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2 +(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( ) 6、若x +y =0,且|x |=2,则y 的值为2 …………( ) 7、方程组? ? ?=+-=+81043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组?? ???=+=+62 3 131 y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组? ? ?=+=-351 3y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组 ?? ?=+=-3 51 3y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则3 2 -的值为b a ………( ) 12、在方程4x -3y =7里,如果用x 的代数式表示y ,则4 37y x += ( ) 二、选择: 13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解; (D )无数多个解; 14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

北师大版七年级数学上册《代数式》典型例题(含答案)

《代数式》典型例题 例1 列代数式,并求值. 有两种学生用本,一种单价是0.25元,另一种单价是0.28元,买这两种本的数分别是m 和n .(1)问共需要多少元?(2)如果单价是0.25元的本和单价是0.28元的本分别买了20和25本,问共花了多少钱? 例2 某城市居民用电每千瓦时(度)0.33元,某户本月底电能表显示数m ,上月底电能表显示数为n ,(1)用m 和n 把本月电费表示出来;(2)若本月底电能表显示数是1601,上月底电能表显示数为1497,问本月的电费是多少? 例3 春节前夕,铁路为了控制客流,使其卧铺票票价上浮20%,春节期间按原价下浮10%,若某地到北京的卧铺票原价是x 元,如果在春节期间乘坐要比春节前少花多少钱,用x 表示出;当228=x 时,求这个代数式的值。 例4 22b a -可以解释为___________. 例5 一个三位数,百位数上的数是a ,十位上的数是b ,个位上的数是c . (1)用代数式表示这个三位数. (2)把它的三位数字颠倒过来,所得的三位数又该怎样表示? 例6 选择题 1.x 的3倍与y 的2倍的和,除以x 的2倍与y 的3倍的差,写成的代数式是( ) A . y x y x 3223-+ B .x y y x 2323-+ C .y x y x 3223-+ D .y x y x 2223-+ 2.如图,正方形的边长是a ,圆弧的半径也是a ,图中阴影部分的面积是( )

A .224a a -π B .22a a π- C .22a a -π D .224a a π- 例7 通过设2003 1413121,20021413121++++=++++= b a 来计算: ).20021413121()200314131211()20031413121()200214131211(++++?+++++-++++?+++++ 例8 按给的例子,把输出的数据填上 例9 对于正数,运算“*”定义为b a a b b a +=*,求)333**(.

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

初中数学代数式典型例题

代数式专项复习 一、知识储备 1. 代数式的定义 2. 单项式的定义、构成和注意事项 3. 多项式的定义、构成和注意事项 4. 求代数式的值的三种题型 5. 整式的定义 6. 同类项的定义 7. 去括号法则 8... 整式的运算法则(加减乘除乘方与混合运算).................... 9. 因式分解的定义和性质 10. 因式分解的常用方法 11. 公因式的定义 12. 因式分解的具体步骤 13. 因式分解的具体要求:幂大中正前,降整整畸形 14. 分式的定义和限制条件 15. 分式的基本性质 16. 分式的约分、通分和使用条件 17. 最简分式的定义 18.... 分式的运算法则(加减乘除乘方..............与混合运算.....). 19. 二次根式的定义和性质 20. 最简二次根式的定义 21. 化简最简二次根式的步骤 22. 同类二次根式的定义 23. 二次根式的基本性质 24.... 二次根式的运算法则(加减乘除乘方与混合运算)...................... 二、经典例题 1. 将下列的代数式分别填入相应的大括号内: 221ab ,b a ,31,2x x +,23312-+-n mn n m ,32-x ,y x +1,3122-+x x ,x x x ++12 单项式{ ...} 多项式{ ...} 二次式{ ...} 整式{ ...} 分式{ ...} 2. 若多项式()23522--+y n y x m 是关于x 、y 的四次二项式,求222n mn m +-的值。 3. 已知当2=x 时,代数式23+-bx ax 的值是-1,则当2-=x 时,这个代数式的值是( ) 4. 化简: (1)()()()()22223225x y y x y x y x -----+-,其中x =1,y =4 3;

集合典型例题

1。集合得含义及其表示 (一)集合元素得互异性 1、已知,则集合中元素x所应满足得条件为 变式:已知集合,若,则实数得值为_______ 2。中三个元素可以构成一个三角形得三边长,那么此三角形可能就是 ①直角三角形②锐角三角形③钝角三角形④等腰三角形 (二)集合得表示方法 1. 用列举法表示下列集合 (1) __________________________ 变式:已知a,b,c为非零实数,则得值组成得集合为___ (2) ____ 变式1: 变式2: (3)集合用列举法表示集合B (4)已知集合M=,则集合M中得元素为 变式:已知集合M=,则集合M中得元素为 2。用描述法表示下列集合 (1)直角坐标系中坐标轴上得点_______________________________ 变式:直角坐标平面中一、三象限角平分线上得点______________ (2)能被3整除得整数_______________________、 3.已知集合,, (1)用列举法写出集合;(2)研究集合之间得包含或属于关系 4。命题(1) ;(2);(3);(4)表述正确得就是、 5、使用与与数集符号来替代下列自然语言:

(1)“255就是正整数” (2)“2得平方根不就是有理数” (3)“3、1416就是正有理数” (4)“-1就是整数” (5)“不就是实数” 6、用列举法表示下列集合: (1)不超过30得素数(2)五边形得对角线 (3)左右对称得大写英文字母(4)60得正约数 7。用描述法表示:若平面上所有得点组成集合, (1)平面上以为圆心,5为半径得圆上所有点得集合为_________ (2)说明下列集合得几何意义:; 8。当满足什么条件时,集合就是有限集?无限集?空集? 9、元素0、空集、、三者得区别? 10. 请用描述法写出一些集合,使它满足: (i)集合为单元素集,即中只含有一个元素; (ii)集合只含有两个元素; (iii)集合为空集 11.试用集合概念分析命题:先有鸡还就是先有鸡蛋? 解释:表述问题时把有关集合得元素说清楚,大有好处。先有鸡还就是先有鸡蛋?让我们运用集合概念来分析它。设地球上古往今来得鸡组成一个集合,孵出了最早得鸡得蛋算不算鸡蛋呢?这就是关键问题。设所有得鸡蛋组成集合,要确定得元素,就得立个标准,说定什么就是鸡蛋,一种定义方法就是:鸡生得蛋才叫鸡蛋;另一种定义方法就是:孵出了鸡得蛋与鸡生得蛋都叫鸡蛋。如果选择前一种定义,问题得答案只能就是先有鸡;选择后一种定义,答案当然就是先有鸡蛋。至于如何选择,不就是数学得任务,那就是生物学家得事。 (三)空集得性质 1.若?{x|x2≤a,a∈R},则实数a得取值范围就是________ 2、已知a就是实数,若集合{x| ax=1}就是任何集合得子集,则a得值就是_______.0?

代数式求值经典题型(含详细答案)

代数式求值 经典题型 【编著】黄勇权 经典题型: 1、x+x 1 =3,求代数式 x 2 -2 x 1的值。 2、已知a+b=3ab ,求代数式b 1 a 1+的值。 3、已知 x 2 -5x+1=0,求代数式x 1x +的值。 4、已知x-y=3,求代数式(x+1) 2 -2x+y (y-2x )的值。 5、已知x-y=2,xy=3,求代数式x 2 -xy 6+y 2的值。 6、已知y x =2,则x y -x 的值是多少?

7、若2y 1x 1=+,求代数式:3y xy -3x y 3xy -x ++的值。 8、已知5-x =4y-4-y 2,则代数式2x-3+4y 的值 是多少? 9、化简求值,12x x 1-x 2 ++÷)(1x 2 1+-, 其中x=13- 10、x 2-4x+1=0,求代数式:x 2 +2 x 1 的值。 【答案】 1、x+x 1 =3,求代数式:x 2 -2 x 1的值。 解:x 2 -2 x 1 =(x+x 1)(x-x 1 ) =(x+x 1 )2x 1-x )( =(x+x 1 )2 2x 12x +- =(x+x 1)4x 12x 2 2 -++ =(x+x 1)4x 1x 2 -+)( 将 x+x 1 =3 代入式中

=3×432- =35 2、已知a+b=3ab ,求代数式:b 1 a 1+的值。 解:b 1 a 1+ =ab b a + 将a+b=3ab 代入式中 =3 3、已知x 2 -5x+1=0,求代数式:x 1 x +的值。 解:因x 2 -5x+1=0, 等式两边同时除以x 则有:x 0 x 1x x 5x x 2=+- 化简得:x-5+x 1 =0 把-5移到等号的右边,得: x 1 x +=5

解析几何经典例题

解析几何经典例题 圆锥曲线的定义就是“圆锥曲线方程”这一章的基础,对这些定义我们有必要深刻地理解与把握。这里就探讨一下圆锥曲线定义的深层及其综合运用。 一、椭圆定义的深层运用 例1、如图1,P为椭圆上一动点,为其两焦点,从的外角的平分线作垂线,垂足为M,将F2P的延长线于N,求M的轨迹方程。 图1 解析:易知故 在中, 则点M的轨迹方程为。 二、双曲线定义的深层运用 例2、如图2,为双曲线的两焦点,P为其上一动点,从 的平分线作垂线,垂足为M,求M的轨迹方程。 图2 解析:不妨设P点在双曲线的右支上, 延长F1M交PF2的延长线于N, 则, 即 在 故点M的轨迹方程为 三、抛物线定义的深层运用 例3、如图3,AB为抛物线的一条弦,|AB|=4,F为其焦点,求AB的中点M到直线y=-1的最短距离。

图3 解析:易知抛物线的准线l:, 作AA”⊥l,BB”⊥l,MM”⊥l,垂足分别为A”、B”、M” 则 即M到直线的最短距离为2 故M到直线y=-1的最短距离为。 评注:上述解法中,当且仅当A、B、F共线,即AB为抛物线的一条焦点弦时,距离才取到最小值。一般地,求 抛物线的弦AB的中点到准线的最短距离,只有当(即通径长)时,才能用上述解法。 四、圆与椭圆、圆与双曲线定义的综合运用 例4、①已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) 图4 ②已知圆,M为圆上任一点,MP的垂直平分线交OM于Q,则Q的轨迹为( ) A、圆 B、椭圆 C、双曲线 D、抛物线 解析:①如图4,由垂直平分线的性质,知|QM|=|QP|, 而|QM|=|OM|-|OQ|=2-|OQ| 即|OQ|+|QP|=2>|OP|= 故Q的轨迹就是以O(0,0)、P为焦点 长轴长为2的椭圆。应选B。 ②同理,利用垂直平分线的性质及双曲线的定义,可知点Q的轨迹为双曲线的一支,应选C。 五、椭圆与双曲线定义的综合运用 例5、如图5,已知三点A(-7,0),B(7,0),C(2,-12)。①若椭圆过A、B两点,且C为其一焦点,求另一焦点P的轨迹方程;②若双曲线的两支分别过A、B两点,且C为其一焦点,求另一焦点Q的轨迹方程。

相关文档
相关文档 最新文档