文档库 最新最全的文档下载
当前位置:文档库 › MEMS技术在现代汽车工业中的应用和展望

MEMS技术在现代汽车工业中的应用和展望

MEMS技术在现代汽车工业中的应用和展望
MEMS技术在现代汽车工业中的应用和展望

MEMS技术在现代汽车工业中的应用和展望

西安电子科技大学集成电路设计与集成系统专业08级大三尹俊镖摘要:MEMS是多种学科交叉融合的前沿高新技术,MEMS具有体积小、

质量轻、耗能低、惯性小、响应时间短等许多优点,在汽车电器电子

技术中具有重要的用途。本文介绍了目前MEMS发展的国内外状况,

并对MEMS在汽车电器电子技术中的应用、发展趋势及其对汽车电器

电子技术的影响进行了分析与探讨。

关键词:MEMS器件;微系统;汽车电器电子技术

Abstract:MEMS is a kind of mult-discipnary high technology which has many advantages such as small volune,light weight,low energy costing,small inertia,short response time,so it is very useful in the automobile industry.This paper introduce the development of MEMS at home and abroad nowadays,discusses the applying and developing tendency of MEMS,and analyzes the influence of this tendeny to the automobile industy.

Key word:MEMS,microsystem;automobile industry

MEMS(Microelectro-mechanical systems的缩写,即微电子机

械系统)是在集成电路生产技术和专用的微机电加工方法的基础上蓬

勃发展起来的高新科技,其研究开发主要集中在微传感器、微执行器

和微系统三个方面,目前主导MEMS市场的传感器已形成产业。用此技

术研制的五花八门的微传感器具有体积小、质量轻、响应快、灵敏度高、易生产、成本低的优势,可以测量各种物理量、化学量及生物量。在市场引导、科技推动、风险投资、政府介入等多重作用下,

汽车MEMS传感器发展迅速,现已成为相关部门争先投资开发的热点。在高档汽车中,大约采用25至40只MEMS传感器,技术上日趋成熟完善,可满足汽车环境苛刻、可靠性高、精度准确、成本低的要求,极大地推动了电子技术在汽车上的应用

1MEMS发展的概况

从上世纪90年代早期MEMS开始投入应用,到随后的10年,由消费趋势推动的第二次MEMS技术应用浪潮,直到今天已经进入的MEMS的第三次浪潮。高性能的MEMS加速度计和陀螺仪将在更多领域有着广泛应用,成千上万的人意识到MEMS在各行各业的所发挥的作用以及潜力。MEMS传感器供应商已经冲破了可靠性、成本和大规模生产的障碍,使用者对MEMS更高性能的需求推动了该领域的进步和发展。目前,MEMS技术已能够满足各种各样的客户需求了,包括可靠性和安全性的增加,对医疗和工业领域中高精度测量和诊断的支持。MEMS陀螺仪一直以来是最难设计和制造的MEMS器件,特别是当许多新兴工业自动化和仪器仪表应用要求高性能和低功耗时。与市场上的其它高性能MEMS陀螺仪相比,新款iMEMS陀螺仪功耗仅为竞争性器件的十分之一,而且可以提供更高的稳定性和抗振性能。iMEMS 陀螺仪是基于ADI公司前三代MEMS陀螺仪开发的第四代器件,采用先进的差分四传感器设计,可在强烈冲击和振动状态下精确地工作。

这种MEMS陀螺仪具有鲁棒性能和仅6mA的低功耗特性,可有效地用于多种应用,如机器人、工业仪器、航空以及用于高速列车的平台稳定系统。

二MEMS在汽车电器电子中的应用

1压力传感器

汽车电子控制系统一直被认为是MEMS压力传感器的主要应用领域之一,可用于测量进气歧管压、大气压、油压、轮胎气压等,表1示出一些主要用途。最流行的汽车MEMS压力传感器采用压阻式力敏原理,这是现有几种力敏传感器中用量最大的一种,开发出几代产品,年产量为数千万只。这种传感器用单晶硅作材料,以MEMS技术在材料中间制作成力敏膜片,然后在膜片上扩散杂质形成4只应变电阻,再以惠斯顿电桥方式将应变电阻连接成电路,来获得高灵敏度,其输出大多为0~5V模拟量,测量范围取决于力敏膜片的厚度,一枚晶片上可同时制作许多个力敏芯片,易于批量生产,力敏芯片受温度影响性能采用调理电路补偿。汽车用压力传感器被称为是军品的质量、民品的价格。其环境实验要求是极为严格的(表2)。封装好的传感器通过严格的环境测试后,一般能保证0.1%~0.3%F.S.的稳定性,即使经受最严格的长时间测试,仍能维持1%F.S.的稳定性。信号调理电路和标定及封装也是生产中的极其关键技术,科技含量超过力敏芯片的制作。例如,测量燃油喷射的压力传感器长期与液态燃料接触,并承受高压,组装固定和安装尺寸的设计,涉及到大量的结构分析、机械应力测试、介质暴露测试、电路修正等技术.

2微加速度计

微加速度计通常由一个平行的悬臂梁构成,梁的一端固定在边框架上,另一端悬挂一个小质量物体块(约10mg),无加速度时质量块不运动,而当有垂直方向加速度时,质量块运动,对加速度敏感,并转换为电信号,经C/V转变、放大相敏解调输出。按检测方式,微加速度计有压阻式、电容式、隧道式、共振式、热形式等几种。其中,电容式微加速度计质量块在有加速度时向下运动,与边框上的另一个电极的距离发生变化,通过检测电容的变化可获得质量块运动的位移,主要结构分为悬臂摆片式和梳齿状的折叠梁式,并变异成其它类型。前者结构相对简单些,制作上也多采用体硅加工方法,简单的摆片式结构由上、下固定电极和可动敏感硅悬臂梁电极组成,用半导体平面工艺各向异性腐蚀,静电封接技术封装完成制作。后者可看作是悬臂梁的并、串组合,设计上要复杂得多,微加工方法则以表面牺牲层技术为主,多晶硅材料的各向同性性质可保证微机械性能的对称性,批量加工精度.

微加速度计商业化最重要的驱动力来自汽车工业,最成功的是美国模拟器件公司的ADXL05和ADXL50系列单片集成差动电容式加速度计,现月产量达到200万只。美国摩托罗拉公司批量生产汽车用MMAS40G电容式加速度计,选择双芯片设计制作技术,封装为双列直插式或单列直插式塑封,加速度测量范围±40g。美国EG&G IC传感器公司建立了MEMS加工生产线,先后开发成功3255、3000系列压阻式加

速度计,3255型主要用于汽车安全系统,敏感芯片与信号自理芯片封装在表面贴装的外壳内。德国博世、日本电装公司也有类似产品。微加速度计正替代以往的机电式加速度传感器,并伴随着汽车安全气系统日趋普及而高速增长。

3微机械陀螺

微机械陀螺是一种振动式角速率传感器,在汽车领域的应用开发倍受关注,主要用于汽车导航的GPS信号补偿和汽车底盘控制系统,应用潜力极大。微机械陀螺中有两个振动模式,一个是横向振动模式,即驱动振动模式,通常称为参考振动,在科氏力作用下会产生附加运动;另一个是法向振动模式,即敏感振动模式,对反映科氏力的附加运动的检测,获得包含在科氏力中的角速率信息。按所用材料,微机械陀螺分为石英和硅振动梁两类,石英材料结构的品质因数Q值最高,陀螺特性最好,有实用价值,是最早产品化的,美国德尔科、BEI 公司采用MEMS技术,批量生产单轴、三轴固态石英压电陀螺,可用于高档汽车、导航、飞机、航天等市场上。德国博世、日本松下的汽车用角速率传感器的单只售价25美元。石英加工难度大,成本很高,无法满足汽车的低成本要求。硅材料结构完整,弹性好,比较容易得到高Q值的微机械结构,随着深反应离子刻蚀技术的出现,体硅微机械加工技术的加工精度显著提高,在硅衬底上用多晶硅制作适宜批量生产,驱动和检测较为方便,成为当前低成本研发的主流。从硅微机械陀螺的结构上,常采用振梁结构、双架结构、平面对称结构、横向音叉结构、梳状音叉结构、梁岛结构等,用来产生参考振动的驱动方式

有静电驱动、压电驱动和电磁驱动等,而检测由于科氏力带来的附加振动的检测方式有电容检测、压电检测、压阻检测。静电驱动、电容检测的陀螺设计最为常见,已有部分产品研制成功。现有的硅微机械陀螺产品的性能不高,精度一般在0.1°/s的水平,只能满足汽车应用要求,但要获得大量应用,还需解决测量电路和封装稳定性、可靠性、价格等诸多问题。

4智能气囊与安全带系统

智能气囊与安全带系统可根据碰撞的强度作出不同的反应,以避免在汽车碰撞不严重的情况下,安全带和气囊过度反应而对汽车驾乘人员造成不必要的伤害。智能安全带和气囊系统采用了级安全带收紧器和可变容积式气囊。当汽车发生碰撞时,系统可使安全带第#级收紧器立刻动作,拉紧松驰的安全带。与此同时,控制器迅速判断汽车碰撞的严重程度,确定是否使气囊膨胀或气囊膨胀的容积大小,并发出指令,使气囊迅速作出相应的反应。严重碰撞时,系统还可使安全带第%级收紧器工作,并能自动根据乘员的体重、体态、身高、座位是否有人及安全带的使用情况等作出适当的反应。

5阻止事故损失扩大系统

阻止事故损失扩大措施主要是在事故发生后,系统能及时采用预防、解救和求救措施,以避免事故所造成的损失继续扩大。

(1)自动灭火系统系统通过各种传感器监测汽车碰撞后是否发生

火灾。当汽车发生碰撞后,控制器立即使燃油箱出油管路关闭,如果有火灾发生,就立刻启动车载灭火系统,迅速将火扑灭,以避免发动

机起火引起更大的伤害。(2)事故自动求救系统系统具有车载定位和无线通讯设备,汽车发生碰撞或翻车等严重事故后,控制器根据碰撞传感器、汽车位置传感器等信号判断事故严重程度,并自动

向控制中心发送求助信息,以便尽快地得到救助。(3)驾驶记录系统系统类似于飞机上所采用的黑匣子,用以记录事故发生前的某一段时间和事故发生过程中,有关车辆、乘员以及驾驶环境的全部信息,并可再现事故发生的过程。

三MEMS技术在现代汽车工业中的展望

未来的汽车用MEMS技术,总的发展趋势是微型化、多功能化、集成化和智能化。多功能化是指利用一种材料或在同一个芯片上制作出能检测2个或3个以上的不同物理特性参数的传感器,从而减少汽车车载传感器的总数量,以达到整车的系统可靠性。集成化是指利用IC 制造技术和精细加工技术制作IC传感器。智能化是指传感器与大规模集成电路相结合并带有微处理器、自检、自校、信号传输和放大电路等智能作用。随着微电子技术的发展和电子控制系统在汽车上的应用迅速增加,汽车传感器市场需求将保持高速增长,以MEMS技术为基础制作的传感器必将成为世界各国汽车用传感器的主流。

四结束语

MEMS(微电子机械系统)具有体积小、质量轻、耗能低、惯性小、响应时间短等优点,MEMS技术的深入发展必将推动微型化时代的到来。汽车电器与电子作为21世纪的朝阳产业和国民经济的支柱产业,与MEMS技术的发展和普及密不可分。一方面,汽车正向着电子化、微

型化的方向发展,汽车上的电子设备和传感器越来越多,这就势必要

求MEMS技术的迅速发展;另一方面,MEMS技术的发展将会推动汽车电

器电子技术的革新,配备有MEMS器件的汽车将会以更高的性能、更

可靠的品质和较低的成本出现在消费者面前,这对整个汽车工业的发

展将起到一个巨大的推动作用。

参考文献:

[1]

William C Tang.Overview of Microelectromechanical Systems and Design Processes.Design Automation Conference.Anaheim,CA,USA.

[2]

Qiao Dayong,Yuan Weizheng,Chang https://www.wendangku.net/doc/d65307477.html,list to Solid Model and Layout in Design of MEMS Device.Pacific Rim Workshop on Transducers and Micro/Nano Technologies.Xiamen,China:

[3]

Li Weijian,Yuan Weizheng,Qiao Dayong.Integrated design,Optimization and Simulation of MEMS gyroscope.Micro-Nano Technologies for Aerospace&Industrial Applications.Montreal,Canada:.

[4]American National Science Foundation..Structured Design Methods for MEMS..

[5]Stephen F Bart,Bart F Romanowicz,Charles H Hsu..NWPU-Microcosm MEMS Seminar.

[6]耀圳雏毫公司走进MEMS技术,深圳

[7]艨蓖勇。崔太付,王刺,等.截型硅谐振式压力传感器的研制

[8]壬跃.王谓振集成徽光机电系统前沿(A).中国科学院2000高技术发展报告

[9]刘光辉,亢睿将.MEMS技术的现状和发展趋势田.传感器技术

[10]司沈月婷,牛薄芳,仲崇投煮机槭电容式压力传感器的变换电路

[11].王跃林;王谓源集成微光机电系统前沿

MEMS技术发展综述

MEMS技术发展综述 施奕帆04209720 (东南大学信息科学与工程学院) 摘要:对于MEMS技术进行简要的介绍,了解其诞生与发展,所涉及的学科领域,目前的研究成果以及在生活、军事、医学等方面的应用。目前MEMS在我国的发展已取得一定成果,在21世纪可以有更大的突破,其未来在材料、工艺、微器件、微系统方面也具有巨大的发展空间。 关键词:MEMS、传感器、微制造技术 一、MEMS简介 微机电系统(micro electro mechanical system,MEMS)是在微电子技术基础上发展起来的多学科交叉的前沿研究领域,其起源可以追溯到20世纪50~60年代,最初贝尔实验室发现了硅和锗的压阻效应,从而导致了硅基MEMS传感器的诞生和发展。在随后的几十年里,MEMS得到了飞速发展,1987年美国加州大学伯克利分校研制出转子直径为60~120/μm的硅微型静电电机;1987~1988年,一系列关于微机械和微动力学的学术会议召开,所以20世纪80年代后期微机电系统一词就渐渐成为一个世界性的学术用语,MEMS技术的研究开发也成为一个热点,引起了世界各国科学界、产业界和政府部门的高度重视,经过几十年的发展,它已

成为世界瞩目的重大科技领域之一。 二、MEMS涉及领域及作用 MEMS技术涉及电子工程、机械工程、材料工程、物理学、化学以及生物医学等学科。MEMS开辟了一个新的技术领域,它的研究不仅涉及元件和系统的设计、材料、制造、测试、控制、集成、能源以及与外界的联接等许多方面,还涉及微电子学、微机构学、微动力学、微流体学、微热力学、微摩擦学、微光学、材料学、物理学、化学、生物学等基础理论 三、MEMS器件的分类及功能 目前,MEMS技术几乎可以应用于所有的行业领域,而它与不同的技术结合,往往会产生一种新型的MEMS器件。根据目前的研究情况,除了进行信号处理的集成电路部件以外,MEMS内部包含的单元主要有以下几大类: (1)微传感器: 主要包括机械类、磁学类、热学类、化学类、生物学类等。其主要功能是检测应变、加速度、速度、角速度(陀螺)、压力、流量、气体成分、湿度、pH值和离子浓度等数值,可应用于汽车、航天和石油勘探等行业。

MEMS技术研究

MEMS技术的研究 一、MEMS技术概述 MEMS技术是采用微制造技术,在一个公共硅片基础上整合了传感器、机械元件、致动器(actuator)与电子元件。MEMS通常会被看作是一种系统单晶片(SoC),它让智能型产品得以开发,并得以进入很多的次级市场,为包括汽车、保健、手机、生物技术、消费性产品等各领域提供解决方案。 1.1、微机电系统(MEMS)概念 虚微机电系统(Micro-Electronic Mechanical System-MEMS),是在微电子技术基础上结合精密机械技术发展起来的一个新的科学技术领域,微机电系统是一个独立的智能系统。 一般来说,MEMS是指可以采用微电子批量加工工艺制造的,集微型机构、微型传感器、微型致动器(执行器)以及信号处理和控制电路,直至接口、通讯和电源等部件於一体的微型系统。其基本组成见图1.1所示。 图1.1 MEMS的组成 通常,MEMS主要包含微型传感器、执行器和相应的处理电路三部分。 微机电系统的制造工艺主要有集成电路工艺、微米/纳米制造工艺、小机械

工艺和其他特种加工工种。 在微小尺寸范围内,机械依其特徵尺寸可以划分为1-10毫米的小型(Mini-)机械,1微米-1毫米的微型机械以及1纳米-1微米的机械。 所谓微型机械从广义上包含了微小型和纳米机械,但并非单纯微小化,而是指可批量制作的集微型机构,微型感测器,微型执行器以及接口信号处理和控制电路、通讯和电源等于一体的微电子机械系统。 1.2、微机电系统(MEMS)发展简史 微机电的概念最早可追溯到1959年R.Fe ym.在加州理工大学的演讲。 1982年,K.E .Pe terson发表了一篇题为“Silicon as a Mechanical Material”的综述文章,对硅微机械加工技术的发展起到了奠基的作用。 微机电研究的真正兴起则始于1987年,其标志是直径为10um的硅微马达(转子直径120微米,电容间隙2 微米)在加州大学伯克利分校的研制成功,其引起了世界的轰动。自此以后,微电子机械系统技术开始引起世界各国科学家的极大兴趣。专家预言,它的意义可与当年晶体管的发明相比。 为了进一步完善这一学科,使其更多更快地为人类服务,除探索新技术,新工艺以外,各国科学家们还在积极努力从事MEMS基础理论研究,包括对微流体力学,微机械磨擦和其他相关理论的研究,并建立一套方便,快捷的分析与设计系统。 相信在不久的将来,MEMS将广泛渗透到医疗、生物技术、空间技术等领域。 1.3、微机电系统(MEMS)的特点及前景 微机电系统(MEMS)具有以下六种特点: 1.微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。 2.以硅为主要材料,机械电器性能优良。硅的强度、硬度及杨氏模量与铁相当,密度类似铝,热传导率接近相和钨。 3.大量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS,批量生产可大大降低生产成本。 4.集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集

激光微细加工技术及其在MEMS微制造中的应用

激光微细加工技术及其在M EMS微制造中的应用La ser Micromachining and I ts Application in the Microfabrication of MEMS 潘开林①② 陈子辰② 傅建中① (①浙江大学生产工程研究所 ②桂林电子工业学院) 摘 要:文章综述了当前MEMS各类微制造技术,阐述了各种激光微细加工技术的原理、特点,主要包括准分子激光微细加工技术、激光LIGA技术、激光微细立体光刻技术等,以及它们在MEMS微制造中的应用。 关键词:激光微细加工 微机电系统 激光LIGA 微细立体光刻 微制造 1 MEMS及其微制造技术概述 微机电系统(ME MS)是微电子技术的延伸与拓宽,它不但具有信号处理能力,而且具有对外部世界的感知功能和执行功能,在此基础上可开发出高度智能、高功能密度的新型系统。ME MS器件与系统未来将成为多个领域的核心,其作用与以CPU为代表的集成电路构成当今电子系统的核心一样。鉴于ME MS技术的重要技术经济潜力和战略地位,引起了世界各国的高度重视。ME MS主要是美国学者的称谓,在日本称为微机械,在欧洲称为微系统。此外,微技术在不同的学科与应用领域,还有类似的不同的专业或行业术语,如生物技术领域的基因芯片(DNA芯片)、生物芯片(Bio-Chip),分析化学领域的微全流体分析系统(uT AS)、芯片实验室(Lab on Chip),与光学集成形成微光机电系统(MOE MS)等。 ME MS是从微电子技术发展而来,其微制造技术主要沿用微电子加工技术与设备。微电子加工技术与设备价格昂贵,适合批量生产。由于微电子工艺是平面工艺,在加工ME MS三维结构方面有一定的难度。目前,通过与其它学科的交叉渗透,已研究开发出以下一些特定的ME MS微制造技术。 (1)LIG A技术 LIG A和准LIG A技术最大的特点是可制出高径比很大的微构件,但缺点同样突出,成本高。 (2)材料去除加工技术 这类技术主要包括准分子激光微细加工[1~4]、微细电火花加工[5]、以牺牲层技术为代表的硅表面微细加工、以腐蚀技术为主体的体硅加工技术、电子束铣、聚焦离子束铣等。 (3)材料淀积加工技术 这类技术主要包括激光辅助淀积(LC VD)、微细立体光刻[6、7]、电化学淀积等。 上述各类技术的对比分析如表1所示[5]。 表1 MEMS主要微制造技术对比 技术最小尺寸精度高宽比粗糙度 几何自 由度 材料范围LIG A 技术 ++++++++ 金属、聚合物、 陶瓷 刻蚀技术+-+-+-金属、聚合物 准分子 激光 -(+)-+--+ 金属、聚合物、 陶瓷 微细立 体光刻 -(+)-(+)++-++聚合物 微细电 火化 +++++++ 金属、半导体、 陶瓷LCVD++-++-+金属、半导体 金刚石 精密切削 +++++-- 非铁金属、 聚合物 注:表中++、+、-、--分别表示很好、好、较差、很差,+-表示不同应用条件下的相对效果,括号内的“+”表示最新研究有所进展。 在目前ME MS微细加工技术的研究与应用中,激光微细加工技术得到了广泛的关注与研究。激光微细加工制造商宣称激光微细加工技术具有:非接触工艺、有选择性加工、热影响区域小、高精度与高重复率、高的零件尺寸与形状的加工柔性等优点。 实际上,激光微细加工技术最大的特点是“直写”加工,简化了工艺,实现了ME MS的快速原型制造。此外,该方法没有诸如腐蚀等方法带来的环境污染问题,可谓“绿色制造”。 在ME MS微制造中主要采用的激光微细加工技术有:激光直写微细加工、激光LIG A、激光微细立体光刻等,下面分别加以介绍。 2 准分子激光直写微细加工及其在MEMS中的应用 准分子激光以其高分辨率、光子能量大、冷加工、 ? 5 ? 制造技术与机床 2002年第3期 Special R eports综 述

MEMS技术的发展与应用

测控新技术课程报告 MEMS技术的发展与应用 摘要 微机电系统(Micro-Electronic Mechanical System-MEMS),是在微电子技术基础上结合精密机械技术发展起来的一个新的科学技术领域。 早在二十世纪六十年代,在硅集成电路制造技术发明不久,研究人员就想利用这些制造技术和利用硅很好的机械特性,制造微型机械部件,如微传感器、微执行器等。如果把微电子器件同微机械部件做在同一块硅片上,就是微机电系统——MEMS: Microelectromechanical System。一般来说,MEMS是指可以采用微电子批量加工工艺制造的,集微型机构、微型传感器、微型致动器(执行器)以及信号处理和控制电路,直至接口、通讯和电源等部件於一体的微型系统。 由于MEMS是微电子同微机械的结合,如果把微电子电路比作人的大脑,微机械比作人的五官(传感器)和手脚(执行器),两者的紧密结合,就是一个功能齐全而强大的微系统。 关键词:精密机械技术,微执行器,微传感器,微型致动器

前言 微电子机械系统(Micro Electro Mechanical System),简称MEMS,是在微电子技术基础上发展起来的集微型机械、微传感器、微执行器、信号处理、智能控制于一体的一项新兴的科学领域。它将常规集成电路工艺和微机械加工独有的特殊工艺相结合,涉及到微电子学、机械设计、自动控制、材料学、光学、力学、生物医学、声学和电磁学等多种工程技术和学科,是一门多学科的综合技术。MEMS在许多方面具有传统机电技术所不具备的优势,包括质量和尺寸普遍减小、可实现大批量生产、低的生产成本和能源消耗、易制成大规模和多模式阵列等。MEMS 研究的主要内容包括微传感器、微执行器和各类微系统,现在已成为世界各国投入大量资金研究的热点。从广义上讲,MEMS 是指集微型传感器、微型执行器以及信号处理和控制电路,甚至接口电路、通信和电源于一体的微型机电系统。 1.MEMS的发展过程 微机电的概念最早可追溯到1959年R.Fe ym.在加州理工大学的演讲。1982年,K.E .Pe terson发表了一篇题为“Silicon as a Mechanical Material”的综述文章,对硅微机械加工技术的发展起到了奠基的作用。 微机电研究的真正兴起则始於1987年,其标志是直径为10um的硅微马达在加州大学伯克利分校的研制成功。自此以后,微电子机械系统技术开始引起世界各国科学家的极大兴趣。 为了进一步完善这一学科,使其更多更快地为人类服务,除探索新技术,新工艺以外,各国科学家们还在积极努力从事MEMS基础理论研究,包括对微流体力学,微机械磨擦和其他相关理论的研究,并建立一套方便,快捷的分析与设计系统。相信在不久的将来,MEMS将广泛渗透到医疗、生物技术、空间技术等领域 2.MEMS的基本原理 MEMS由传感器、信息处理单元。执行器和通讯/接口单元等组成。其输入是物理信号,通过传感器转换为电信号,经过信号处理(模拟的和/或数字的)后,由执行器与外界作用。每一个微系统可以采用数字或模拟信号(电、光、磁等物理量)与其它微系统进行通信 3.MEMS的特点 .微型化、以硅为主要材料、大量生产、集成化、多学科交叉、应用上的高度广泛。 4.MEMS的制造技术 MEMS的制作主要基于两大技术:IC技术和微机械加工技术,其中IC技术主要用于制作MEMS中的信号处理和控制系统,与传统的IC技术差别不大,而微机械加工技术则主要包括体微机械加工技术、表面微机械加工技术、LIGA技术、准LIGA技术、

相关文档
相关文档 最新文档