文档库 最新最全的文档下载
当前位置:文档库 › ADAMS进行蜗轮蜗杆模拟仿真

ADAMS进行蜗轮蜗杆模拟仿真

ADAMS进行蜗轮蜗杆模拟仿真
ADAMS进行蜗轮蜗杆模拟仿真

目录

1 绪论 (1)

1.1 国内外蜗轮蜗杆发展现状 (1)

1.2 ADAMS软件简介 (2)

1.3 本文工作 (3)

1.4 本章小结 (3)

2 蜗轮蜗杆传动设计 (5)

2.1 蜗杆传动概述 (5)

2.2 普通圆柱蜗杆传动的主要参数 (7)

2.3 传动比i、蜗杆头数z1和蜗轮齿数z2 (8)

2.4 蜗杆分度圆直径d1和蜗杆直径系数q (8)

2.5 蜗杆导程角γ (8)

2.6 (9)

2.7 注意事项 (9)

2.8 普通圆柱蜗轮蜗杆传动设计计算 (10)

2.8.1 设计计算 (10)

2.8.2 蜗轮蜗杆传动尺寸计算 (14)

2.8.3 齿面接触疲劳验证 (15)

2.8.4 齿根弯曲疲劳强度验证 (16)

2.8.5 验算效率 (17)

2.8.6 精度等级公差与表面粗糙度的确定 (17)

2.8.7 热平衡计算 (17)

3 用ADAMS进行蜗轮蜗杆模拟仿真 (18)

3.1 启动ADAMS (18)

3.2 设置工作环境 (16)

3.3 创建蜗轮 (17)

3.4 创建蜗杆 (18)

3.5 创建旋转副、齿轮副、旋转驱动 (19)

3.6 进行啮合点(MARKER_7)的坐标轴旋转 (22)

3.7 仿真验证 (26)

4 结果分析 (31)

参考文献 (29)

外文资料 (30)

中文翻译 (36)

致谢 (40)

1 绪论

1.1 国内外蜗轮蜗杆发展现状

蜗杆传动是机器、设备和仪器中最常见的机械传动方式之一。从蜗杆传动的出现到现在已经有以犯多年的历史。随着生产的不断发展, 蜗杆传动也在不断地取得发展。渐开螺旋面包络环面蜗杆传动简称为竹蜗杆传动, 它是二十世纪七十年代出现的一种新型蜗杆传动副。蜗杆传动可分为一次包络蜗杆传动和二次包络蜗杆传动。在一次包络蜗杆传动中, 蜗轮是一个普通的渐开线斜齿圆柱齿轮, 蜗杆则是由渐开线斜齿圆柱齿轮包络而成的。在二次包络蜗杆传动中, 与蜗杆相啥合的蜗轮是以一次包络生成的蜗杆为产形面而生成的。在众多的蜗杆传动中, 蜗杆传动被认为是最具有潜力和希望的一种蜗杆传动。

由于蜗杆传动能够得到很大的传动比,因此其一般应用于减速机的得制造中,国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外,材料品质和工艺水平上还有许多弱点。由于在传动的理论上、工艺水平和材料品质方面没有突破,因此,没能从根本上解决传递功率大、传动比大、体积小、重量轻、机械效率高等这些基本要求。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。

蜗轮蜗杆减速机系按Q/MDl-2000技术质量标准设计制造,产品在符合按国家标准GBl0085-88圆柱蜗轮蜗杆参数基础之上,吸取国内外最先进科技,独具新颖一格的“方箱型”外形结构,箱体外形美观,以优质铝合金压铸而成,具有以下优势性能:1、机械结构紧凑、体积外形轻巧、小型高效;2、热交换性能好,散热快;3、安装简易、灵活轻捷、性能优越、易于维护检修;4、运行平稳、噪音小,经久耐用;5、适用性强、安全可靠性大。本产品目前已广泛应用于各类行业生产工艺装备的机械减速装置,深受用户的好评,是目前现代工业装备实现大扭矩,大速比低噪音、高稳定机械减速传动控制装置的最佳选择。

蜗轮蜗杆减速机的特点是能耗低、性能优越,减速机效率高达96%,振动小、噪音低、带筋的高钢性铸铁箱体斜齿轮采用锻钢材料,表面经过渗碳硬化处理经

过精密加工,确保轴平行度和定位精度可以和普通、变频、制动、伺服等多种电机完美组合.减速机多种的设计方案为客户的装提供了很强的可选性。

现在人们所用的蜗轮蜗杆减速器中,大多都是直接利用蜗轮蜗杆传动的优点:能得到很大的传动比、结构紧凑(其在分度机构中的传动比i可达1000,在动力传动中i=10-80)。传动平稳、噪声低;在一定条件下,该机构可以自锁。而很少有人通过其他方法来验证其传动比。在本文中,将介绍怎么在ADAMS 中模拟蜗轮蜗杆传动,做出蜗轮蜗杆角速度的关系曲线,并验证与传动比的一致性。

1.2 ADAMS软件简介

ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额,现已经并入美国MSC公司。

ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。

ADAMS一方面是虚拟样机分析的应用软件,用户可以运用该软件非常方便地对虚拟机械系统进行静力学、运动学和动力学分析。另一方面,又是虚拟样机分析开发工具,其开放性的程序结构和多种接口,可以成为特殊行业用户进行特殊类型虚拟样机分析的二次开发工具平台。ADAMS软件有两种操作系统的版本:UNIX版和Windows NT/2000版。ADAMS软件由基本模块、扩展模块、接口模块、专业领域模块及工具箱5类模块组成,用户不仅可以采用通用模块对一般的机械系统进行仿真,而且可以采用专用模块针对特定工业应用领域的问题进行快速有效的建模与仿真分析。

Adams是全球运用最为广泛的机械系统仿真软件,用户可以利用Adams 在计算机上建立和测试虚拟样机,实现事实再现仿真,了解复杂机械系统设计的运动性能。

Adams广泛的应用于工程领域、航空航天、汽车工程、工业机械、工程机械等领域。ADAMS软件可以帮助改进各种机械系统设计,从简单的连杆机构到车辆、飞机、卫星甚至复杂的人体.例如在航空和国防工业中,ADAMS能够防真分析起落架、货舱门以及载重车辆和武器的动力学问题;在航天工业中,它能用于太阳能电池板的展开和回收过程的运动、动力分析;在汽车工业中,能用于卡车、越野汽车以及其他车辆的动力学分析;在生物力学和人机工程学领域,ADAMS能用于人机界面设计、事故重建、车辆乘员保护以及产品的人机工程学设计;在机电产品中,它能用于磁盘和磁带驱动器的设计、传真机以及电路断电器的设计;在健身娱乐产品中,它能用于健身自行车以及其他健身运动器树:在一般机械中,如电动印刷机、家用电器、电梯等都可应用ADAMS进行设计和分析:在制造业和机器人的设计、材料加工设备、包装机械以及食品加工设备的设计也都能够应用ADAMS;在铁路系统,ADAMS能够用于车轮与铁轨的相互作用分析以及车厢之间锅台的动力学问题。

1.3 本文工作

为了达到要求的运动精度和生产率,必须要求传动系统具有一定的传动精度并且各传动元件之间应满足一定的关系,以实现各零部件的协调动作。该设计均采用新国标,运用模块化设计,设计内容包括传动件的设计,执行机构的设计及设备零部件等的设计。

根据所给定的参数,首先设计一对蜗轮蜗杆,其次在ADAMS 中模拟蜗轮蜗杆传动,由于本文的目的只是与传动比有关,需要做的只是模拟分析出蜗轮蜗杆的角位置曲线图,进而根据曲线图分析出蜗轮蜗杆的传动比,所以对于所设计的蜗轮蜗杆的传动比可根据仿真时的难易程度进行适当的调整,力求简洁明了。做出蜗轮蜗杆角速度的关系曲线,并验证其与理论传动比i的一致性。

1.4 本章小结

要利用一个机构或软件,只有先对其有一定得了解,之后才能更好的达到设计目的。本章简单的介绍了蜗轮蜗杆的主要特点、发展现状及其研究方向,介绍了ADAMS这一机械系统动力学仿真分析软件的基本特点及其组成模块(基本模块、扩展模块、接口模块、专业领域模块及工具箱),最后说明了本文的行文目的。让我们对蜗轮蜗杆传动和AMAMS软件有一个初步的了解。这样,就能更好的利用两者的优点。对蜗轮蜗杆的设计以及用ADAMS的对其进行模拟仿真验证有一定得帮助。

2 蜗轮蜗杆传动设计

2.1 蜗杆传动概述

(1)蜗杆传动的特点及应用

蜗杆传动的主要优点是能得到很大的传动比、结构紧凑,其在分度机构中的传动比i可达1000,在动力传动中传动比i=10~80。由于蜗杆传动属于啮合传动,蜗杆齿是连续的螺旋齿,与蜗轮逐渐进入和退出啮合,且同时啮合的齿数

对较多,故传动平稳、噪声低;在一定条件下,该机构可以自锁。

蜗杆传动的主要缺点是效率低,当蜗杆主动时,效率一般为0.7~0.8;具有自锁时,效率仅为0.4左右。由于齿面相对滑移速度大,易磨损和发热,不适于传递大功率;为减小磨损,蜗轮齿圈常用铜合金制造,故其成本较高;蜗杆

传动对制造安装误差比较敏感,对中心距尺寸精度要求较高。

综上所述,蜗杆传动常用于传递功率在50 kW以下,滑动速度在15 m/s 以下的机械设备中。

(2)蜗杆传动的类型

(a)圆柱蜗杆传动;(b) 环面蜗杆传动;(c) 锥蜗杆传动

图2-1 蜗杆传动类型

圆柱蜗杆由于其制造简单,因此有着广泛的应用。环面蜗杆传动润滑状态良

好,传动效率高,制造较复杂,主要用于大功率传动。

按普通圆柱蜗杆螺旋面的形状可分为阿基米德(ZA)蜗杆(普通蜗杆)、渐开线(ZI)蜗杆、法向直齿廓(ZN)蜗杆(延伸渐开线蜗杆)和圆锥包络(ZK)蜗杆。

图2-2 阿基米德蜗杆

阿基米德蜗杆一般是在车床上用成型车刀切制的。车阿基米德蜗杆与车梯形螺纹相似,用梯形车刀在车床上加工。两刀刃的夹角2α=40°,加工时将车刀的刀刃放于水平位置,并与蜗杆轴线在同一水平面内。这样加工出来的蜗杆其齿面为阿基米德螺旋面,在轴剖面I—I内的齿形为直线;在法向剖面N—N内的齿形为曲线;在垂直轴线的端面上,其齿形为阿基米德螺线。这种蜗杆加工工艺性好,应用最广泛,缺点是磨削蜗杆及蜗轮滚刀时有理论误差,精度不高。

图2-3 渐开线蜗杆

这种蜗杆的端面齿廓为渐开线,所以它相当于一个少齿数(齿数=蜗杆头数)、

大螺旋角的渐开线圆柱斜齿轮,ZI 蜗杆可用两把直线刀刃的车刀在车床上车削

加工。

2.2 普通圆柱蜗杆传动的主要参数

普通圆柱蜗杆传动的主要参数有 模数m 压力角 蜗杆头数1z 蜗轮

齿数2z 及蜗杆分度圆直径1d

图2-4 圆柱蜗杆传动的主要参数示意图

2.3 传动比i 、蜗杆头数1z 和蜗轮齿数2

z

蜗杆传动比:

(2-1)

式中:1n ,2n ——为蜗杆蜗轮的转速;

1z ,2z ——蜗杆头数、 蜗轮齿数。

需要指出的是, 蜗杆传动的传动比不等于蜗轮、 蜗杆分度圆直径之比。

2.4 蜗杆分度圆直径1d 和蜗杆直径系数q

蜗杆分度圆直径1d 与模数m 的比值称为蜗杆直径系数,用q 表示。 m

d q 1= (2-2) 因1d 和m 均为标准值,故q 为导出值, 不一定是整数

2.5 蜗杆导程角γ

图2-5 蜗杆导程角

(2-3)

1

221z z n n i =

=q z d m z d p z a 111111tan ===πγ

式中:1a p ——蜗杆的轴向齿距 2.6

在蜗杆传动中,蜗杆与蜗轮的啮合齿面间会产生很大的齿向相对滑动 速度vs :

(2-4)

式中:1v ——蜗杆分度圆的圆周速度,单位为m /s ;

1n ——蜗杆的转速,单位为r /min 2.7 蜗轮蜗杆传动自锁与啮合条件

蜗杆和蜗轮啮合时,在中间平面上,蜗杆的轴面模数和压力角αa1 与蜗轮的端面模数、压力角相等,并把中间平面上的模数和压力角同时规定为标

准值。 标准压力角α=20°(在动力传动中推荐用α=20°;在分度传动中,推

荐用α=15°或α=12°)。

由于蜗杆与蜗轮轴线正交,为了轮齿啮合,蜗杆导程角γ和蜗轮螺旋角β必

须相等,旋向相同。

综上所述, 蜗杆传动中,蜗轮蜗杆必须满足的啮合条件是:

蜗杆的轴面模数m1=蜗轮的端面模数m2=标准模数m

蜗杆的轴面压力角α1=蜗轮的端面压力角α2=标准压力角α

蜗杆导程角γ=蜗轮螺旋角β(旋向相同)

蜗杆头数z1通常为1、2、4、6,z1根据传动比和蜗杆传动的效率来确定。

当要求自锁和大传动比时,z1 =1, 但传动效率较低。若传递动力,为提高传

动效率,常取z1∶1,4, 6。 蜗轮齿数z2=iz1,通常取z2=28~80。若z2 <

27,会使蜗轮发生根切,不能保证传动的平稳性和提高传动效率。若z2>80,

随着蜗轮直径的增大,蜗杆的支承跨距也会增大,其刚度会随之减小,从而影响

蜗杆传动的啮合精度。

γ

πγcos 100060cos 1

11?==n d v v s

导程角的大小与效率有关。导程角大,效率高,导程角小, 效率低,一般

认为,γ≤3°30′的蜗杆传动具有自锁性。

2.8 普通圆柱蜗轮蜗杆传动设计计算

已知参数:输入功率:P=10 kw

蜗杆转速:n1=1460 r/min

蜗杆头数:z1=1

蜗轮齿数:z2=72

使用寿命:12000H

2.8.1 设计计算

(1) 选择材料类型

根据GB/T 10085-1988的推存,采用渐开线蜗杆(ZI )

(2) 选择材料

蜗杆:根据库存材料的情况,并考虑到蜗杆传动传递的功率不大,速度只是

中等,故蜗杆用45钢;因希望效率高些,耐磨性好些,故蜗杆螺旋齿面要求淬火,

硬度为45-55HRC 。 蜗轮:蜗轮轮缘选用铸铝磷青铜ZCuSn10P1 (3) 按齿面接触疲劳强度确定模数m 和蜗杆分度圆直径d1

(2-5)

由 1z =1,2z =72,得

(2-6)

22212

][500???? ??≥H z KT d m σ721221===z z n n i

确定作用在蜗轮上的转矩2T

由表知,1z =1,估取效率η=0.7,则 3.29=?????=?=mm N n i p T 1460

727.0101055.91055.96162η6610?Nmm (2-7) 确定载荷系数K

因工作载荷比较稳定,故取载荷分布不均系数βK =1,由表选取使用系数A K =1.15,由于转速不高,冲击不大,可取动载荷系数V K =1.05;则 ==V A K K K K β 1.21 (2-8)

将各参数带入(6)式

(2-9)

查表11-2(机械设计), 选取m=8 mm, 1d =80 mm

(4) 蜗轮蜗杆主要参数的计算

蜗杆分度圆直径1d =80 mm

蜗轮分度圆直径22mz d ==576 mm

蜗杆分度圆直径系数 m d q 1=

=10 小齿轮上的转矩1

19550

n P T == 9550*10/1460 = 65.41 m N ?

4809)20072500(10296.321.1][5002

622212=????=???

? ??≥H z KT d m σ

图2-6 蜗轮蜗杆受力图

蜗杆圆周力1t F 与蜗轮轴向力2x F :1t F = 2x F -=1

12d T = 1635.273 N 蜗杆轴向力1x F 与蜗轮圆周力2t F : ==21t x F F 16352.739 N

蜗杆蜗轮径向力:=?-=-=γtg F F F t r r 2215957.91 N 蜗杆螺旋升角:γ= arc tan

q

z 1=071.5 蜗轮转速:i n n 12==20.27 蜗轮上的转矩:2T = 3.926610? m N ?

滑动速度:

(2-10)

2.8.2 蜗轮蜗杆传动尺寸计算

表1 蜗轮蜗杆尺寸计算列表 齿顶圆直径 齿根圆直径 齿顶高 齿根高 齿全高 符号

a d f d a h f h h 蜗杆

96 60.8 8 9.6 17.6 单位 mm

mm mm mm mm 轴向齿距

蜗杆导程角 蜗杆导程 蜗杆直径系

数 蜗杆法向模数 符号

x p γ s q n m 蜗杆 25.13 5.71 25.13 10 8

s m n d v v s /14.6cos 100060cos 111=?==γ

πγ

设 蜗轮变位系数:2x =0

2.8.3 齿面接触疲劳验证

载荷系数 k = 1.21 ,蜗轮圆周力 2t F = 16352.739 N ,蜗杆分度圆直径 1d = 80

mm, 蜗轮分度圆直径 22mz d ==576 mm.

接触强度计算公式: )15150(

223HP Z KT q m σ≥ (2-11) 单位 mm

deg mm - -

蜗杆当量齿

数 蜗杆法向齿高 蜗杆法向齿厚 蜗轮蜗杆中心距 - 符号

v z n h n s a - 蜗杆

1015.04 8 12.5 328 - 单位

mm mm mm

- 22212][500???? ??≥H z KT d m σ

HP H d KT d σσ≤=1

2215150 (2-12) 查表11-6与11-7知,材料的基本许用接触应力'][H σ=268 a MP ;

应力循环次数 721046.11200072

146016060?=???==h L jn N (2-13) 寿命系数: 8710N K HN ==1.62

(2-14) 则 =?='

][][H HN H K σσ434.16a MP

(2-15) 2.8.4 齿根弯曲疲劳强度验证

][53.1

22

12

F F F Y Y m d d KT a σσβ≤=

(2-16) 当量齿数: 71.5cos 72

cos 332

2==γz z v =121.40

(2-17) 根据,从图11-9可查得齿形系数:2a F Y

螺旋角系数 9592.014071

.511401=-=-=γ

βY

(2-18) 许用弯曲应力FN F F K ?='

][][σσ

(2-19) 从表11-8中查的蜗轮的基本许用弯曲应力 '

][F σ=56 a MP 。

寿命系数 :9610N K FN ==976

1046.110

?=0.83

(2-20) FN F F K ?='

][][σσ=46.48

(2-21)

2.8.5 验算效率

(2-22) v f =0.0204 , v ?=1.1687 )

tan(tan )96.095.0(v ?γγη+-==0.86 (2-23) 2.8.6 精度等级公差与表面粗糙度的确

因为这是一般动力传动,2v =1.22m/s <3 m/s ,故取8级精度。

2.8.7 热平衡计算 由于蜗杆传动齿面间相对滑动速度大,所以发热量大,如果不及时散热,会

引起润滑不良而产生胶合。因此,对连续工作的闭式蜗杆传动应进行热平衡计算,

以限制工作温度不超许用值。

设蜗杆传动在单位时间内损失的功率变成的热量为Q1,同时间由箱体表面

散出的热量为Q2, 则热平衡条件为

Q1=Q2

因为

Q1=1000P1(1-η),Q2=SKS(t-t0)

所以热平衡时的油温t 为

(2-24)

式中:KS ——箱体表面散热系数,KS=10~18 W /(m2

), 通风良好时取大

值;

1)

1(1000t SK P t S +-=ηs m n d v v s /14.6cos 100060cos 111=?==

γπγ

S ——散热面积(m2),指内壁被油浸溅到且外壁与流通空气接触的箱体

外表面积。对于箱体上的散热片,其散热面积按50

t0——环境温度,通常取t0=20℃。

所需散热面积:取t0=20℃,t=70 ℃,KS=15 W /(m2·℃) ,由式(2-24 )

所需的最小散热面积 。

=2 2m (2-25)

若箱体散热面积不足此数,则需加散热片、装置风扇或采取其他散热冷却方

式。

3 用ADAMS 进行蜗轮蜗杆模拟仿真

3.1 启动ADAMS

双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选

择“Create a new model ”,在模型名称(Model name )栏中输入:wlwg ;在重

力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )

栏中选择“MMKS –mm,kg,N,s,deg ”。

)

2070(15)85.01(101000)()1(100001-?-??=--=t t K P S S η

图3-1 ADAMS启动界面

3.2 设置工作环境

在ADAMS/View菜单栏中,选择设置(Setting)下拉菜单中的工作网格(Working Grid)命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X和Y分别设置成所需要的尺寸。

用鼠标左键点击选择(Select)图标,控制面板出现在工具箱中。

用鼠标左键点击动态放大(Dynamic Zoom)图标,在模型窗口中,点击鼠标左键来选择一合适的角度进行建图。

图3-2 工作环境的设置

3.3 创建蜗轮

在ADAMS/View零件库中选择圆柱体(Cylinder)图标,参数

选择为“New Part”,长度(Length)选择80mm,半径(Radius)选

择288mm。

在ADAMS/View工作窗口中先用鼠标左键选择点(0,-40,0)mm(蜗轮的位置可以在任何地方,对后面的运动仿真没有影响),然后选择点(0,40,0)mm。则一个圆柱体(PART_2)创建出来。图3-3

图3-3创建一个圆柱体

在ADAMS/View中位置/方向库中选择位置旋转(Position: Rotate…)图标,在角度(Angle)一栏中输入90,表示将对象旋转90度在ADAMS/View窗口中用鼠标左键选择圆柱体,将出来一个白色箭头,移动光标,使白色箭头的位置和指向如图3-4所示。然后点击鼠标左键,旋转后的圆柱体如图示。

机械设计课程设计蜗轮蜗杆传动

目录 第一章总论......................................................... - 2 - 一、机械设计课程设计的容......................................... - 2 - 二、设计任务..................................................... - 2 - 三、设计要求..................................................... - 3 - 第二章机械传动装置总体设计......................................... - 3 - 一、电动机的选择................................................. - 4 - 二、传动比及其分配............................................... - 4 - 三、校核转速..................................................... - 5 - 四、传动装置各参数的计算......................................... - 5 - 第三章传动零件—蜗杆蜗轮传动的设计计算............................. - 5 - 一、蜗轮蜗杆材料及类型选择....................................... - 6 - 二、设计计算..................................................... - 6 - 第四章轴的结构设计及计算.......................................... - 10 - 一、安装蜗轮的轴设计计算........................................ - 10 - 二、蜗杆轴设计计算.............................................. - 15 - 第五章滚动轴承计算................................................ - 17 - 一、安装蜗轮的轴的轴承计算...................................... - 18 - 二、蜗杆轴轴承的校核............................................ - 18 - 第六章键的选择计算................................................ - 19 - 第七章联轴器...................................................... - 20 - 第八章润滑及密封说明.............................................. - 20 - 第九章拆装和调整的说明............................................ - 20 - 第十章减速箱体的附件说明.......................................... - 20 - 课程设计小结........................................................ - 21 - 参考文献............................................................ - 22 -

机械设计期末考试试题及答案.doc

机械设计期末考试试题及答案 一、选择题 ( 共 20 分,每小题 2 分) 1、通常,一个零件的磨损过程大致可分为三个阶段,按先后顺序,它们依次是 ( ) A. 剧烈磨损、磨合、稳定磨损 B. 稳定磨损,剧烈磨损、磨合 C. 磨合、剧烈磨损、稳定磨损 D. 磨合、稳定磨损、剧烈磨损 2、设计斜齿圆柱齿轮传动时,螺旋角β一般 在80~200范围内选取,β太小斜齿轮传动的优点不明显,太大则会引起( ) 。 A. 大的切向力 B. 大的轴向力 C. 小的切向力 D. 小的轴向力 3、若一滚动轴承的寿命为1370000 转,则该轴承所承受的当量动载荷( ) 基本额定动载荷。 A. 等于 B. 小于 C. 大于 D. 无法判断 4、在不完全液体润滑滑动轴承设计中,除了限制轴承p 值外,还要对轴承 pv 值 进行验算,其主要目的是( ) 。 A. 限制轴承过渡磨损 B. 限制轴承的温升 C. 保证轴承的强度 D. 限制 轴承的质量 5、通常,一部机器主要是由( ) 三部分构成的。 A. 原动部分,传动部分,执行部分 B. 原动部分,传动部分,控制部分 C. 辅助系统,传动部分,控制部分 D. 原动部分,控制部分,执行部分 6、一般参数的闭式硬齿面齿轮传动的主要失效形式是( ) 。 A. 齿面点蚀 B. 轮齿折断 C.齿面磨粒磨损 D.齿面胶合 7、在 V 带传动中,小轮包角一般应大于( ) 度。 A. 90 B. 100 C. 150 D. 120 8、一齿轮传动,主动轮 1 用 45 号钢调质,从动轮 2 用 45 号钢正火,则它们的齿面接触应力( ) 。 A. H 1 H 2 B. H 1 H 2 C. H1 H 2 D. 无法判断 9、蜗杆蜗轮传动的传动比,正确表达式是( ) 。 A. d2 B. i z2 C. i n2 D. i d1 i z1 n1 d2 d1 10、设计一对材料相同的软齿面齿轮传动时,一般应使大齿轮的齿面硬度 HBS2( ) 小齿轮的齿面硬度HBS1 。 A. 大于 B. 小于 C. 等于 D. 大于或等于 二、填空题 ( 共 10 分) 1、在轴的结构设计中,轴的最小直径d min是按初步确定的。 (1 分) 2、受轴向载荷的紧螺栓所受的总拉力是与之和。 (1 分) 3、在斜齿圆柱齿轮的设计计算中,考虑到实际承载区的转移,斜齿轮传动的许 用接触应力可取为[H ]1与[H]2。(1分) 1

机械设计基础考试题库及答案汇总

一、 名词解释 1.机械: 2.机器: 3.机构: 4.构件: 5.零件: 6.标准件: 7.自由构件的自由度数: 8.约束: 9.运动副: 10.低副: 11.高副: 23.机构具有确定运动的条件: 24.死点位置: 25.急回性质: 26.间歇运动机构: 27.节点: 28.节圆: 29.分度圆: 30.正确啮合条件: 31.连续传动的条件: 32.根切现象: 33.变位齿轮: 34.蜗杆传动的主平面: 35.轮系: 36.定轴轮系: 37.周转轮系: 38.螺纹公称直径:螺纹大径。39.心轴: 40.传动轴: 41.转轴: 二、 填空题 1. 机械是(机器)和(机构)的总称。 2. 机构中各个构件相对于机架能够产生独立运动的数目称为(自由度)。 3. 平面机构的自由度计算公式为:(F=3n-2P L -P H )。 4. 已知一对啮合齿轮的转速分别为n 1、n 2,直径为D 1、D 2,齿数为z 1、z 2,则其传动比i= (n 1/n 2)= (D 2/D 1)= (z 2/ z 1)。 5. 铰链四杆机构的杆长为a=60mm ,b=200mm ,c=100mm ,d=90mm 。若以杆C为机架,则此四杆机构为(双摇杆机构)。 6. 在传递相同功率下,轴的转速越高,轴的转矩就(越小)。 7. 在铰链四杆机构中,与机架相连的杆称为(连架杆),其中作整周转动的杆称为(曲柄),作往复摆动的杆称为(摇杆),而不与机架相连的杆称为(连杆)。 8. 平面连杆机构的死点是指(从动件与连杆共线的)位置。 9. 平面连杆机构曲柄存在的条件是①(最短杆与最长杆长度之和小于或等于其它两杆长度之和)②(连架杆和机架中必有一杆是最短杆)。 10. 平面连杆机构的行程速比系数K=1.25是指(工作)与(回程)时间之比为(1.25),平均速比为(1:1.25)。 11. 凸轮机构的基圆是指(凸轮上最小半径)作的圆。 12. 凸轮机构主要由(凸轮)、(从动件)和(机架)三个基本构件组成。 13. 带工作时截面上产生的应力有(拉力产生的应力)、(离心拉应力)和(弯曲应力)。 14. 带传动工作时的最大应力出现在(紧边开始进入小带轮)处,其值为:σmax=σ1+σb1+σc 。 15. 普通V带的断面型号分为(Y 、Z 、A 、B 、C 、D 、E )七种,其中断面尺寸最小的是(Y )型。 16. 为保证齿轮传动恒定的传动比,两齿轮齿廓应满足(接触公法连心线交于一定点)。 17. 渐开线的形状取决于(基)圆。 18. 一对齿轮的正确啮合条件为:(m 1 = m 2)与(α 1 = α2)。 19. 一对齿轮连续传动的条件为:(重合度1>ε)。 20. 齿轮轮齿的失效形式有(齿面点蚀)、(胶合)、(磨损)、(塑 性变形)和(轮齿折断)。 21. 一对斜齿轮的正确啮合条件为:(m 1 = m 2)、(α 1 = α2) 与(β1=-β2)。 22. 蜗杆传动是由(蜗杆、蜗轮)和(机架)组成。 23. 通过蜗杆轴线并垂直蜗轮轴线的平面称为(中间平面)。 24. 常用的轴系支承方式有(向心)支承和(推力)支承。 25. 轴承6308,其代号表示的意义为(6:深沟球轴承、3:直 径代号,08:内径为Φ40)。 26. 润滑剂有(润滑油)、(润滑脂)和(气体润滑剂)三类。 27. 列举出两种固定式刚性联轴器(套筒联轴器)、(凸缘联轴 器)。 28. 轴按所受载荷的性质分类,自行车前轴是(心轴)。 29. 普通三角螺纹的牙形角为(60)度。 30. 常用联接螺纹的旋向为(右)旋。 31. 普通螺栓的公称直径为螺纹(大)径。 32. 在常用的螺纹牙型中(矩形)形螺纹传动效率最高,(三角) 形螺纹自锁性最好。 33. 减速器常用在(原动机)与(工作机)之间,以降低传速 或增大转距。 34. 两级圆柱齿轮减速器有(展开式)、(同轴式)与(分流式)三种配置齿轮的形式。 35. 轴承可分为(滚动轴承)与(滑动轴承)两大类。 36. 轴承支承结构的基本形式有(双固式)、(双游式)与(固游式)三种。 37. 轮系可分为(平面轮系)与(空间轮系)两类。 38. 平面连杆机构基本形式有(曲柄摇杆机构)、(双曲柄机构)与(双摇杆机构)三种。 39. 凸轮机构按凸轮的形状可分为(盘形凸轮)、(圆柱凸轮) 与(移动凸轮)三种。 40. 凸轮机构按从动件的形式可分为(尖顶)、(滚子)与(平底)三种。 41. 变位齿轮有(正变位)与(负变位)两种;变位传动有(等移距变位)与(不等移距变位)两种。 42. 按接触情况,运动副可分为(高副)与(低副) 。 43. 轴上与轴承配合部分称为(轴颈);与零件轮毂配合部分称为(轴头);轴肩与轴线的位置关系为(垂直)。 44. 螺纹的作用可分为(连接螺纹)和(传动螺纹) 两类。 45. 轮系可分为 (定轴轮系)与(周转轮系)两类。 46. 常用步进运动机构有(主动连续、从动步进)与(主动步进、从动连续)两种。 47. 构件是机械的(运动) 单元;零件是机械的 (制造) 单元。 48. V 带的结构形式有(单楔带)与(多楔带)两种。 三、 判断题 1. 一个固定铰链支座,可约束构件的两个自由度。× 2. 一个高副可约束构件的两个自由度。× 3. 在计算机构自由度时,可不考虑虚约束。× 4. 销联接在受到剪切的同时还要受到挤压。√ 5. 两个构件之间为面接触形成的运动副,称为低副。√ 6. 局部自由度是与机构运动无关的自由度。√ 7. 虚约束是在机构中存在的多余约束,计算机构自由度时应除去。√ 8. 在四杆机构中,曲柄是最短的连架杆。× 9. 压力角越大对传动越有利。× 10. 在曲柄摇杆机构中,空回行程比工作行程的速度要慢。× 11. 偏心轮机构是由曲柄摇杆机构演化而来的。√ 12. 曲柄滑块机构是由曲柄摇杆机构演化而来的。√ 13. 减速传动的传动比i <1。× 14. Y型V带所能传递的功率最大。× 15. 在V带传动中,其他条件不变,则中心距越大,承载能力越大。× 16. 带传动一般用于传动的高速级。× 17. 带传动的小轮包角越大,承载能力越大。√ 18. 选择带轮直径时,直径越小越好。× 19. 渐开线上各点的压力角不同,基圆上的压力角最大。× 20. 基圆直径越大渐开线越平直。√ 21. 设计蜗杆传动时,为了提高传动效率,可以增加蜗杆的头数。 √ 22. 在润滑良好的闭式齿轮传动中,齿面疲劳点蚀失效不会发生。 × 23. 只承受弯矩而不受扭矩的轴,称为心轴。√ 24. 螺钉联接用于被联接件为盲孔,且不经常拆卸的场合。√ 25. 挤压就是压缩。 × 26. 受弯矩的杆件,弯矩最大处最危险。× 27. 仅传递扭矩的轴是转轴。√ 28. 低速重载下工作的滑动轴承应选用粘度较高的润滑油。√ 29. 代号为6310的滚动轴承是角接触球轴承。×

蜗轮蜗杆设计

蜗轮蜗杆传动 蜗杆传动是用来传递空间交错轴之间的运动和动力的。最常用的是轴交角∑=90°的减速传动。蜗杆传动能得到很大的单级传动比,在传递动力时,传动比一般为5~80,常用15~50;在分度机构中传动比可达300,若只传递运动,传动比可达1000。蜗轮蜗杆传动工作平稳无噪音。蜗杆反行程能自锁。 重点学习内容 本章中阿基米德蜗杆传动的失效形式、设计参数、受力分析、材料选择、强度计算、传动效率等为重点学习内容。对热平衡计算、润滑方法、蜗杆蜗轮结构等也应 一、蜗杆传动的类型 与上述各类蜗杆配对的蜗轮齿廓,完全随蜗杆的齿廓而异。蜗轮一般是在滚齿机上用滚刀或飞刀加工的。为了保证蜗杆和蜗轮能正确啮合,切削蜗轮的滚刀齿廓,应与蜗杆的齿廓一致;深切时的中心距,也应与蜗杆传动的中心距相同。 圆柱蜗杆传动 1、通圆柱蜗杆传动 (1)阿基米德蜗杆 这种蜗杆,在垂直于蜗杆轴线的平面(即端面)上,齿廓为阿基米德螺旋线,在包含轴线的平面上的齿廓(即轴向齿廓)为直线,其齿形角α0=20°。它可在车床上用直线刀刃的单刀(当导程角γ≤3°时)或双刀(当γ>3°时)车削加工。安装刀具时,切削刃的顶面必须通过蜗杆的轴线。这种蜗杆磨削困难,当导程角较大时加工不便。

(2)渐开线蜗杆 渐开线蜗杆(ZI蜗杆)蜗杆齿面为渐开螺旋面,端面齿廓为渐开线。加工时,车刀刀刃平面与基圆相切。可以磨削,易保证加工精度。一般用于蜗杆头数较多,转速较高和较精密的传动。

(3)法向直廓蜗杆 这种蜗杆的端面齿廓为延伸渐开线,法面(N-N)齿廓为直线。ZN蜗杆也是用直线刀刃的单刀或双刀在车床上车削加工。车削时车刀刀刃平面置于螺旋线的法面上,加工简单,可用砂轮磨削,常用于多头精密蜗杆传动。 (4)锥面包络蜗杆 这是一种非线性螺旋曲面蜗杆。它不能在车床上加工,只能在铣床上铣制并在磨床上磨削。加工时,盘状铣刀或砂轮放置在蜗杆齿槽的法向面内,除工件作螺旋运动外,刀具同时绕其自身的轴线作回转运动。这时,铣刀(或砂轮)回转曲面的包络面即为蜗杆的螺旋齿面,在I-I及N-N截面上的齿廓均为曲线。这种蜗杆便于磨削,蜗杆的精度较高,应用日渐广泛。

(完整word版)机械设计考试题库(带答案)

机械设计模拟题 一、填空题(每小题2分,共20分) 1、机械零件的设计方法有理论设计经验设计模型试验设计。 2、机器的基本组成要素是机械零件。 3、机械零件常用的材料有金属材料高分子材料陶瓷材料复合材料。 4、按工作原理的不同联接可分为形锁合连接摩擦锁合链接材料锁合连接。 5、联接按其可拆性可分为可拆连接和不可拆连接。 6、可拆联接是指不需破坏链接中的任一零件就可拆开的连接。 7、根据牙型螺纹可分为普通螺纹、管螺纹、梯形螺纹、矩形螺纹、锯齿形螺纹。 8、螺纹大径是指与螺纹牙顶相切的假想圆柱的直径,在标准中被定为公称直径。 9、螺纹小径是指螺纹最小直径,即与螺纹牙底相切的假想的圆柱直径。 10、螺纹的螺距是指螺纹相邻两牙的中径线上对应两点间的轴向距离。 11、导程是指同一条螺纹线上的相邻两牙在中径线上对应两点间的轴线距离。 12、螺纹联接的基本类型有螺栓连接双头螺栓连接螺钉连接紧定螺钉连接。 13、控制预紧力的方法通常是借助测力矩扳手或定力矩扳手,利用控制拧紧力矩的方法来控制预紧力的大小。 14、螺纹预紧力过大会导致整个链接的结构尺寸增大,也会使连接件在装配或偶然过载时被拉断。 15、螺纹防松的方法,按其工作原理可分为摩擦防松、机械防松、破坏螺旋运动关系防松。 16、对于重要的螺纹联接,一般采用机械防松。 17、受横向载荷的螺栓组联接中,单个螺栓的预紧力F?为。 18、键联接的主要类型有平键连接半圆键连接楔键连接切向键连接。 19、键的高度和宽度是由轴的直径决定的。 20、销按用途的不同可分为定位销连接销安全销。 21、无键联接是指轴与毂的连接不用键或花键连接。 22、联轴器所连两轴的相对位移有轴向位移径向位移角位移综合位移。 23、按离合器的不同工作原理,离合器可分为牙嵌式和摩擦式。 24、按承受载荷的不同,轴可分为转轴心轴传动轴。

蜗轮蜗杆计算

蜗轮的计算公式: 1传动比=蜗轮齿数×蜗杆头数 2中心距=(蜗轮节圆直径+蜗轮节圆直径)△2 三。蜗轮中径=(齿数+2)×模数 4蜗轮齿数×蜗轮模数 5蜗杆螺距直径=蜗杆外径-2×模数 6蜗杆引线=π×元件×头数 7螺旋角(前角)TGB=(模数×头数)×蜗杆节径 基本参数: 蜗轮蜗杆模数m、压力角、蜗杆直径系数Q、导程角、蜗杆头数、蜗杆齿数、齿高系数(1)、间隙系数(0.2)。其中,模数m和压力角是蜗轮轴表面的模数和压力角,即蜗轮端面的模数和压力角,两者均为标准值。蜗杆直径系数q是蜗杆分度圆直径与其模数M的比值。 蜗轮蜗杆正确啮合的条件:

在中间平面,蜗杆和蜗轮的模数和压力角分别相等,即蜗轮端面的模数等于蜗杆轴线的模数,即标准值。蜗轮端面的压力角应等于蜗杆的轴向压力角和标准值,即==M。 当蜗轮的交角一定时,必须保证蜗轮和蜗杆的螺旋方向一致。 蜗轮结构通常用于在两个交错轴之间传递运动和动力。蜗轮相当于中间平面上的齿轮和齿条,蜗杆和螺钉的形状相似。 分类 这些系列大致包括:1。Wh系列蜗轮减速器:wht/whx/whs/whc2;CW系列蜗轮减速器:CWU/CWS/cwo3;WP系列蜗轮减速器:WPA/WPS/WPW/WPE/wpz/wpd4;TP系列包络蜗轮减速器:TPU/TPS/TPA/tpg5;PW型平面双包环面环面蜗杆减速器;另外,根据蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动、环形蜗杆传动和斜蜗杆传动。[1] 组织特征 1该机构比交错斜齿轮机构具有更大的传动比。2两轮啮合齿面间存在线接触,其承载能力远高于交错斜齿轮机构。三。蜗杆传动相当于螺旋传动,即多齿啮合传动,传动平稳,

蜗轮蜗杆的计算

蜗轮、蜗杆的计算公式: 1,传动比=蜗轮齿数÷蜗杆头数 2,中心距=(蜗轮节径+蜗杆节径)÷2 3,蜗轮吼径=(齿数+2)×模数 4,蜗轮节径=模数×齿数 5,蜗杆节径=蜗杆外径-2×模数 6,蜗杆导程=π×模数×头数 7,螺旋角(导程角)tgβ=(模数×头数)÷蜗杆节径 一.基本参数: (1)模数m和压力角α: 在中间平面中,为保证蜗杆蜗轮传动的正确啮合,蜗杆的轴向模数m a1和压力角αa1应分别相等于蜗轮的法面模数m t2和压力角αt2,即 m a1=m t2=m αa1=αt2 蜗杆轴向压力角与法向压力角的关系为: tgαa=tgαn/cosγ 式中:γ-导程角。 (2)蜗杆的分度圆直径d1和直径系数q 为了保证蜗杆与蜗轮的正确啮合,要用与蜗杆尺寸相同的蜗杆滚刀来加工蜗轮。由于相同的模数,可以有许多不同的蜗杆直径,这样就造成要配备很多的蜗轮滚刀,以适应不同的蜗杆直径。显然,这样很不经济。 为了减少蜗轮滚刀的个数和便于滚刀的标准化,就对每一标准的模数规定了一定数量的蜗杆分度圆直径d1,而把及分度圆直径和模数的比称为蜗杆直径系数q,即: q=d1/m 常用的标准模数m和蜗杆分度圆直径d1及直径系数q,见匹配表。 (3)蜗杆头数z1和蜗轮齿数z2

蜗杆头数可根据要求的传动比和效率来选择,一般取z1=1-10,推荐z1=1,2,4,6。

选择的原则是:当要求传动比较大,或要求传递大的转矩时,则z1取小值;要求传动自锁时取z1=1;要求具有高的传动效率,或高速传动时,则z1取较大值。蜗轮齿数的多少,影响运转的平稳性,并受到两个限制:最少齿数应避免发生根切与干涉,理论上应使z2min≥17,但z2<26时,啮合区显著减小,影响平稳性,而在z2≥30时,则可始终保持有两对齿以上啮合,因之通常规定z2>28。另一方面z2也不能过多,当z2>80时(对于动力传动),蜗轮直径将增大过多,在结构上相应就须增大蜗杆两支承点间的跨距,影响蜗杆轴的刚度和啮合精度;对一定直径的蜗轮,如z2取得过多,模数m就减小甚多,将影响轮齿的弯曲强度;故对于动力传动,常用的范围为z2≈28-70。对于传递运动的传动,z2可达200、300,甚至可到1000。z1和z2的推荐值见下表 (4)导程角γ 蜗杆的形成原理与螺旋相同,所以蜗杆轴向齿距p a与蜗杆导程p z的关系为p z=z

齿轮及蜗轮蜗杆的测绘方法

齿轮及蜗轮蜗杆的测绘 齿轮和蜗轮蜗杆结构较为复杂,因而此类零件的测绘较一般常见零件更为繁琐,是一项细致的工作。本章主要讨论我国最常用的标准直齿圆柱齿轮、标准斜齿圆柱齿轮和标准直齿圆锥齿轮以及蜗轮蜗杆的功用与结构、测绘步骤、几何参数的测量和基本参数的确定等内容。 8.1 齿轮测绘概述 8.1.1 齿轮的功用与结构 齿轮是组成机器的重要传动零件,其主要功用是通过平键或花键和轴类零件连接起来形成一体,再和另一个或多个齿轮相啮合,将动力和运动从一根轴上传递到另一根轴上。 齿轮是回转零件,其结构特点是直径一般大于长度,通常由外圆柱面(圆锥面)、内孔、键槽(花键槽)、轮齿、齿槽及阶梯端面等组成,根据结构形式的不同,齿轮上常常还有轮缘、轮毂、腹板、孔板、轮辐等结构。按结构不同齿轮可分为实心式、腹板式、孔板式、轮辐式等多种型式,如果齿轮和轴做在一起,则形成齿轮轴。按轮齿齿形和分布形式不同,齿轮又有多种型式,常用的标准齿轮可分为直齿圆柱齿轮、斜齿圆柱齿轮、圆锥齿轮等。 8.1.2 齿轮的测绘步骤 齿轮测绘是机械零部件测绘的重要组成部分,测绘前,首先要了解被测齿轮的应用场合、负荷大小、速度高低、润滑方式、材料与热处理工艺和齿面强化工艺等。因为齿轮是配对使用的,因而配对齿轮要同时测量。特别是当测绘的齿轮严重损坏时,一些参数无法直接测量得到,需要根据其啮合中心距a和齿数z,重新设计齿形及相关参数,从这个意义上讲,齿轮测绘也是齿轮设计。 齿轮测绘主要是根据齿轮及齿轮副实物进行几何要素的测量,如齿数z,齿顶圆直径da,齿根圆直径df、齿全高h、公法线长度W k、中心距a、齿宽b、分度圆弦齿厚s及固定弦齿厚sc、齿轮副法向侧隙n及螺旋角β、分锥角δ、锥距R等,经过计算和分析,推测出原设计的基本参数,如模数m、齿形角α、齿顶高系数h a*、顶隙系数C*等,并据此计算出齿轮的几何尺寸,如齿顶圆直径d a、分度圆直径d及齿根圆直径d f等,齿轮的其它部分结构尺寸按一般测绘原则进行,以达到准确地恢复齿轮原设计的目的。 由于齿轮的特殊性,齿轮测绘有别于其它一般零件。首先,齿轮通常精度较高,测量时要选用比较精密的量具,有条件时可借助于精密仪器测量,其次,齿轮的许多参数都己标准化,测绘中必须与其标准值进行比较;再则,齿轮的许多参数都是互相关联的,必须经过计算获得。齿轮测绘的一般步骤为: 1. 首先对要测绘的齿轮进行结构和工艺分析。 2. 画出齿轮的结构草图和必须的参数表,并画出所需标注尺寸的尺寸界线及尺寸线。 130

蜗轮蜗杆设计参数选择

圆柱蜗轮、蜗杆设计参数选择 蜗轮和蜗杆通常用于垂直交叉的两轴之间的传动(图1)。蜗轮和蜗杆的齿向是螺旋形的,蜗轮的轮齿顶面常制成环面。在蜗轮蜗杆传动中,蜗杆是主动件,蜗轮是从动件。蜗杆轴向剖面类是梯形螺纹的轴向剖面,有单头和多头之分。若为单头,则蜗杆转一圈蜗轮只转一个齿,因此可以得到较高速比。计算速比(i)的公式如下: i=蜗杆转速n1 蜗轮转速n2 = 蜗轮齿数z2 蜗杆头数z1 1、蜗轮蜗杆主要参数与尺寸计算 主要参数有:模数(m)、蜗杆分度圆直径(d1)、导程角(r)、中心距(a)、蜗杆头数(或线数z1)、蜗轮齿数(z2)等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。 (1)模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt 为标准模数。对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。 标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。 表A

图1 图2 (2)蜗杆分度圆直径d1 再制造蜗轮时,最理想的是用尺寸、形状与蜗杆完全相同的蜗轮滚刀来进行切削加工。但由于同一模数蜗杆,其直径可以各不相同,这就要求每一种模数对应有相当数量直径不同的滚刀,才能满足蜗轮加工需求。为了减少蜗轮滚刀数目,在规定标准模数的同时,对蜗杆分度圆直径亦实行了标准化,且与m 有一定的匹配。蜗杆分度圆直径d1与轴向模数mx之比为一标准值,称蜗杆的直径系数。即

q= 蜗杆分度圆直径 模数 = d1 m d1=mq 有关标准模数m与标准分度圆直径d1的搭配值及对应的蜗杆直径系数参照表A (3)蜗杆导程角r 当蜗杆的q和z1选定后,在蜗杆圆柱上的导程角即被确定。为导程角、导程和分度圆直径的关系。 tan r= 导程 分度圆周长 = 蜗杆头数x轴向齿距 分度圆周长 = z1px d1π = z1πm πm q = z1 q 相互啮合的蜗轮蜗杆,其导程角的大小与方向应相同。 (4)中心距a 蜗轮与蜗杆两轴中心距a与模数m、蜗杆直径系数q以及蜗轮齿数z2间的关系式如下: a=d1+d2 2 = m q (q+z2) 蜗杆各部尺寸如表B 蜗轮各部尺寸如表C 2、蜗轮蜗杆的画法 (1) 蜗杆的规定画法参照图1图2 (2)蜗轮的规定画法参照图1图2 (3)蜗轮蜗杆啮合画法参照图1图 2.

蜗轮蜗杆的画法

(二)蜗杆蜗轮的画法 1、蜗杆的画法 蜗杆一般选用一个视图,其齿顶线、齿根线和分度线的画法与圆柱齿轮相同,如图9-62所示。图中以细实线表示的齿根线也可省略。齿形可用局部剖视或局部放大图表示。 图9-62 蜗杆的主要尺寸和画法 2、蜗轮的画法 蜗轮的画法与圆柱齿轮相似,如图9-63所示。 (1)在投影为非圆的视图中常用全剖视或半剖视,并在与其相啮合的蜗杆轴线位置画出细点画线圆和对称中心线,以标注有关尺寸和中心距。 (2)在投影为圆的视图中,只画出最大的顶圆和分度圆,喉圆和齿根圆省略不画。投影为圆的视图也可用表达键槽轴孔的局部视图取代。 3、蜗杆蜗轮啮合的画法 蜗杆蜗轮啮合有画成外形图和剖视图两种形式,其画法如图9-64所示。在蜗轮投影为圆的视图中,蜗轮的节圆与蜗杆的节线相切。

图9-63 蜗轮的画法和主要尺寸 图9-64 蜗杆蜗轮啮合画法 蜗轮蜗杆传动 蜗杆蜗轮用于两交叉轴间的传动,交叉 角一般为90°。通常蜗杆主动,蜗轮从动, 用作减速装置获得较大的传动比。除此之 外,蜗杆传动往往具有反向自锁功能,即只 能由蜗杆带动蜗轮,而蜗轮不能带动蜗杆,

故它常用于起重或其它需要自锁的场合。 (蜗杆蜗轮动画演示) ◆蜗杆蜗轮的主要参数与尺寸计算 蜗杆蜗轮的主要参数有:模数m、蜗杆分度圆直径d、导程角γ、、中心距a、蜗杆头数z1、蜗轮齿数z2等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。几何尺寸计算如下表所示。 ◆蜗杆蜗轮的画法 蜗杆一般选用一个视图,其齿顶线、齿根线和分度线的画法与圆柱齿轮相同,如下图所示。图中以细实线表示的齿根线也可省略。齿形可用局部剖视或局部放大图表示。 ◆蜗轮的画法 (1)在投影为非圆的视图中常用全剖视或半剖视,并在与其相啮合的蜗杆线位置画出细点画线

蜗轮蜗杆的设计计算

蜗轮蜗杆的设计计算 1、根据GB/10085-1988推荐采用渐开线蜗杆(ZI )。 2、根据传动功率不大,速度中等,蜗杆45钢,因为希望效率高些,耐磨性好,故蜗杆螺旋 齿面要求淬火,硬度45-55HRC ,蜗轮用铸锡磷青铜ZCuSn10P1金属铸造,为节约贵重金的有色金属。仅齿圈用青铜制造,而轮芯用灰铸铁HT100铸造。 3、按持卖你接触疲劳强度进行设计 a ≥32H 2])] [(σP E z z KT (1)作用在蜗轮上的转矩2T (2) 按1Z =2 ,η= 2T =?610?2p 2n =?610??mm ?N 确定载荷系数K , 取A K = βK =1 v K = 所以得K= A K ? βK ?v K =?? (3)确定弹性影响系数E Z =16021MPa (铸锡青铜蜗轮与钢蜗杆相配) (4)确定接触系数p Z 假设a d 1= 从表11-18查得p Z = (5)确定接触应力[H σ] 根据材料ZCuSn10P1,蜗杆螺旋齿面硬度>45HRC ,从表11-7查得蜗轮许用应力 '][H σ=268MPa N=60j 2n h L =???20=?8 10 寿命系数HN K =8871074.110?=067则 [H σ] =HN K ?'][H σ=?= (6)计算中心距 a ≥32])56 .1799.2160(8625821.1??? = 取a=100.因为i-15 故从表11-15中取模数m=5 1d =50mm

这时 a d 1=100 50= 从图11-18,可查的接触系数'Z ρ=<,所以计算结果可用。 4、蜗杆蜗轮的主要参数 (1)蜗杆:轴向齿距Pa=得直径系数q=10 齿顶园直径a1d =60,齿根圆f1d =38,分度圆导角r=11 18 36 ,蜗杆轴向齿厚Sa=5π/2= (2)蜗轮 齿数2Z =31 变位系数2x = 验算传动比i=2Z /1Z =31/2= 误差为15 155.15-=%,在允许范围内,所以可行。 蜗轮分度圆直径2d =m ?2Z =5?31=155mm 蜗轮喉圆直径a2d =2d +2a2h =155+2?5=165mm 蜗轮齿根圆直径f2d =2d +2f2h =??=143mm 蜗轮喉母圆半径g2r =a-a2d 21=100-1552 1?= 5、校核齿根弯曲疲劳强度 F σ=m d d KT 53.12122Fa Y βY ≤][F σ 当量齿数v2Z = 31.11cos 2 Z =31/ = 根据2x = v2Z =从图11-19查得齿形系数2Fa Y = βY =1-r/140=140= F σ=][F σFN K ,2从11-8查得ZCuSn10P1制造蜗轮时许用弯曲应力][F σ=56MPa 寿命系数 FN K =98 61074.110?= F σ=5 501558625821.153.1??????,弯曲强度满足要求。 6、验算效率

机械设计考试题库带答案

机械设计模拟题一、填空题(每小题2分)分,共20模型试验设计。 理论设计经验设计 1、机械零件的设计方法 有。2、机器的基本组成要素是机械零件。陶瓷材料复合材料 3、机械零件常用的材料有金属材料高分子材料材料锁合连接。按工作原理的不同联接可分为4、形锁合连接摩擦锁合链接可拆连接和不可拆连接。、联接按其可拆性可分为5 不需破坏链接中的任一零件就可拆开的连接。6、可拆联接是指 普通螺纹、管螺纹、梯形螺纹、矩形螺纹、锯齿形螺纹。、根据牙型螺纹可分为7 在标准中被定为公称直径。8、螺纹大径是指与螺纹牙顶相切的假想圆柱的直径,。 9、螺纹小径是指螺纹最小直径,即与螺纹牙底相切的假想的圆柱直径。 10、螺纹的螺距是指螺纹相邻两牙的中径线上对应两点间的轴向距离。11、导程是指同一条螺纹线上的相邻两牙在中径线上对应两点间的轴线距离紧定螺钉连接。、12螺纹联接的基本类型有螺栓连接双头螺栓连接螺钉连接借助测力矩扳手或定力矩扳手,利用控制拧紧力、控制预紧力的方法通常是 13 矩的方法来控制预紧力的大小。整个链接的结构尺寸增大,也会使连接件在装配或、螺纹预紧力过大会导致 14 偶然过载时被拉断。摩擦防松、机械防松、破坏螺旋运、螺纹防松的方法,按其工作原理可分为15 。动关系防松 、对于重要的螺纹联接,一般采用机械防松。16 。为?F、 受横向载荷的螺栓组联接中,单个螺栓的预紧力17. 18、键联接的主要类型有平键连接半圆键连接楔键连接切向键连接。 19、键的高度和宽度是由轴的直径决定的。 20、销按用途的不同可分为定位销连接销安全销。 21、无键联接是指轴与毂的连接不用键或花键连接。 22、联轴器所连两轴的相对位移有轴向位移径向位移角位移综合位移。 23、按离合器的不同工作原理,离合器可分为牙嵌式和摩擦式。 24、按承受载荷的不同,轴可分为转轴心轴传动轴。 25、转轴是指工作中既承受弯矩又受扭矩的轴。 26、心轴是指只受弯矩不承受扭矩的轴。 27、传动轴是指只受扭矩不受弯矩的轴。 28、轴上零件都必须进行轴向和周向定位。 29、轴上常用的周向定位零件有键花键销紧定螺钉。

蜗轮蜗杆设计计算书A

蜗轮蜗杆设计计算书 2005年2月1日

基本参数: 中心距:a=270mm 蜗杆轴面模数(蜗轮端面模数):m x =9 蜗杆头数:Z 1=1 蜗轮齿数:Z 2=47 蜗杆分度圆直径:d 1=φ112.859mm 蜗轮分度圆直径:d2=φ427mm 蜗杆顶圆修形后直径:φ130mm 圆柱蜗杆传动几何计算: 蜗杆轴面模数(蜗轮端面模数):9 传动比:471 471221====Z Z n n i 蜗杆直径系数(蜗杆特性系数): 5399.129 859.1121=== x m d q 变位系数: ()()23005.0475399.125.092705.02=+-=+-=Z q m a x x 蜗杆分度圆柱上螺旋线升角: "34'3345399 .1211?===arctg q Z arctg γ 蜗杆节圆柱上螺旋线升角: "55'23423005.025399.1212'1?=??? ???+=??? ? ??+=arctg x q Z arctg γ 蜗杆轴面齿形角(阿基米德螺线蜗杆):?=20α

蜗杆(蜗轮)法面齿形角: ()()"30'5619"34'334cos 20cos ?=??==tg arctg tg arctg n γαα 径向间隙:8.192.02.0=?==x m c 蜗杆、蜗轮齿顶高:h a1=m x =9 h a2=(1+x)m x =(1+0.23005)×9=11.07045 蜗杆、蜗轮齿根高:h f1=1.2m x =1.2×9=10.8 h f2=(1.2-x)m x =(1.2-0.23005) ×9=8.72955 蜗杆、蜗轮分度圆直径:d 1=112.859mm d2=423mm 蜗杆、蜗轮节圆直径: d w1=(q+2x)m x =(12.5399+2×0.23005 ) ×9=117 d w2=d 2=423 蜗杆、蜗轮顶圆直径: d a1=(q+2)m x =(12.5399+2) ×9=130.8591 d a2=(Z2+2+2x)m x =(47+2+2×0.23005) ×9=445.1409 蜗杆、蜗轮齿根圆直径: d f1=(q-2.4)m x =(12.5399-2.4)×9=91.2591 d f2=(Z2+2x-2.4)m x =(47+2×0.23005-2.4) ×9=405.5409 蜗杆轴向齿距:p x =πm x =π9=28.2743 蜗杆沿分度圆柱上的轴向齿厚: s 1=0.5πm x =0.5×28.2743=14.1372 当采用加厚蜗轮时:

机械设计期末考试试题及答案

中 原 工 学 院 2003~2004学年 第一学期 机械制造及自动化专业 机械设计课程期末试卷(答案) 一、是非题(用“√”表示正确,“×”表示错误填在题末的括号中)。 (本大题共10小题,每小题1分,总计10分) 1、受静载荷作用的零件只能产生静应力,受变载荷作用的零件才能产生变应力。 ( × ) 2、受交变横向载荷作用的普通螺栓联接,在正常工作时螺栓杆所受到的拉力不变。 ( √ ) 3、为了使V 带的工作侧面能与V 带轮轮槽的工作侧面紧紧贴合,因为V 带的剖面楔角为40o,因而V 带轮轮槽角也相应为40o 。 ( × ) 4、为了避免带打滑,可将带轮上与带接触的表面加工得粗糙些以增大摩擦。 ( × ) 5、对轮齿沿齿宽作适当的修形(鼓形齿),可以大大改善载荷沿接触线分布不均匀的现象。 ( √ ) 6、齿面点蚀是润滑良好的软齿面闭式齿轮传动常见的失效形式。 ( √ ) 7、直齿圆锥齿轮的强度计算中,通常近似地以大端分度圆处的当量圆柱齿轮来代替圆锥齿轮进行强度计算。 ( × ) 8、与齿轮传动的变位方法相类似,不仅可以对蜗杆进行变位加工,而且也可以对蜗轮进行变位加工。 ( × ) 9、某45钢轴的刚度不足,可以采取改用40Cr 合金钢措施来提高其刚度。 ( × ) 10、滚动轴承的基本额定寿命是指一组轴承中10%的轴承发生疲劳破坏,而90%的轴承不发生疲劳破坏前的转数(以106为单位)或工作小时数。 ( √ ) 二、选择题(将正确的代码A 、B 、C 、D 填入横线上方的空格处)。 (本大题共15小题,每小题1.5分,总计15分) 1.零件的截面形状一定,当截面尺寸增大时,其疲劳极限值将随之__ B __。 A. 增高 B. 降低 C. 不变 D. 有时增高,有时降低 2.对于联接用螺纹,主要要求联接可靠,自锁性能好,故常选用__ A __。 A .升角小,单线三角形螺纹 B .升角大,双线三角形螺纹 C. 升角小,单线梯形螺纹 D .升角大,双线矩形螺纹 3. 设计键联接时,有以下主要内容:①按使用要求选择键的类型;②对键联接进行必要的强度校核计算;③按轴径选择键的剖面尺寸;④按轮毂宽度选择键的长度。在具体设计时,一般的顺序为 C 。 A. ③→④→②→①; B.①→③→②→④; C. ①→③→④→②; D. ①→④→②→③ 4.选取V 带型号,主要取决于____ D ____。 A .带的松边拉力 B .带的线速度 C. 带的紧边拉力 D .带传递的功率和小带轮转速 5.带传动不能保证准确的传动比,其原因是____B ____。 A.带容易变形和磨损 B.带传动工作时由拉力的变化而引起的弹性滑动 C.带在带轮上出现打滑 D.带的弹性变形不符合虎克定律 6. 轮齿弯曲强度计算中的齿形系数Fa Y 与 C 无关。 A .齿数z B .变位系数x C .模数m D .斜齿轮的螺旋角β 7. 按齿根弯曲疲劳强度设计公式: []3 2112? ??? ??≥F Sa Fa d Y Y z KT m σφmm 计算齿轮传动的模数时,其公式中 []? ??? ? ?F Sa Fa Y Y σ应代入: B 。

机械设计考试题目及答案

《机械设计》课程试题(一) 一、选择题:本题共10个小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的。把所选项前的字母填在题后的括号内。1.一般工作条件下,齿面硬度HB≤350的闭式齿轮传动,通常的主要失效形式为【B 】A.轮齿疲劳折断 B. 齿面疲劳点蚀 C.齿面胶合 D. 齿面塑性变形 2.带传动在工作时产生弹性滑动,是由于【C 】A.包角α太小 B. 初拉力F0太小 C.紧边与松边拉力不等 D. 传动过载 3.下列四种型号的滚动轴承,只能承受径向载荷的是【B 】A.6208 B. N208 C. 3208 D. 5208 4.下列四种螺纹,自锁性能最好的是【D】A.粗牙普通螺纹 B.细牙普通螺纹 C.梯形螺纹 D.锯齿形螺纹 5.在润滑良好的条件下,为提高蜗杆传动的啮合效率,可采用的方法为【C】A.减小齿面滑动速度υs B. 减少蜗杆头数Z1 C.增加蜗杆头数Z1 D. 增大蜗杆直径系数q 6.在圆柱形螺旋拉伸(压缩)弹簧中,弹簧指数C是指【D 】A.弹簧外径与簧丝直径之比值 B.弹簧内径与簧丝直径之比值 C.弹簧自由高度与簧丝直径之比值 D.弹簧中径与簧丝直径之比值 7.普通平键接联采用两个键时,一般两键间的布置角度为【B 】A.90° B. 120° C.135° D.180° 8.V带在减速传动过程中,带的最大应力发生在【D 】A.V带离开大带轮处 B. V带绕上大带轮处 C.V带离开小带轮处 D. V带绕上小带轮处 9.对于普通螺栓联接,在拧紧螺母时,螺栓所受的载荷是【D 】A.拉力 B.扭矩 C.压力 D.拉力和扭矩 10.滚子链传动中,链节数应尽量避免采用奇数,这主要是因为采用过渡链节后【D 】A.制造困难 B.要使用较长的销轴 C.不便于装配 D.链板要产生附加的弯曲应力

蜗杆、蜗轮画法

左右手螺旋法则(蜗轮蜗杆旋向判断) 教学科研 2009-03-05 08:41:57 阅读1605 评论3 字号:大中小订阅左右手螺旋法则: 右图所示为蜗杆 蜗轮传动,其轴交角 一般为90°,蜗杆与 蜗轮的旋向必相同, 图示为右旋。设已 知蜗杆的转向,欲求 蜗轮转向,可应用螺 旋运动法则确定:若 为左旋,则将左手握 拳,其四指表示蜗杆 了转向,拇指指向应 进方向,但蜗杆1 的 轴向位置已固定,则 蜗轮2必朝相反方向 运动,按此即可确定 其转向;如为右旋, 就改用右手按上述 同样方法判断。 例如右下图所示 的蜗杆蜗轮传动中, 蜗杆是左旋,且转动 方向是由内向外(垂 直观察),根据螺旋 法则,用左手判断,

四指应指向纸面的 外面来握持蜗杆,这 时拇指指向纸面的 左侧,所以在啮合点 处蜗轮的速度方向 是指向纸面的右侧。 在蜗杆蜗轮传动 中,如已知蜗轮、和 蜗杆的转向,要判断 蜗杆蜗轮的旋向,上 述螺旋运动法则仍 蜗轮转向,欲确定其 旋向,可假定为右旋 (或左旋) 按蜗杆1 转向求蜗轮2转向, 如该转向与实际转 向相符,说明假定正 确;如不符,则蜗轩 蜗轮的旋向应与假 定的旋向相反。 你就全当蜗杆是一条螺栓,蜗轮是一螺母固定不动,手顺时针旋动蜗杆,蜗杆前进则为右旋,蜗杆向后则为左旋,与左旋与右旋螺纹一个道理,这是我自己总结的.如果是课本上,则会教 你右手定则或左手定则的方法判断.

该标准规定了机械图样中链轮的画法。 该标准参照采用国际标准ISO2203-1973《技术制图——链轮的规定画法》。 1.链轮、齿条、蜗杆、蜗轮及链轮的画法 ①轮齿的绘制 轮齿部分一般按图1-111~1-117的规定绘绘制。 a.齿顶圆和齿顶线用粗实绘制。 b.分度圆和分度线用点划线绘制。 c.齿根圆和齿根线用细实线绘制,可省略不画;在剖视图中,齿根线用粗实线绘制。 ②链轮、蜗轮一般用两个视图,或者用一个视图和一个局部视图(图1-111~1-113)。 ③在剖视图中,当剖切平面通过链轮的轴线时,轮齿一律按不剖处理(图1-111、1-112、1-113、1-114、1-117)。 ④如需表明齿形,可在图形中用粗实线画出一个或两个齿;或用适当比例的局部放大图表示(图1-114、1-117)。 ⑤当需要表示齿线的形状时,可用三条与齿线方向一致的细实线表示(图1-116、1-118)。直齿则不需表示。 ⑥如需要注出齿条的长度时,可在画出齿形的图中注出,并在另一视图中用粗实线画出其范围线(图1-114)。 ⑦圆弧链轮的画法见图1-116。?

相关文档
相关文档 最新文档