文档库 最新最全的文档下载
当前位置:文档库 › 高等传热复习重点

高等传热复习重点

高等传热复习重点
高等传热复习重点

高等传热学(对流-相变部分)复习题

一、解释概念(数学表达式、物理含义)

粘性耗散效应及耗散函数Φ; 随动导数D Db ;热边界层;热充分发展流; 雷诺热流t j q ; 雷诺应力,t i j τ;湍流强度J ;湍动能K ;湍流耗散项ε;湍流热扩散系数a t ;

湍流动量扩散系数t ν;

滞止温度、滞止焓;

高速流边界层绝热壁面温度;

蒸汽干度、截面含汽率;

沸腾起始点、临界点。

各向异性介质导热系数,i j λ;非傅里叶效应。

二、论述问题与数学描述

1. 阐述雷诺输运定理,并写出其数学公式;

2. 一般形式的Navier-Stokes 方程的适用条件?

3. 边界层的几何特征及其动量和热量传递的特征?

4. 常物性、不可压缩牛顿流体绕流等温平壁的层流边界层对流换热数学描述。

5. 阐述层流边界层对流换热的特点,并指出其微分方程的数学和物理性质与一般微分方程相比发生了哪些变化?

6. 简述定热流、定壁温下管内层流热起始段、充分发展流的流动与换热特点。

7. 论述层流边界层相似解法的基本思想、存在相似解的条件及相似变量一般形式。

8. 试论湍流的基本结构及产生原因,并列举几个导致湍流的因素;

9. 简述湍流边界层的结构特点,并写出冯〃卡门的三层结构模型和通用速度分布。 10. 论述K ε-模型的基本思想,并简要导出用K ε、表达的νt 计算关系。 11. 试说明自然对流产生的条件及Boussinesq 假设。

12. 试说明过热液体中汽化成核机制与加热壁面汽化成核机制的异同。

13. 试说明均温过热液体中气泡成长的过程机制与特点。

14. 试说明核态池沸腾过程中热量传递的主要途径。

15. 解释流动沸腾中的环状流与反环状流的流型成因与传热特点。

16. 试说明如何表示各向异性介质的导热系数.

三、推导分析

1. 圆管内层流热充分发展段的局部换热系数t tan cons x =α,且当t tan cons q w =时有0x

)r ,x (T 22=??; 2. 简述普朗特混合长模型的基本思想,并推导出湍流热扩散系数的表达式

dy

u d L 2t a =。 3. 推导圆柱坐标系下,不可压缩牛顿流体在流速不很高条件下的二维(轴向、径

向)对流换热能量方程。

4. 试从边界层微分方程出发,推导纵向绕流平板的对流换热边界层动量积分与能

量积分方程。

5. 证明对主流速度u cons t ∞=tan 的平板绕流边界层,在壁面处有??22

0u y =和??220t y

=,并说明其物理意义。 6. 写出均匀壁面热流作用下,圆管内层流对流换热入口段的完整数学描述。

7. 某常物性流体低速流过一短圆管被加热,已知管壁加热热流密度w q =常数、管内径为D 、质量流量为G 、入口温度为0T 。

(1) 试推导描述该对流换热问题的能量方程;

(2) 写出求解其对流换热系数所需的各控制方程与边界条件。

8. 稳定流动时,圆形管道内层流充分发展段的切应力

τ和速度u 随半径r 的分

布。

9. 常物性不可压缩牛顿流体纵向绕流平壁,如果不考虑体积力、无内热源与辐射换热、

并忽略粘性耗散效应。

(1) 试写出其湍流边界层对流换热的时均化微分方程组(动量方程只需给出应力形式)。

(2) 在边界层内层区,流动近似于剪切流,即

0=??x u ,试推导求解其无量纲速度控制方程(采用壁面剪切速度无量纲化)。

(3) 根据Prandtl 二层结构模型和Prandtl 混合长度理论,求出其通用速度分布(k=0.4, 两层结构分界位置A y =+)。

10. 推导湍流对流换热的时均化能量方程。

11. 推导均温液体中平衡气泡半径与过热度的关系式。

12. 已知 厚大平板,初始温度,双侧加热,环境温度,表面传热系数h ,常物性,说明利用分离变量法求该平板内温度分布(,)t t x t = 的步骤。

13. 已知厚度为的大平板,导热系数0(1)bt l l =+,b 为小量;平板两侧面温度均匀恒定,分别为1t 和2t (12t t >)。试分析给出利用摄动法求大平板内温度分布的步骤。

14、如图一等截面直肋,肋高L ,肋厚度b ,肋片内无内热源,材料为常物性。假设肋片纵

向无限长。已知:肋基温度t 0, 环境温度t f ,壁面与环境的对流换热系数h 。试用分离变量法求肋片内的温度分布t=f(x,y)。

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

传热学考研知识点总结 (1)

传热学考研知识点总结 对流换热是怎样的过程,热量如何传递的?如下是小编整理的传 热学考研知识点总结,希望对你有所帮助。 传热学考研知识点总结§1-1 “三个W” §1-2 热量传递的三种基本方式§1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。本 章重点: 1.传热学研究的基本问题物体内部温度分布的计算方法热量 的传递速率增强或削弱热传递速率的方法 2.热量传递的三种基本方 式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。黑体热辐射公式:实际物体热辐射:

传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。最简单的传热过程由三个环节串联组成。 传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点 1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以同时存在于一个传热现象中。 2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么? 2.试分析室内暖气片的散热过程。 3.冬天住在新建的居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。 4.从教材表1-1给出的几种h数值,你可以得到什么结论? 5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。请问哪个容器的隔热性能更好,为什么? §2-1 导热的基本概念和定律§2-2 导热微分方程§2-3 一维稳态导热 §2-4伸展体的一维稳态导热

传热学复习资料汇总

传热学复习资料汇总 一、名词汇总 1.热流量:单位时间内所传递的热量 2.热流密度:单位传热面上的热流量 3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。 6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。 ] 7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。 9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。 11.温度场:某一瞬间物体内各点温度分布的总称。一般来说,它是空间坐标和时间坐标的函数。 12.等温面(线):由物体内温度相同的点所连成的面(或线)。 13.温度梯度:在等温面法线方向上最大温度变化率。 14.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于 1 K/m 的温度梯度作用下产生的热流密度。热导率是材料固有的热物理性质,表示物质导热能力的大小。 { 15.导温系数:材料传播温度变化能力大小的指标。 16.稳态导热:物体中各点温度不随时间而改变的导热过程。 17.非稳态导热:物体中各点温度随时间而改变的导热过程。 18.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。 19.保温(隔热)材料:λ≤ W/(m·K)(平均温度不高于350℃时)的材料。20.肋效率:肋片实际散热量与肋片最大可能散热量之比。 21.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。 22.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。位传热面积在单位时间内的传热量。 &

高等传热学课件对流换热-第2章-3

2-3 管槽内层流对流换热特征 工程上存在大量的管槽内对流换热问题。本节对管槽内层流强制对流换热的流动与换热特征进行分析。 一、流动特征 当流体以截面均匀的流速0u 进入管道 后,由于粘性,会在 管壁上形成边界层。 边界层内相同r 处的轴向流速随δ的增加 而降低,导致对管中心势流区的排挤作用,使势流区流速增加。当边界层厚度δ达到管内半径时,势流区消失,边界层汇合于管轴线处,同时截面内速度分布不再变化。 u o

将管入口截面至边界层汇合截面间的流动区域称为入口段,或称为未充分发展流、正在发展流。该区域内,速度分布不断变化, (,)u u x r =,同时存在径向速度(,)v x r 。 边界层汇合截面以后的流动速度不再变化,()u u r =,而径向速度 0v =,这段流动区域称为充发展段或充分发展流。 所以,管内流动存在特征不同的两个区域:入口段,充分发展段。充分发展流动又分为:简单充分发展流、复杂充分发展流两种。 1). 简单充分发展流 是指只存在轴向速度分量,而其它方向速度分量为零的充分发展流动。 对圆管: ()u u r =,0v w ==; 对矩形管道:(,)u u x y =,0v w ==。 简单充分发展流任意横截面上压力均匀,沿轴向线性变化,即

dp const dx = 证明:对简单充分发展流,径向速度0v =,根据径向动量方程: 222211()v v p v v v u v x r r r r x r νρ??????+=?+++?????? ? 0p r ?=?, 即任意横截面上压力均匀,压力仅沿轴向变化。于是,轴向动量方程为: 222211(u u dp u u u u v x r dx r r x r νρ?????+=?+++????? 又发展流0u x ?=?(速度分布不变,或由连续方程得出)?

传热学重点汇总

1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的? 蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。因此,不凝结气体层的存在增加了传递过程的阻力。 16试说明管槽内强制对流换热的入口效应。流体在管内流动过程中,随着流体在管内流动局部表面传热系数如何变化的?外掠单管的流动与管内的流动有什么不同 管槽内强制对流换热的入口效应:入口段由于热边界层较薄而具有比较充分的发展段高的表面传热系数。 入口段的热边界层较薄,局部表面传热系数较高,且沿着主流方向逐渐降低。充分发展段的局部表面传热系数较低。 外掠单管流动的特点:边界层分离、发生绕流脱体而产生

回流、漩涡和涡束。 19为什么二氧化碳被称作“温室效应”气体? 气体的辐射与吸收对波长具有选择性,二氧化碳等气体聚集在地球的外侧就好像给地球罩上了一层玻璃窗:以可见光为主的太阳能可以达到地球的表面,而地球上一般温度下的物体所辐射的红外范围内的热辐射则大量被这些气体吸收,无法散发到宇宙空间,使得地球表面的温度逐渐升高20试分析大空间饱和沸腾和凝结两种情况下,如果存在少量不凝性气体会对传热效果分别产生什么影响?原因? 对于凝结,蒸气中的不可凝结气体会降低表面传热系数,因为在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。因此,不凝结气体层的存在增加了传递过程的阻力。 大空间饱和沸腾过程中,溶解于液体中的不凝结气体会使沸腾传热得到某种强化,这是因为,随着工作液体温度的升高,不凝结气体会从液体中逸出,使壁面附近的微小凹坑得以活化,成为汽泡的胚芽,从而使q~Δt沸腾曲线向着Δt 减小的方向移动,即在相同的Δt下产生更高的热流密度,强化了传热。 21太阳能集热器的吸收板表面有时覆以一层选择性涂层,使表面吸收阳光的能力比本身辐射能力高出很多倍。请问这

传热学复习提纲 标准版

1.傅里叶定律: 在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。2.临界热绝缘直径: 临界热绝缘直径dc是指对应于总热阻RL为极小值时的保温层外径,只有当管道外径d2大鱼临界热绝缘直径dc时,覆盖保温层才肯定有效地起到减少热损失的作用。 3.速度边界层:在流场中壁面附近流速发生急剧变化的薄层。 4.温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。 5.定性温度:确定换热过程中流体物性的温度。 6.特征尺度:对于对流传热起决定作用的几何尺寸。 7.相似准则:(如Nu,Re,Pr,Gr,Ra):由几个变量组成的无量纲的组合量。 8.珠状凝结:当凝结液不能润湿壁面(θ>90?)时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。 9.膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90?,凝结液在壁面上形成一层完整的液膜。 10.核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。 11.膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。 12.热辐射:由于物体内部微观粒子的热运动状态改变,而将部分内能转换成电磁波的能量发射出去的过程。 13.吸收比:投射到物体表面的热辐射中被物体所吸收的比例。 14.反射比:投射到物体表面的热辐射中被物体表面所反射的比例。15.穿透比:投射到物体表面的热辐射中穿透物体的比例。 16.黑体:吸收比α= 1的物体。 17.白体:反射比ρ=l的物体(漫射表面) 18.透明体:透射比τ= 1的物体 19.灰体:光谱吸收比与波长无关的理想物体。 20.黑度:实际物体的辐射力与同温度下黑体辐射力的比值,即物体发射能力接近黑体的程度。 21.辐射力:单位时间内物体的单位辐射面积向外界(半球空间)发射的全部波长的辐射能。 22.漫反射表面:如果不论外界辐射是以一束射线沿某一方向投入还是从整个半球空间均匀投入,物体表面在半球空间范围内各方向上都有均匀的反射辐射度Lr,则该表面称为漫反射表面。 23.角系数:从表面1发出的辐射能直接落到表面2上的百分数。 24.有效辐射:单位时间内从单位面积离开的总辐射能,即发射辐射和反射辐射之和。25.投入辐射:单位时间内投射到单位面积上的总辐射能。 26.漫射表面:如该表面既是漫发射表面,又是漫反射表面,则该表面称为漫射表面。27.定向辐射力:单位辐射面积在单位时间内向某一方向单位立体角内发射的辐射能。28.表面辐射热阻:由表面的辐射特性所引起的热阻。 29.遮热板:在两个辐射传热表面之间插入一块或多块薄板以削弱辐射传热。 30.重辐射面:辐射传热系统中表面温度未定而净辐射传热量为零的表面。 31.温度场:某一瞬间物体内各点温度分布的总称。一般来说,它是空间坐标和时间坐标的函数。 对流换热部分 1.影响自然对流传热系数的主要因素有:流动起因,流动速度,流体有无相变,壁面

高等传热学课件对流换热-第5章-1

第五章自然对流换热 当流体内部的温度分布或浓度分布不均匀时,会造成密度分布的不均匀,在体积力场的作用下,形成浮升力,而引起流体的流动与换热,这种现象称为自然对流。 在自然界与工程技术中,自然对流现象很多,譬如:地面与大气间温度差引起的复杂大气环流,工业排烟在大气中的混合与蔓延,工业废水在水域中的混合与扩散,各种电子器件的散热冷却,建筑物内的采暖,炉中的火焰与烟气的蔓延等。 在铸造、温控等涉及固/液相变的技术过程中,自然对流也是重要的物理过程。 与强制对流换热一样,自然对流也有层流与湍流,内部流动与外部流动的区别。

5-1 自然对流边界层分析 一、自然对流边界层的特点 以放置于静止流体中的竖壁为例。流体温度为T ∞,壁面温度为w T ,当w T T ∞>时,壁面附近的流体被加热,温度升高,密度变小,在重力场作用下产生浮力,使流体向上运动,如图。 (a) Pr 1=, ()T δδ= (b)Pr >>1, ()T δδ>

一般来说,不均匀的温度场仅出现在离壁面较近的流体层内,表现出边界层的特性。与强制对流不同,离壁面较远的流体静止不动。 对不同类的流体,其边界层内的速度分布、温度分布及控制机理有所不同。 (a) 当Pr 1=时,T δδ=,温度分布单调,速度分布在离壁面一定距离 处取得较大值,从壁面到速度极大值处,浮升力克服粘性力产生惯性力(速度)。随着离开壁面的距离的增加,浮升力减小,但粘性力以更快的速度减小,直至为零,即在此处取得极大值。从该点向边界层外缘,由于浮升力进一步减小,不足以维持如此大的惯性,所以速度又逐渐降低。 (b)Pr >>1时,T δδ>。在T y δ<区域,浮升力克服粘性力产生惯性;在T y δ>区域浮升力为零,流体靠消耗惯性力来克服粘性力。此时,温度分布与速度分布的宽度不同。 (c) Pr <<1时,T δδ<,热扩散能力大于粘性扩散能力。在y δ<区域,

传热学知识点资料讲解

常用的相似准则数:①努谢尔特:Nu=aL/λ分子是实际壁面处的温度变化率,分母是原为l的流体层导热机理引起的温度变化率反应实际传热量与导热分子扩散热量传递的比较。Nu大小表明对流换热强度。②雷诺准则Re=WL/V Re大小反映了流体惯性力和粘性力相对大小。Re是判断流态的。③格拉小夫准则Gr=gβ△tL3/V2 Gr的大小表明浮升力和粘性力的的相对大小,Gr表明自然流动状态兑换热的影响。 ④普朗特准则: Pr=V/a Pr表明动量扩散率与热量扩散率的相对大小。 辐射换热时的角系数:①相对性②完整性③可加性 热交换器通常分为三类:间壁式、混合式和回热式,按传热表面的结构形式分为管式和板式间壁式热交换器按两种流体相互间的流动方向热交换器分为分为顺流,逆流,交叉流。 导温系数α也称为热扩散系数或热扩散率,它象征着物体在被加热或冷却是其内部各点温度趋于均匀一致的能力。Α大的物体被加热时,各处温度能较快的趋于一致。传热学考研总结 1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值 4效能:表示换热器的实际换热效果与最大可能的换热效果之比 5对流换热是怎样的过程,热量如何传递的? 对流换热:指流体各部分之间发生宏观运动产生的热量传递与流体内部分子导热引起的热量传递联合作用的结果。对流仅能发生在流体中,而且必然伴随有导热现象。 对流两大类:自然对流(不依靠泵或风机等外力作用,由于流体内部密度差引起的流动)与强制对流(依靠泵或风机等外力作用引起的流体宏观流动)。 影响换热系数因素:流体的物性,换热表面的形状与布置,流速,流动起因(自然、强制),流动状态(层流、湍流),有无相变。 6何谓凝结换热和沸腾换热,影响凝结换热和沸腾换热的因素? 蒸汽与低于饱和温度的壁面接触时,将汽化潜热传递给壁面的过程称为凝结过程。 如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 如果凝结液体不能很好地润湿壁面,在壁面上形成一个个小液珠,这种凝结方式称为珠状凝结。 液体在固液界面上形成气泡引起热量由固体传递给液体的过程称为沸腾换热。 按沸腾液体是否做整体流动可分为大容器沸腾(池沸腾)和管内沸腾;按液体主体温度是否达到饱和温度可分为饱和沸腾和过冷沸腾。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大;蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层,因此,不凝结气体层的存在增加了传递过程的阻力。 影响凝结换热的因素:不凝结气体、蒸汽流速、管内冷凝、蒸汽过热度、液膜过冷度及温度分布非线性。 影响沸腾换热的因素:不凝结气体(使沸腾换热强化)、过冷度、重力加速度、液位高度、管内沸腾。 7强化凝结换热和沸腾换热的原则? 强化凝结换热的原则:减薄或消除液膜,及时排除冷凝液体。 强化沸腾换热的原则:增加汽化核心,提高壁面过热度。 8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。 首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。 主要分为两个阶段:非正规状况阶段和正规状况阶段 9灰体有什么主要特征?灰体的吸收率与哪些因素有关?

传热学复习资料5套

一、选择题 1、下列哪几种传热过程不需要有物体的宏观运动(A)A导热 2、在稳态传热过程中,传热温差一定,如果希望系统传热量增大,则不能采用下列哪种手段(A)A增大系统热阻 B 增大传热面积C增大传热系数 D增大对流传热系数 3、温度梯度表示温度场内的某一点等温圈上什么方向的温度变化率(B)法线方向 4、下述哪一点不是热力设备与冷冻设备加保温材料的目的。(D) A 防止热量或冷量的消失B提高热负荷 C防止烫伤D保持流体温度 5、流体纯自然对流传热的准则方程可写为(B)B Nu=f(Gr,Pr) 6、流体掠过平板对流传热时,在下列边界层各区中,温度降主要发生在哪个区(C) C 层流底层 7、由炉膛火焰向木冷壁传热的主要方式(A)A 热辐射 8、将保温瓶的双层玻璃中间抽成真空,其目的是(D)D减少导热与对流传热 9、下述几种方法中,强化传热的方法是哪一种(C)C加肋片 10、若冷热流体的温度给定,传热器热流体侧结垢后传热壁面的温度将如何改变(B)B减少 11、热量传递的三种基本方式(A)A导热、热对流、辐射 12、无量纲组合用于对于换热时称为(C)准则 C Nu 13、对流换热与以(B)作为基本计算式 B 牛顿冷却公式 14、下述几种方法中,强化传热的方法是(C) C增大流速 15、当采用加肋片的方法增强传热时,将肋片加在(B)时最有效 B换热系数较小一侧 16、下列各参数中,属于物性参数的是(D)导温系数 17、某热力管道采用两种导热系数不同的保温材料进行保温,为了达到较好的保温效果,应将(B)材料放在内层 B导热系数较小的 18、物体能够发射热辐射的基本条件是(A)A温度大于0K 19、下述哪种气体可以看作热辐射透明体(B)反射比=1 B 空气 20、灰体的吸收比与投射辐射的波长分布(A)A无关 21、在稳态导热中,决定物体内温度分布的是(B)B导热系数 22、下列哪个准则数反应了流体物性对对流换热的影响(C) C普朗特数 23、在稳态导热中,决定物体内温度分布的是(B) B导热系数 24、单位面积的导热热阻单位为(B) B K/W 25、绝大多数情况下强制对流时的对流换热系数(C)自然对流 C 大于 26、对流换热系数为100W/(㎡·K),温度为20℃的空气流经50℃的壁面,其对流换热的热流密度为(D)D 3000W/㎡q=h(t2-t1) 27、流体分别在较长的粗管和细管内作强制紊流对流换热。如果流速等条件相同,则(C)C细管内的对流换热系数大 28、在相同的进出口温度条件下,逆流和顺流的平均温差的关系为(A)A逆流大于顺流 29、单位时间内离开单位表面积的总辐射能为该表面的(A)A有效辐射 30、(D)是在相同温度条件下辐射能力最强的物体。D黑体 31、削弱辐射换热的有效方法是加遮热板,而遮热板表面黑度应(B)B小一点好 32、对于过热器中:高温热气→外壁→内壁→过热的传热过程次序为(A)A复合换热、导热、对流换热 33、温度对辐射换热的影响(B)对对流换热的影响 B大于 34、对流换热系数为1000W/(㎡·K),温度为77℃的水流经27℃的壁面,其对流换热热流密度为(D)D50000W/㎡

传热学复习题2012-2014答案要点

传热学复习题 1.试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。 答:① 第一类边界条件:)(01ττf t w =>时, ② 第二类边界条件: )()( 02τλτf x t w =??->时 ③ 第三类边界条件: )()( f w w t t h x t -=??-λ 2. 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。试分析这一观点的正确性。 答:错误,因为当肋片高度达到一定值时,通过该处截面的热流密度为零。通过肋片的热流已达到最大值,不会因为高度的增加而发生变化。 3. 什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物理过程及数学处理上都有些什么特点? 答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍 随时间变化,但过余温度的比值已与时间无关,只是几何位置(δ/x )和边界条件(Bi 数) 的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。 4. 试说明Bi 数的物理意义。o Bi →及∞→Bi 各代表什么样的换热条件?有人认为, ∞→Bi 代表了绝热工况,你是否赞同这一观点,为什么? 答;Bi 数是物体内外热阻之比的相对值。o Bi →时说明传热热阻主要在边界,内部温度趋于均匀,可以用集总参数法进行分析求解;∞→Bi 时,说明传热热阻主要在内部,可以近似认为壁温就是流体温度。认为o Bi →代表绝热工况是不正确的,该工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。 5、与完全的能量方程相比,边界层能量方程最重要的特点是什么? 答:与完全的能量方程相比,它忽略了主流方向温度的次变化率 σα22x A ,因此仅适用于边界层内,不适用整个流体。 6. 对流换热问题完整的数字描述应包括什么内容?既然对大多数实 际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?

传热学思考题参考答案(陶文铨第四版)

传热学思考题参考答案 第一章: 1、用铝制水壶烧开水时,尽管炉火很旺,但水壶仍安然无恙。而一旦壶内的水烧干后水壶很快就被烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 2、什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各 串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传 热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 第二章: 1、扩展表面中的导热问题可以按一维问题处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题处理,你同意这种观点吗? 答:条件:(1)材料的导热系数,表面传热系数以及沿肋高方向的横截面积均各自为常数(2)肋片温度在垂直纸面方向(即长度方向)不发生变化,因此可取一个截面(即单位长度)来分析(3)表面上的换热热阻远远大于肋片中的导热热阻,因而在任一截面上肋片温度可认为是均匀的(4)肋片顶端可视为绝热。并不是扩展表面细长就可以按一维问题处理,必须满足上述四个假设才可视为一维问题。 2、肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热流量会下降,试分析该观点的正确性。 答:的确肋片高度增加会导致肋效率下降及散热表面积增加,但是总的导热量是增加的,只是增加的部分的效率有所减低,所以我们要选择经济的肋片高度。 第三章: 1、由导热微分方程可知,非稳态导热只与热扩散率有关,而与导热系数无关。你认为对吗?答:错,方程的边界条件有可能与λ有关,只有当方程为拉普拉斯方程和边界条件为第一边界条件时才与λ无关。 2、对二维非稳态导热问题,能否将表面的对流换热量转换成控制方程中的内热源产生的热量? 答:不能,二维问题存在边界微元和内边界微元,内边界微元不一定与边界换热,所以不存在源项。 第四章: 1、在第一类边界条件下,稳态无内热源导热物体的温度分布与物体的导热系数是否有关?为什么? 答:无关,因为方程为拉普拉斯方程,边界为第一边界条件均与λ无关。 2、非稳态导热采用显式格式计算时会出现不稳定性,试述不稳定性的物理含义。如何防止这种不稳定性? 答:物理意义:显示格式计算温度时对时间步长和空间步长有一定的限制,否则会出现不合

传热学重点知识复习资料合集

传热学重点知识复习资料合集 一、名词汇总概述 1.热流量:单位时间内所传递的热量 2.热流密度:单位传热面上的热流量 3.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 4.导热原理:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时,物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。 6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。 7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2·K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2·K)。辐射传热系数表示辐射传热能力的大小。

9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2·K)。复合传热系数表示复合传热能力的大小。 10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。 11.温度场:某一瞬间物体内各点温度分布的总称。一般来说,它是空间坐标和时间坐标的函数。 12.等温面(线):由物体内温度相同的点所连成的面(或线)。13.温度梯度:在等温面法线方向上最大温度变化率。 14.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。热导率是材料固有的热物理性质,表示物质导热能力的大小。 15.导温系数:材料传播温度变化能力大小的指标。 16.稳态导热:物体中各点温度不随时间而改变的导热过程。17.非稳态导热:物体中各点温度随时间而改变的导热过程。18.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。 19.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。 20.肋效率:肋片实际散热量与肋片最大可能散热量之比。 21.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。

(完整)第五版《传热学》常考思考题汇总,推荐文档

西安建筑科技大学传热学(郭亚军)常考简答题 题目类型:10道简答题(*6分)三道大题14分/14分/12分无填空题无选择题重点看课后思考题哦 绪论 1.用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。而一旦壶内的水烧干后,水壶很快就烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 2.用一只手握住盛有热水的杯子,另一只手用筷子快速搅拌热水,握杯子的手会显著地感到热。试分析其原因。答:当没有搅拌时,杯内的水的流速几乎为零,杯内的水和杯壁之间为自然对流换热,自热对流换热的表面传热系数小,当快速搅拌时,杯内的水和杯壁之间为强制对流换热,表面传热系数大,热水有更多的热量被传递到杯壁的外侧,因此会显著地感觉到热。 3.有两个外形相同的保温杯A与B,注入同样温度、同样体积的热水后不久,A杯的外表面就可以感觉到热,而B 杯的外表面则感觉不到温度的变化,试问哪个保温杯的质量较好? 答:B:杯子的保温质量好。因为保温好的杯子热量从杯子内部传出的热量少,经外部散热以后,温度变化很小,因此几乎感觉不到热。 4热水瓶胆剖面的示意图如附图所示。瓶胆的两层玻璃之间抽成真空,内胆外壁及外胆内壁涂了反射率很低的银。试分析热水瓶具有保温作用的原因。如果不小心破坏了瓶胆上抽气口处的密闭性,这会影响保温效果吗? 解:保温作用的原因:内胆外壁外胆内壁涂了反射率很低的银,则通过内外胆向外辐射的热量很少,抽真空是为了减少内外胆之间的气体介质,以减少其对流换热的作用。如果密闭性破坏,空气进入两层夹缝中形成了内外胆之间的对流传热,从而保温瓶的保温效果降低。 5、冬天,经过在白天太阳底下晒过的棉被,晚上盖起来感到很暖和,并且经过拍打以后,效果更加明显。试解释原因。 答:棉被经过晾晒以后,可使棉花的空隙里进人更多的空气。而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小(20℃,1.01325×105Pa时,空气导热系数为0.0259W/(m·K),具有良好的保温性 能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。 6、夏季在维持20℃的室内工作,穿单衣感到舒适,而冬季在保持22℃的室内工作时,却必须穿绒衣才觉得舒服。试从传热的观点分析原因。 答:首先,冬季和夏季的最大区别是室外温度的不同。夏季室外温度比室内气温高,因此通过墙壁的热量传递方向是出室外传向室内。而冬季室外气温比室内低,通过墙壁的热量传递方向是由室内传向室外。因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。因此,尽管冬季室内温度(22℃)比夏季略高(20℃),但人体在冬季通过辐射与墙壁的散热比夏季高很多。根据上题人体对冷感的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。 7、试分析室内暖气片的散热过程,各环节有哪些热量传递方式?以暖气片管内走热水为例。 答:有以下换热环节及热传递方式 (1)由热水到暖气片管到内壁,热传递方式是对流换热(强制对流); (2)由暖气片管道内壁至外壁,热传递方式为导热; (3)由暖气片外壁至室内环境和空气,热传递方式有辐射换热和对流换热。 8、冬季晴朗的夜晚,测得室外空气温度t高于0℃,有人却发现地面上结有—层簿冰,试解释原因(若不考虑水表面的蒸发)。 解:如图所示。假定地面温度为了Te,太空温度为Tsky,设过程已达稳态,空气与地面的表面传热系数为h,地球表面近似看成温度为Tc的黑体,太空可看成温度为Tsky的黑体。则由热平衡: , 由于Ta>0℃,而Tsky<0℃,因此,地球表面温度Te有可能低于0℃,即有可能结冰。 导热 1、在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么? 答:在其他条件相同时,实心砖材料如红砖的导热系数约为0.5W/(m·K)(35℃),而多孔空心砖中充满着不动的空气,空气在纯导热(即忽略自然对流)时,其导热系数很低,是很好的绝热材料。因而用多孔空心砖好。 2、东北地区春季,公路路面常出现“弹簧”,冒泥浆等“翻浆”病害。试简要解释其原因。为什么南方地区不出现

传热学复习要点

传热学复习要点 1-3节为导热部分 1.导热理论基础(分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征. 依靠分子,原子和自由电子等微观粒子热运动进行的热量传递. 气体中为分子,金属中为电子,非导电固体和液体中为晶格 (2)温度场的空间时间概念. 表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ. 稳态: 非稳态: (3)温度梯度的概念和表达式. 定义: 两等温面温差与其法线方向距离的比值极限.. 表达式: (4)傅立叶定律的概念及其表达式.----导热基本定律 定义: 表达式: 适用范围:只适用于各向同性的固体材料. (5)导热系数的定义,物理意义和影响因素. 表达式: 物理意义:表征物体导热能力的大小.影响因素: (6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达. 导热微分方程---由傅立叶定律和热一律导出. 导热微分方程表达式: 无内热源: 稳态温度场: 无内热源且为稳态温度场: (7)导温系数的表达及其物理意义,与导热系数的区别. 导温系数a定义: a=λ/cρ; 物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力. (8)导热过程单值性条件和数学表达. 单值性条件包括4个:几何条件;物理条件;时间条件;边界条件; 其中边界条件分3类: ①第一类边界条件:已知边界面温度. ②第二类边界条件:已知边界面热流密度.. ③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf. 牛顿冷却公式: 1

2.稳态导热--t=f(x,y,z) (1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布, 热阻概念及其表达式和运用. A: 第一类边界条件: 在无内热源,常物性条件下 1)单层平壁,高度h>>厚度δ,即为无限大平壁. 因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ; 热流密度q=tw1-tw2/(δ/λ)=Δt/Rt. 热阻Rt: Rt=Δt/q. 2)多层平壁: 温度分布为折线.. B: 第三类边界条件: 厚度δ,无内热源,常物性 单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2) Rt=1/h1+δ/λ+1/h2 多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2) C: 复杂的平壁导热:(串连加并联) RA与RB串连: R=RA+RB; RA与RB并连: R=1/(1/RA+1/RB). D: 导热系数为t的函数:λ=λ0(1+bt) t= q= 此时,温度分布为二次曲线. (2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用. 工程上长度l>>厚度δ的称为圆筒壁导热. 1)第一类边界条件:内径为r1,外径为r2 单层: 边界条件: t= q= 温度分布为曲线分布. 多层:q= 1)第三类边界条件: 单层: 多层: (3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度. 当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~ Dx=dc=2λins/h2. 说明:外径d2dc时,加绝热层才有效. (4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋 1)等截面直肋: 2

高等传热学课件对流换热-第6章-1

第六章 高速流动对流换热
在前面几章介绍的强制对流换热中, 我们假设速度和速度梯度充 分小,以致动能和粘性耗散的影响可以忽略不计。现在考虑高速和粘 性耗散的影响。我们主要介绍有更多重要应用的外部边界层。
6.1 高速流对流换热基本概念
高速对流主要涉及以下两类现象: z 从机械能向热能的转换,导致流体中的温度发生变化; z 由于温度变化使流体的物性发生变化。 空气一类气体若具有极高的速度,将会导致超高温离解、质量浓 度梯度,并因此发生质量扩散,使问题变得更加复杂。这里仅限于关 注未发生化学反应的边界层;对空气来说,这意味着我们将不考虑温

度超过 2000K 或者马赫数高于 5 的情况。对液体,如果普朗特数足 够高的话,粘性耗散实际上在中等速度时就具有很可观的作用。 我们的讨论仅限于普朗特数接近于 1 的气体。 有关高速对流的研究大都涉及对机械能转换和流体物性随温度 变化两个因素的总体考虑,很难看到它们单独的影响。这里,我们暂 不考虑变物性的影响,首先讨论能量转换问题。 能量转换过程能可逆地发生,也能不可逆地发生。比如,在边界 层内,激波与粘性的相互作用使得机械能与热能间的不可逆转换增 大,无粘性的速度变化(比如在接近亚音速滞止点附近流体的减速) 则产生可逆的,或者非常接近可逆的能量转换。高速边界层滞止点的 比较能很好地说明这两种情况的明显区别。 z 在滞止点(图 6-1)处速度降低,边界层以外的压力和温度提高。 对于亚音速流动, 该过程几乎是等熵的, 流体粘度不起什么作用。 无论减速可逆还是不可

逆,滞止区边界层以外的流体 温度等于滞止温度, 也就是说, 流体温升来自于绝热减速:
? T∞
V2 = T∞ + 2c
(6.1.1)
V
若不考虑变物性影响,并
* 用 T∞ 代替 T∞ , 低速滞止点的解
也能适用于高速滞止点问题:
? qw = h (Tw ? T∞ )
图 6-1 滞止点的流动
(6.1.2)
z 但高速边界层问题有所不同。 如果自由速度很高, 边界层以内速 度梯度很大, 边界层内因粘性切应力产生粘性耗散。 如果物体是 绝热的,那么耗散产生的热量可以靠分子或者涡漩传导的机理, 从靠近表面的向边界层外传递出去, 如图 6-2 所示。 稳态条件下, 在粘性耗散和热传导之间存在一种平衡状态, 导致图 6-2 所示的 温度分布。此条件下的表面温度就等于绝热壁面温度 Taw 。

传热学复习提纲

传热学复习提纲 一、绪论 1、热传导:物体各部分之间不发生相对位 移时,依靠分子、原子及自由电子等微 观粒子的热运动而产生的热能传递称为 热传导(导热)。傅里叶定律 单位时间内通过某一给定面积的热量称 为热流量,∮,单位为W。单位时间 内通过单位面积的热流量称为热流密度 q,单位为W/㎡。 2、热对流:由于流体的宏观运动而引起的 流体各部分之间发生相对位移,冷、热 流体相互掺混所导致的热量传递过程。 牛顿冷却公式:q=h△t 。表面传热系 数h(对流换热系数)物理意义:当流 体与壁面温度相差1度时,每单位壁面 面积、单位时间内传递的热量。 3、热辐射:因热的原因而发出辐射能的现 象。黑体:指能吸收投入到其表面上的 所有热辐射能量的物体。黑体的吸收本 领和辐射本领在同温度的物体中是最大 的。 4、传热过程:热量由壁面一侧的流体通过 壁面传到另一侧流体中去的过程。 传热系数k,物理意义:冷热流体间温差 △t=1 ℃、传热面积A=1m2 时的热流 量的值,表征传热过程强烈程度的标尺。 5、热阻1/k 串联热阻叠加原则:在一个 串联的热量传递过程中,如果通过各个 环节的热流量相同,则各串联环节的总 热阻等于各串联环节热阻之和。 二、导热基本定律——傅里叶定律 1、傅里叶定律:在导热过程中,单位时间 内通过给定截面的导热量,正比于垂直 该截面方向上的温度变化率和截面面 积,而热量传递的方向则与温度升高的 方向相反。 2、定解条件a、规定了边界上的温度值, 第一类边界条件,b、规定了边界上的热 流密度值,第二类边界条件,c、规定了 边界上物体与周围流体之间的表面传热 系数h及周围流体的温度,第三类边 界条件。三、非稳态热传导 1、集中参数法:当固体内部的导热热 阻远小于其表面的传热热阻时,任 何时刻固体内部的温度都趋于一 致,以致于可以认为整个固体在同 一个瞬间均处于同一温度下。忽略 物体内部导热热阻的简化分析方法 就称为集中参数法。 2、毕渥数物理意义:固体内部单位 导热面积上的导热热阻与单位表面 积上的换热热阻之比。 四、热传导问题的数值解法 1、热平衡法列节点方程(167页) 五、对流传热的理论基础 1、对流传热的影响因素:(1)流体流 动的起因(2)流体有无相变(3) 流体的流动状态(4)换热表面的几 何因素(5)流体的物理性质 2、对流传热的研究方法(1)分析法(2) 实验法(3)比拟法(4)数值法 3、边界层及其厚度的定义 在固体表面附近流体速度发生剧烈 变化的薄层称为流动边界层(速度 边界层)。达到主流速度的99%处的 距离y为流动边界层的厚度,记为 δ。 4、温度边界层(热边界层)及其厚度 定义 固体表面附近流体温度发生剧烈变 化的这一薄层称为温度边界层(热 边界层),其厚度记为δt 。对于外 掠平板的对流传热,一般以过余温 度为来流温度的99%处定义为 外边界。 5、普朗特数的物理意义:表征流动边 界层与热边界层的相对大小。 六、单相对流传热的实验关联式 1、相似的定义:对于两个同类的物理 现象,如果在相应的时刻及相应的 地点上与现象有关的物理量一一对 应成比例,则称此两现象彼此相似。 2、相似原理基本内容:(1)相似物理 现象间的重要特性——同名相似特 1/ 2

相关文档
相关文档 最新文档