文档库 最新最全的文档下载
当前位置:文档库 › 复积场复习题(1)

复积场复习题(1)

复积场复习题(1)
复积场复习题(1)

复习题

一、选择题 1.()1

()1sin

,1()1

f z z z f z z =-=-设则是的( ) (A)可去奇点; (B)本性奇点; (C)一级极点; (D)一级零点. 2.设F()[(1)(1)],j ωπδωδω=+--,则其Fourier 逆变换为( )

(A)2cos t π; (B)2sin t π; (C)cos t ; (D)sin t . 3.下列叙述不正确的是( )

(A)解析函数具有任意阶导数;

(B)函数)(z f 在区域D 内处处可导,但)(z f 在区域D 内不一定处处解析; (C)函数)(z f 在0z 解析等价于)(z f 在0z 的邻域内可以展开成幂级数

n n n

z z c

)(00

-∑∞

=;

(D)若()(,)(,)f z u x y iv x y =+在区域D 内解析,则),(y x u 和),(y x v 都是

D 内的调和函数.

4.设22()f z xy ix y =+,则下列叙述正确的是 ( )

(A))(z f 在0z =可导且解析;

(B))(z f 在0z =可导,但在复平面上处处不解析; (C))(z f 在复平面上处处可导; (D))(z f 在复平面上处处解析.

5.设矢量场r xi y j zk →

=++

,则下列叙述不正确的是( )

(A)r

gradr r

=

; (B)r →为保守场; (C)r → 为无旋场; (D)r →为无源场.

6. 级数

+++++22

11

1z z z z

的收敛域是( ) (A )1

7. 设有矢量场A

,下列叙述正确的是( )

(A) 若散度处处为零,即0=A div

,则称此矢量场为管形场; (B) 若散度处处为零,即0=A div

,则称此矢量场为调和场; (C) 如果恒有rot 0

=A ,则称此矢量场为无源场; (D) 若散度处处为零,即0=A div

,则称此矢量场为有势场.

8. 已知2

222,y x y

v y x u +=

-=,则下列结论正确的是( )

(A) v u ,都是调和函数,但iv u +不是解析函数; (B) v u ,不是调和函数;

(C) v u ,都是调和函数,且iv u +是解析函数; (D) v u ,都不是调和函数,但iv u +是解析函数.

9. 积分()0

01

,||12sin cos2sin cos 1

,||1

4

0,||1t t d d t t ωω

ωωωωω

ω∞∞????

?

?已知的数值

为( ) (A) 0; (B)

21; (C) 4

1

; (D) 不存在. 10. 若幂级数∑∞

=0

n n n z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为

( )

(A) 绝对收敛 ; (B) 条件收敛; (C) 发散; (D) 不能确定

11. 设有矢量场A

,下列叙述正确的是( )

(A) 若散度处处为零,即0=A div

,则称此矢量场为管形场; (B) 如果恒有rot 0

=A ,则称此矢量场为调和场; (C) 如果恒有rot 0

=A ,则称此矢量场为无源场; (D) 若散度处处为零,即0=A div

,则称此矢量场为有势场.

12. 若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常

数=a ( )

(A)0; (B)1; (C)2; (D)-2. 13. 设函数()f z 在D 区域内有定义,则下列命题中正确的是 (A)若|()|f z 在D 内是一常数,则()f z 在D 内是一常数 (B)若Re(())f z 在D 内是一常数,则()f z 在D 内是一常数 (C)若()f z 与()f z 在D 内解析,则()f z 在D 内是一常数 (D)若arg ()f z 在D 内是一常数,则()f z 在D 内是一常数

14.方程310z i --=的全部根为 (D)

cos sin ;1212i ππ?-??

2244cos sin

(0,1,2);33k k i k ππππ?

?-+-+?

+=????

77cos sin ;1212i ππ?+??

2244cos

sin (0,1,2)33k k i k ππππ?

?++?

+=?

??

?

.

15.设22()f z x iy =+,则(22)f i '+=( )

(A)4; (B)2; (C)1i +; (D)22i +.

16.设1C 为负向圆周||1z =,2C 为正向圆周||3z =,则12

2z

C C C e dz z =+=? ( ) (A)2i π-; (B)0; (C)2i π; (D) 4i π.

17.设(),C e f z d z ζ

ζζ=-? 其中C 为正向圆周||4,ζ=||4,z ≠则()f i π'=( ) (A)2i π-; (B)2i π; (C)1; (D) 1.- 18.下列级数中,绝对收敛的是()

(A)111;n i n n ∞

=??+ ???∑ (B)1(1);2n n n i n ∞=??-+????∑ (C)2;ln n n i n ∞

=∑ (D)1(1).2

n

n n ∞=-∑ 19.幂级数21(1)22n

n n z n ∞

=-??

???

∑的收敛半径等于( )

(A)1;4 (B)4; (C)1

;2

(D)2.

20.设0z =为函数2

5

1

()z e f z m z -=的极极点,则m =( ) (A)5; (B)4; (C)3; (D)2.

21.设矢量场(2)(42)(26),A x y i x y z j y z k →

→=+++++-

则下列结论不正确的

是( ) (A)A 为保守场; (B)A 为调和场; (C)A 为管形场;(D)A

为有源场.

22. 复数)2

(tan πθπ

θ<<-=i z 的三角表示式是( )

(A ))]23sin()23[cos(sec θπθπθ+++i ; (B ))]2sin()2[cos(sec θπ

θπθ+++i ;

(C ))]23sin()23[cos(sec θπθπθ+++-i ;(D ))]2

sin()2[cos(sec θπ

θπθ+++-i .

23.设F()[(2)(2)],ωδωδω=+--,则其Fourier 逆变换为( ) (A)cos 2t ; (B)sin 2t ; (C)1cos 2t i π; (D)1

sin 2t i

π. 24.下列命题中,正确的是( )

(A)设y x ,为实数,则cos()1x iy +≤

(B)若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导

(C)若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D)若)(z f 在区域D 内解析,则)(z if 在D 内也解析 25.下列级数中,绝对收敛的级数为( )

(A)∑∞

=+1)1(1n n i n ; (B)∑∞

=+-1

]2)1([n n n i n ;

(C)∑∞

=2ln n n n i ; (D)∑∞

=-1

2)1(n n

n

n i . 26.在线单连域内,与“场有势”不等价的命题为( )

(A) 场保守; (B)表达式A dl Pdx Qdy Rdz ?=++

是某个函数的全微分;

(C)场无旋; (D) 场无源.

27.若函数2222()2()f z x xy y i y axy x =+-++-在复平面内处处解析,则实常数

a 的值等于()

(A)0; (B)1; (C)2; (D)任意常数. 28.设22()f z x iy =+,则(22)f i '+=( )

(A)4; (B)2; (C)1i +; (D)22i +.

29.设(),C e f z d z ζ

ζζ=-? 其中C 为正向圆周||4,ζ=||4,z ≠则()f i π'=(A ) (A)2i π-; (B)2i π; (C)1; (D) 1.-

二、填空题

1.()1i

i -的主值为 . 2.||11

3

z dz z ==-?

.

3.设1

()z e f z z

-=,则=]0),([Re z f s .

4.设矢量场242A x i xy j z k →

=-+,则divA

在M(1,2,2)处的值为 .

5.设S 为上半球面()2222

0x y z a a ++=>,则矢量场 r xi y j zk =++ 向上穿过S

的通量Φ= .

6.i

i 的值为 . 7.

?==-22)

3(2

z dz z . 8. 0=z 是31

)(z

e z

f z -=的 级极点.

9.设矢量场242A xyz i xy j yz k →

=-+,则divA

= .

10.(1)Ln -的主值为 . 11.设1:||1c z =为负向,2:||3c z =正向,则12

2sin c c c z

dz z =+=? . 12. 0=z 是5

sin ()z z

f z z

-=

的 级极点. 13.设矢量场2

42A xyz i xy j yz k →→→→=-+,则divA = .

14.已知数量场232u x y yz xz =+-,则(0,1,1)M gradu = .

15.一个向量顺时针旋转3

π

后所对应的复数是1+,则原向量所对应的复数

是 .

16.设C 为负向圆周||4,z =则5()z

C

e dz z i π=-? . 17.函数1

()(1)

f z z z =-在圆环域0||1z <<内的洛朗级数为 .

18.设5

1cos (),z

f z z -=

则=]0),([Re z f s . 19.积分2

sin 1x x

dx x +∞-∞+?的值等于 . 20.设0

()sin 2,t

t f t te tdt -=?则()f t 的Laplace 变换为 .

21.设26

(),

618

s F s s s +=

++则()F s 的Laplace 逆变换

为 .

22数量场2

2

3u x z xy z =-+在点(1,1,1)M -处沿{1,2,3}

l =-

的方向导数等于 .

23..矢量场()

xyz

A e xi y j zk →=++ 在点M(0,0,0)处的散度divA = .

24.复数i

i 的模为 . 25.2

||12

(2)z dz z ==-?

.

26.设矢量场3232

42A x i xy z j x z k →

=-+,则divA

在M(1,1,1)处的值

为 .

27. 数量场2223u x z xyz z =-+在点M(1,0,1)处的梯度为 . 三、解下列各题 1.计算积分21

iz

C

e dz z -?

,其中C 为正向圆周3||=z . 2.计算积分5z

C

e dz z

?

,其中C 为正向圆周2||=z .

3.计算积分21

2C

z dz z z

+-? ,其中C 为正向圆周3||=z . 4.计算积分11

z

C

e

dz z -?

,其中C 为正向圆周2||=z . 5.求函数?

??<>=-000

2)(t t e t f t 的Fourier 变换.

6.求函数t t f =)(1与2()cos f t t =的卷积.

7.计算积分?--C dz z

z z 2

1

2,其中C 为正向圆周3||=z . 8.计算积分?-C a z dz

2

2,其中C 为正向圆周a a z =-||.

9.计算积分?-C z

dz z z e )

2(,其中C 为正向圆周3||=z .

10.已知1

)(2-=z e z f z

,求[]∞),(Re z f s .

11.求函数??

?<>=-0

)(t t e t f t

βα的Fourier 变换. 12.求函数t t f =)(1与2()sin f t t =的卷积.

13.已知5691

)(2+++=

s s s s F ,求)(s F 的Laplace 逆变换.

14.已知231

()48

s F s s s +=++,求)(s F 的Laplace 逆变换.

16.求数量场22

3u x z xy z =-+在点(1,1,1)M -处的梯度及沿矢量23l i j k →→→→

=-+方向的方向导数.

17.求数量场z y x u 25322-+=在点)3,1,1(M 处的梯度及沿其等值面朝oz 轴正向一方的法线方向的方向导数

n

u ??. 18. 证明矢量场k yz x j z x i xyz A 2

232332++=为有势场,并求其势函数v .

1920

sin .t te tdt +∞

-?

20. 已知cos ||(),0

||t

t f t t π

π

≤?=?

>? (1)求()f t 的Fourier 变换; (2)求积分2

sin cos 1t

d ωωπωωω

+∞-?的值. 21计算积分26(1)(2)C z

dz

z z -+?

,其中C 为正向圆周3||2

z =. 22计算积分23(1)z

C e dz z -? ,其中C 为正向圆周2||=z .

23计算积分131z C z e dz z +? ,其中C 为正向圆周2||=z .

24求函数0()0

A t f t τ

<

?其他

的Fourier 变换. 25求函数t t f =)(1与2()t f t e =的卷积(拉氏变换的卷积).

26.已知21

()618

s F s s s +=

++,求)(s F 的Laplace 逆变换.

27.设S 为曲面22

(0),x z z z h +=≤≤求流速场()v x y z k =++ 在单位时间内向下穿

过S 的流量Q.

四、1.利用Laplace 变换求方程组?

??=-+'=-+'t

t

e y x y e y x x 223满足初始条件(0)(0)1x y ==的解.

2.利用Laplace 变换求微分方程336t y y y y e -''''''+++=满足初始条件

(0)'(0)(0)0y y y ''===的解.

3. 利用Laplace 变换求方程0

()cos()()t

y t d y t τττ'-=?满足(0)1y =的解

4. 利用Laplace 变换求微分方程23t y y y e -'''+-=满足初始条件(0)0,'(0)1y y ==的解。

五、1.设矢量场()2

2

2

2221A xz i yz j x y z k →

=+++-

(1)证明矢量场→

A 为有势场; (2)求矢量场→

A 的势函数;

(3)计算曲线积分?→

?l l d A ,其中l 的起点为(1,0,1)M ,终点为)1,1,2(-N .

2.设矢量场2

22

2

2(cos )2,A xyz i x z y j x yz k →

=+++

(1)证明矢量场→

A 为有势场; (2)求矢量场→

A 的势函数.

3.设矢量场()2

2

2

(2)(2)2A x yz i y xz j z xy k →

→=-+-+-

(1)证明矢量场→

A 为有势场; (2)求矢量场→

A 的势函数.

复变函数试题及答案

1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 22 22= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11--的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得 z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数

4、根式31-的值之一是( ) A i 2321- B 2 23i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =-12 3z z dz B ? =-1 2 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β C )1(>--=a a z a z e w i β D )1(<--=a a z a z e w i β 三、判断题(每小题2分)

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

四年级数学:积的变化规律(教案)

小学数学新课程标准教材 数学教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 数学教案 / 小学数学 / 小学四年级数学教案 编订:XX文讯教育机构

积的变化规律(教案) 教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于小学四年级数学科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 课题:积的变化规律 教学内容:探索当一个因数不变时,另一个因数与积的变化规律情况。(课文第58页的例4,“做一做”及相应的练习) 教学目标: 1、学生通过观察,能够发现并总结积的变化规律。 2、使学生经历变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。 3、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。 4、初步获得探索规律的一般方法和经验,发展学生的推理能力。 5、培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。 教学重点:引导学生自己发现并总结积的变化规律。 教学难点:引导学生自己发现并总结积的变化规律。 教具准备:图片。

教学过程: 一、研究“两数相乘,其中一个因数变化,它们的积如何变化饿规律。 1、研究问题,概括规律。 (1)两数相乘,一个因数不变,另一个因数乘几时,积怎么变化。 学生完成下列两组计算,想一想发现了什么?你能根据每组算式的特点接下去再写两道算式吗?试试看 6×2= 8×125= 6×20= 24×125= 6×200= 72×125= 组织小组交流。 归纳规律:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。 (2)两数相乘,一个因数不变,另一个因数除以几时,积有怎么变化?学生完成下列两组计算,想一想有发现了什么?

复变函数与积分变换复习题.

第一章 一、选择题 1. 一个向量顺时针旋转 3 π,向右平移3个单位,再向下平移1个单位, 对应的复数为1-,则原向量对应的复数是(A ) A. 2 B. 1 C. i D. i + 2. 设z 为复数,则方程2z z i +=+的解是(B ) A. 34i - + B. 34i + C. 3 4 i - D. 34i -- 3. 方程23z i +-= C ) A. 中心为23i - 的圆周 B. 中心为23i -+,半径为2的圆周 C. 中心为23i -+ D. 中心为23i -,半径为2的圆周 4. 15()1, 23, 5f z z z i z i =-=+=-则 12()f z z -=(C ) A. 44i -- B. 44i + C. 44i - D. 44i -+ 5. 设z C ∈,且1z =,则函数21()z z f z z -+=的最小值是(A ) A. -3 B. -2 C. -1 D. 1 二、填空题 1.不等式225z z -++<所表示的区域是曲线_________________的内部。(椭圆 22 22153()()22 x y +=) 2. 复数 2 2 (cos5sin 5) (cos3sin 3)θθθθ+-的指数表示式为_______________.( 16i e θ) 3. 方程 2112(1)z i i z --=--所表示曲线的直角坐标方程为__________________.(221x y +=) 4. 满足5|2||2|≤-++z z 的点集所形成的平面图形为, 以±2为焦点 ,长半轴 为25 的椭圆,该图形是否为区域 否 . 5.复数 () i i z --= 11 32 的模为_________,辐角为____________. (5/12π- )

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

积的变化规律教学设计

积的变化规律 执教人:龙映雪 教学目标: 知识与技能 1、学生通过观察,能够发现并总结积的变化规律。 过程与方法 1、使学生经历变化规律的发现过程,感受发现数学中的规律是一件十分有趣的 事情。 2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。 3、初步获得探索规律的一般方法和经验,发展学生的推理能力。 情感、态度和价值观 培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。 教学重难点: 引导学生自已发现规律、概括规律,进而运用规律。 教学难点: 引导学生自己发现规律、验证规律、应用规律。 教学过程: 一、创设情境,引入新知 1.同学我们进行口算比赛 6×1= 96×2= 6×10= 48×2= 6×100= 24×2= 2、师提出问题:你们能写下去吗?你们发现了什么?(学生回答)教师总 结这就规律。再观察,还有什么规律吗? 二、自主探究,发现规律 (一)探索积随因数扩大而扩大的规律 1、师:为方便研究,可以称这三个算式分别为(1)式,(2)式和(3)式。如 果把(1)式作标准,(2)式和(3)式分别与(1)比,因数和积各是怎样变化的? (1)6╳1= 6 (2)6╳10=60 (3)6╳100=600 2、学生独立思考,然后分组交流。 3、集体汇报 找各小组代表汇报。 生:(2)式与(1)比,一个因数不变,另一个因数1扩大10倍是10,积6扩大10倍是60。 生:一个因数不变,另一个因数乘10,积也乘10。 生:一个因数不变,另一个因数乘100,积也乘100。 ……

师:如果其中一个因数扩大5倍呢?20倍呢? 4、引导学生概括成一句话 汇报得出:一个因数不变,另一个因数乘几,积也乘几。 (二)探索积随一个因数缩小而缩小的规律 1、师:刚才,我们从上往下观察,发现了这样的积的变化特点,那从下往上观察这几个算式,用刚才比较研究的方法,比一比,一个因数不变,另一个因数还是乘几吗?积和因数是怎么变化的?你又有什么新的发现? 2、学生独立思考(至少1分钟),然后分组交流。 3、集体汇报: 生汇报: 生1:(2)式与(3)比,一个因数不变,另一个因数除以2,积也除以2。 生2:(1)式与(3)比,一个因数不变,另一个因数除以4 ,积也除以4。 4、同样用一句话怎么概括你发现的规律呢? 汇报得出:一个因数不变,另一个因数除以几(0除外),积也除以几(0除外)。 (三)验证规律 师:刚才大家发现的规律是不是具有普遍性呢?研究数学问题一般不匆忙下结论,要再举一些例子,看看会不会出现相同的情况。如果有一个例子出现了不同的情况,就不能把这种发现当作规律,这就是研究数学问题应该持有的严谨的态度。下面我们一起来验证规律。 (1)先用积的变化规律填空,再横着用口算验算。 2×48=96 20×4=80 4×48=() 10×4=() 8×48=() 5×4=() (2)学生自己举例说明积的变化规律。每位同学各写两组算式,一组3个算式,其中一组展现积随一个因数扩大而扩大的变化情况,另一组则展现积随一个因数缩小而缩小的变化情况。 (3)同桌互相检查所举的例子和交流因数和积的变化是否与我们发现的规律相符。 (四)整体概括规律 师:既然许许多多的乘法算式中都有这样的积的变化特点,通过验证,发现我们的猜想是正确的。它就是今天我们探究的积的变化规律。谁能把这个规律说一说。 同桌先相互间说说什么是“积的变化规律”。 师:数学讲究简洁美,谁能用一句话将上面发现的两条规律概括为一条? 师生小结:一个因数不变,另一个因数乘或除以几(0除外),积也乘或除以几(0除外)。 三、运用规律,解决问题 师:同学们,我们共同探索了“积的变化规律”,现在我们综合运用规律练习几道题,有信心吗? 1、根据8×50=400,直接写出下面各题的积。(58页做一做练习) 16×50= 32×50= 8×25= 学生独立完成后反馈,并说说是怎样想的? 师:你能根据这组算式的特点接下去再写两道算式吗?

复变函数试题及标准答案样本

二.判断题(每题3分,共30分) 1.n z z (在0=z解析。【】 f= z )

2.)(z f 在0z 点可微,则)(z f 在0z 解析。【 】 3.z e z f =)(是周期函数。【 】 4. 每一种幂函数在它收敛圆周上处处收敛。【 】 5. 设级数∑∞=0n n c 收敛,而||0∑∞=n n c 发散,则∑∞ =0n n n z c 收敛半径为1。【 】 6. 1tan()z 能在圆环域)0(||0+∞<<<

复变函数与积分变换(A)参照答案与评分原则 (.7.5) 一.填空(各3分) 1.3ln 2i k e +-π; 2. 三级极点 ; 3. 23z ; 4. 0 ; 5. 0 ; 6. e 1 ;7. 322)1(26+-s s ;8. 0; 9. 0 ;10. )]2()2()2(1)2(1[ 21++-+++-ωπδωπδωωj j 。 二.判断1.错;2.错;3.对的; 4. 错 ;5.对的 ;6.错; 7.错 ; 8. 错 ;9. 对的 ;10. 错 。 三(8分) 解:1)在2||1<

复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 (tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ) )]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小

5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i -- 4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无 界闭区域 10.方程232=-+i z 所代表的曲线是( )

四年级数学积的变化规律教学设计

四年级数学积的变化规律教学设计 查字典数学网为您整理了:积的变化规律教学设计欢迎大家阅读欢愉! 积的变化规律教学设计 教学目标: 1、知识与技能:让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律。 2、过程与方法:使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。 3、情感态度价值观:通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得胜利的欢乐,增强学习的兴趣和自信心。 教学重点:发现并运用积的变化规律。 教学难点:积的变化规律的探究策略。 教具准备:多媒体课件 一、激发兴趣,导入新课 师:同学们,你们想不想玩游戏? 生:想 师:好,请听游戏规则:老师说第一句,你们说第二句。看谁的脑子转得快! 师:1只青蛙生:4条腿。 师:2只青蛙生:8条腿。师:( )只青蛙生:( )条腿。 师:你们脑子转得快,太棒了!那么在游戏中藏着什么数学知识呢?让我们一起来找一找吧。刚才同学们是怎么算出2只青蛙8条腿的?谁能列式?

生:42=8 师:8只青蛙呢? 生:48=32 师:20只青蛙呢? 生:420=80 师:大家都同意吗?(同意)好,真能干。提问:谁能说说在这几道乘法算式中,等号左边的两个数叫什么?等号右边的数又叫什么?(板书:因数因数积) (评析:根据儿童的心理特点,教学首先从创设对对子游戏这一情境出发,激发学生的探究欲望,使学生行为产生强健的内张力,并以高昂的情绪投入学习。接着得出的这组算式,是给学困生表现的机会,给他们胜利的体验。) 二、探究活动,发现规律。 师:启发学生:观察这组算式什么变了,什么没变?那当一个因数不变时,另一个因数和积是怎么变化的呢?积的变化有没有规律呢? 生:以小组为单位,互相讨论、交流。 师:小组讨论好了。谁来说一说你们小组的发现? 生:都有一个因数是4,另一个因数和积都例外。 生:都有一个因数是4,另一个因数变了,积变了。 生:一个因数是4,另一个因数变了,越变越大,积越变越大。 师:好样的,观察得真仔细! 为了便当研究,我们先给这三个算式标上序号。如果把①式作为标准,②式与①式比,因数和积各是怎样变化的?① 4 2 = 8 生:一个因数不变,另一个因数乘4,(24)(84)

复变函数练习题及答案

复变函数卷答案与评分标准 一、填空题: 1.叙述区域内解析函数的四个等价定理。 定理1 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1)(,)u x y ,(,)v x y 在D 内可微, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理2 函数()(,)(,)f z u x y iv x y =+在区域D 内解析的充要条件: (1),,,x y x y u u v v 在D 内连续, (2)(,)u x y ,(,)v x y 满足C R -条件。(3分) 定理3 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内连续,若闭曲线C 及内部包含于D ,则()0C f z dz =? 。 (3分) 定理4 函数()f z 在区域D 内解析的充要条件:()f z 在区域D 内每一点a ,都能展成x a -的幂级数。(3分) 2.叙述刘维尔定理:复平面上的有界整函数必为常数。(3分) 3、方程2z e i =+的解为:11ln 5arctan 222 i k i π++,其中k 为整数。(3分) 4、设()2010sin z f z z +=,则()0Re z s f z ==2010。(3分) 二、验证计算题(共16分)。 1、验证()22,2u x y x y x =-+为复平面上的调和函数,并求一满足条件()12f i i =-+的解析函数()()(),,f z u x y iv x y =+。(8分) 解:(1)22u x x ?=+?,222u x ?=?;2u y y ?=-?,222u y ?=-?。 由于22220u u y x ??+=??,所以(,)u x y 为复平面上的调和函数。(4分) (2)因为()f z 为解析函数,则(),u x y 与(),v x y 满足C.-R.方程,则有 22v u x y x ??==+??,所以(,)2222()v x y x dy xy y C x =+=++? 2,v u y x y ??=-=??又2()v y C x x ?'=+? ,所以 ()0C x '=,即()C x 为常数。

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

《积的变化规律(李雪芳)》课堂实录

《积的变化规律》课堂实录 武汉市长征小学李雪芳 教学内容:积的变化规律(人教课标版《数学》四年级上册第58页例四,59页练习九) 教学目标: 1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。 2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。 3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。 4、培养学生从正反两个方面观察事物的辨证思想。 教学重点:发现并运用积的变化规律。 教学难点:积的变化规律的探究策略。 教学过程: 一、创设情景,提出问题 屏幕显示:为响应"中央关心西藏,全国支持西藏"号召,武汉市长征小学与西藏希望小学开展"手拉手,献爱心"活动,全校学生们捐出自己的零花钱,为西藏小朋友购买一些图书和学习用品。请你们帮忙算一算,一盒美术颜料6元,买2盒花多少钱?40盒呢?200盒呢? 师:谁来帮忙解答第一个问题? 生:6╳2= 12(元) 师:你能说说在这道乘法算式中,6和2是什么?12又是什么? 生:6和2是乘法中的两个因数,12是积。 师:说得好!第二个问题呢? 生:6╳40=240(元) 师:接着说第三个问题? 生:6╳200=1200(元) 师:和他们想法一样的请举举手。(同学们纷纷举起手来) 师:仔细观察、比较这组算式,你能发现什么? 6╳2= 12(元) 6╳40=240(元) 6╳200=1200(元) 生1:有一个因数都是6。 生2:对,一个因数相同,另一个因数不同,积也不同。 师:观察得真仔细! 一个因数相同可以说一个因数不变,那另一个因数呢? 生3:另一个因数变了,积也变了。 生4:我看到一个因数不变,另一个因数越变越大,积也越变越大。 师:你是从上往下观察的,还可以怎样看? 生5:倒过来,从下往上看,一个因数不变,另一个因数越变越大,积也越变越大。 师:当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。 二.自主探究,发现规律 师:为方便研究,可以称这三个算式分别为(1)式,(2)式和(3)式。如果把(1)

复变函数题库(包含好多试卷,后面都有答案)

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数.

积的变化规律优秀教案

《积的变化规律》 教学内容:青岛版小学数学四年级上册42、43页第1课时 教学目标: 1、学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。 2、尝试用简洁的语言表达积的变化规律,培养学生初步的概括和表达能力。 3、初步获得探索规律一般方法和经验,发展学生的推理能力。 4、在学习过程中培养学生的探究能力、合作交流能力和归纳总结能力,初步培养学生严谨的治学态度。 教学重难点: 教学重点:引导学生自已发现规律、概括规律,进而运用规律。 教学难点:运用积的变化规律解决问题。 教学准备:课件统计表格 教学过程: 一、创设情境,提出问题 【课件出示:信息窗4情境图清理海水浴场】青岛是座美丽的城市,在炎炎夏日,青岛的海水浴场每天吸引着数以万计的游客,为了让游客在清洁舒适的沙滩上游玩,筛沙车每天都在忙碌着。 “筛沙车每分钟清洁沙滩80平方米”根据图上的这个信息,你能提出什么数学问题 学生可能提出:5分钟、10分钟、15分钟、30分钟、60分钟·······筛

沙车能清洁多少平方米沙滩 你们提的问题都非常好!这么多的问题我可以用一个关系式解决,你知道运用哪一个关系式吗(学生回答) 对,就是“工作效率×工作时间=工作总量”,“每分钟清洁沙滩的面积×筛沙车的工作时间=筛沙车的工作总量”现在我提一个问题“筛沙车的工作总量是怎样变化的呢”你们能帮我解决吗 二、自主学习、小组探究 1、填表格(学生每人一张) 学生独立完成表格 2、小组活动 学生在小组内交流自己的发现。 小组活动时,教师巡视、指导。 如果遇到小组观察统计表有困难时,教师引导学生写出计算的算式再观察发现。 80×5=400

第一章复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3k k +=±±;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 1.2 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1) (2)(/62/3) i n e ππ+ 1.4 已知x 的实部和虚部.

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 22 1,(p q pq p x q x ?-=??=??=±==±+ 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1() ()1||||| |||||||1()az b az b az b z az b az b z bz a bz a z z bzz az b az b az +++++=====+++++ 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 ()( ) 00i i =≡+=+b a P b a P 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.

复变函数复习题答案()

复变函数复习题答案() 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

复变函数复习题答案<2018.12) 一、判断题(红色的是错误的> 1.的幅角为. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9.. 10.函数在复平面内没有奇点. 11.若是函数的奇点,则不存在. 12.设是的共轭调和函数,函数则也是的共轭调和函数. 13.设是的共轭调和函数,则一定是调和函数. 14.函数的奇点只有一个. 15.设是不经过原点的简单闭曲线,则. 16.解读函数的导数还是解读函数. 17.. 18.. 19..

20.. 21.. 22.若,则z0是函数的可去奇点. 23.若函数f(z>在z0处解读,则它在该点的某个邻域内可以展开为幂级数. 24. 若是函数的可去奇点,则. 25. 设是的孤立奇点,如果,则是的极点. 二、选择题 1.下列各式中表示有界区域的是< C). A. B. C. D. 2.在映射下,双曲线在平面上的象是,其中是整数. A. B. C. D. 7.对于幂级数,下列命题中正确的是< B ).

A.在收敛圆内,其条件收敛 B.在收敛圆内,其绝对收敛 C.在收敛圆上,其处处收敛 D在收敛圆上,其处处发散 8.是的< D ). A.本性奇点 B.极点 C.连续点 D.可去奇点p1EanqFDPw 9.在复平面内,关于的命题中,错误的是< C ). A.是周期函数 B.是解读函数 C. D. 10.设为正向曲线,则( A >. A. B. C. D.DXDiTa9E3d 11.设,则( C >. A. B. C. D.RTCrpUDGiT 12.函数将平面上的曲线映射成平面内的一条

复变函数及积分变换试题及答案

第一套 第一套 一、选择题(每小题3分,共21分) 1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。 A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。 2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。 A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C + 3. 2|2|1(2)z dz z -==-?( ) 。 A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。 A. 1 01 ()2()n n f d c i z ξξ πξ+= -? B. 0()!n n f z c n = C. 2 01()2n k f d c i z ξξπξ= -? D. 210! ()2()n n k n f d c i z ξξ πξ+= -? 5. z=0是函数z z sin 2 的( )。 A.本性奇点 B.极点 C. 连续点 D.可去奇点 6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。 A.1 z z w -= B. z 1z w -= C. z z 1w -= D. z 11 w -= 7. sin kt =()L ( ),(()Re 0s >)。 A. 22k s k +; B.22k s s +; C. k s -1; D. k s 1 . 二、填空题(每小题3分,共18分) 1. 23 (1)i += [1] ; ---------------------------------------- 装 --------------------------------------订 ------------------------------------- 线 ----------------------------------------------------

积的变化规律(教案)

《积的变化规律》教学设计 教学内容:积的变化规律(人教课标版《数学》四年级上册第51页例3) 教学目标: 1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。 2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。 3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。 4、培养学生从正反两个方面观察事物的辨证思想。 教学重点:发现并运用积的变化规律。 教学难点:积的变化规律的探究策略。 教学过程: 一、创设情景,提出问题 屏幕显示:为九九重阳节开展的“走进敬老院,浓浓敬老请”活动全校学生都捐出自己的零花钱,为老人们购买一些物品。请你们帮忙算一算,一千克橙子6元,买2千克花多少钱?20千克呢?200千克呢? 列式:6╳2= 12(元) 6╳20=120(元) 6╳200=1200(元) 由三道乘法算式引入课题:积的变化规律 二.自主探究,发现规律 1)出示自学提示: 认真观察刚才的算式,按下面方法思考研究本节知识: 1、仔细观察三个算式,因数有什么特点?积有什么变化?

2、试试总结出积随因数的变化规律。 2)小组合作探究 3)小组汇报,教师总结: 一个因数不变,另一个因数乘几,积也乘几;一个因数不变,另一个因数除以几,积也除以几。 师引导学生将两条规律合成一条: 一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。 4)即时练习: 根据8 ×50=400,直接写出下面各题的积 16 ×50= 32 ×50= 8 ×25= 三、运用规律,解决问题 1)判断: 1、一个因数乘以5,另一个因数不变,积也不变。() 2、一个因数不变,另一个因数乘以10,积也乘以10。() 3、一个因数扩大4倍,积一定扩大4倍。() 2) 3)一块560平方米的绿地,宽是8米,这块长方形绿地的宽要增加到24米,长不变,扩大后的绿地面积是多少? 四、全课总结,拓展延伸 1.回顾总结本课所学内容。

相关文档