文档库 最新最全的文档下载
当前位置:文档库 › 模式识别课程作业01

模式识别课程作业01

模式识别课程作业01
模式识别课程作业01

模式识别理论与方法

课程作业实验报告

实验名称:Generating Pattern Classes

实验编号:Proj01-01

姓名:

学号:

规定提交日期:2012年3月12日

实际提交日期:2012年3月12日

摘要:

了解概率统计方面的知识,掌握多维高斯分布的性质,以及协方差矩阵的对称半正定性质;用Matlab编程生成高斯分布,高斯模式类,以及在二维空间上表示多维模式的分布。

本实验主要利用mvnrnd(m,s,n)函数生成多元高斯分布的随机向量。

实验所编写的简短程序,经验证符合实验要求。

一、技术论述

1、协方差矩阵

在统计学与概率论中, 协方差矩阵是一个矩阵,这是从标量随机变量到高维度随机向量的自然推广。协方差矩阵一般是对于一个多维随机变量来讲的,表现的是随机变量X各个元素分量(为1维随机变量)之间的相互关系,每一项都对应着其中两个变量的协方差,组合起来就是协方差矩阵了,比如一个n维的随机变量X,其协方差矩阵之第ij个元素即为E[(Xi-E(Xi))*(Xj-E(Xj))],Xi和Xj分别表示X的第i个和第j个元素分量。协方差越大,说明两个变量的相关度越高。

以一个二维向量为例,你就会发现该矩阵的非对角元素正表示了两个分量之间的相关性,而主对角元素则是各分量本身的方差。

Σ称为协方差矩阵。

2、多元正态分布的概率密度函数

多元是指样本以多个变量来描述,或具有多个属性,在此一般用d维特征向量表示,X =[x1,…,x d]T。d维特征向量的正态分布用下式表示

(2-1)

其中μ是X的均值向量,也是d维,

μ=E{X}=[μ1,μ2,…,μd]T (2-2)Σ是d×d维协方差矩阵,而Σ-1是Σ的逆矩阵,|Σ|是Σ的行列式

Σ=E{(X-μ)(X-μ)T} (2-2)Σ是非负矩阵,在此我们只考虑正定阵,即|Σ|>0。

多元正态分布与单态量正态分布在形式上尽管不同,但有很多相似之处,实际上单变量正态分布只是维数为1的多元分布。当d=1时,Σ只是一个1×1的矩阵,也就是只有1个元素的矩阵,退化成一个数,|Σ|1/2也就是标准差σ,Σ-1也就是σ-2,而(X-μ)T(X-μ)也变成(X-μ)2。但是多元正态分布要比单变量时复杂得多,下面只就有关的特性加以简单叙述。

多元正态分布的概率密度函数中的元就是我们前面说得特征向量的分量数,也就是维数。为了方便我们着重讨论二维向量,是一个随机向量,其中每一个分量都是随机变量,服从正态分布。但是一个二维随机向量不仅要求考虑每个分量单独的分布,还要考虑两个随机变量之间的关系。下图的例子中的两个二元正态分布的各个分量是相同的,即它们的期望(μ1和μ2)、方差σ1和σ2都相同,但这两个特征向量在空间的分布却不相同。如下图:

对右图来说,x1和x2有很大的相关性,而对左图来说,随机变量x1与x2之间的相关性很小。

3、matlab中的mvnrnd(m,s,n)函数

以下引自matlab帮助文件

MVNRND Random vectors from the multivariate normal distribution.

R = MVNRND(MU,SIGMA) returns an n-by-d matrix R of random vectors chosen from the multivariate normal distribution with mean vector MU, and covariance matrix SIGMA. MU is an n-by-d matrix, and MVNRND generates each row of R using the corresponding row of MU. SIGMA is a d-by-d symmetric positive semi-definite matrix, or a d-by-d-by-n array.

If SIGMA is an array, MVNRND generates each row of R using the corresponding page of SIGMA, i.e., MVNRND computes R(I,:) using MU(I,:) and SIGMA(:,:,I). If MU is a 1-by-d vector, MVNRND replicates it to match the trailing dimension of SIGMA.

R = MVNRND(MU,SIGMA,CASES) returns a CASES-by-d matrix R of random vectors chosen from the multivariate normal distribution with a common by-d mean vector MU, and a common d-by-d covariance matrix SIGMA.

二、实验结果

(a)实验生成10个符合高斯分布的二维向量,输入均值向量m=[1 -1],协方差矩阵s=[0.9 0.4;0.4 0.3]

y=proj1_1(10,2,[1,-1],[0.9 0.4;0.4 0.3])

y =

1.5101 -1.2452

2.7398 0.8343

-1.1429 -1.6988

1.8179 -0.6585

1.3024 -0.6157

-0.2406 -1.6230

0.5887 -1.2262

1.3250 -0.3347

4.3948 1.0014

3.6273 0.6632

(b)实验输入x向量,输出产生符合N(m,s)的d维向量

m = [1 -1];

s= [.9 .4; .4 .3];

x=[1 2];

y=proj1_2(x,m,s)

y =

4.9112e-017

(c)生成20个3维高斯数据集分3类,先验概率已知p1=0.2;p2=0.3;p3=0.5;

proj1_3(20,3,3)

a =

1.2596 -0.1484 1.4436

0.0598 -3.7502 -4.5601

0.0499 -3.1534 -3.3567

0.5841 -2.5887 -2.7614

b =

0.8241 -5.4132 -2.2374

2.7688 0.9258 2.1569

2.3336 -0.8915 0.7748

0.9415 -2.3371 0.7214

2.0160 -1.4602 0.5238

0.9514 -6.8469 -3.7983

c =

2.8536 -1.4453 6.0679

5.7781 -2.9919 -

6.3854

3.1703 -1.0661 6.4748

3.0717 -2.6766 1.4498

1.7284 -3.0312

2.6653

2.9466 -4.3944 -4.0080

3.4024 -3.2135 -0.8406

3.7385 -2.7347 -1.0087

2.3543 -

3.0853 1.1745

2.5904 -4.6367 -5.5773

(d)(e)提取3个三维分量的第一、二分量作图

图1 提取多维分量的某两维分量在二维空间中表示

附录:实验程序

(a)

function y=proj1_1(n,d,m,s)

%n 向量个数

%d 向量维数

%m 均值向量

%s 协方差矩阵

if [1,d]==size(m)

y=mvnrnd(m,s,n);

else

msgbox('check your input','wrong');

end

(b)

function y=proj1_2(x,m,s)

%x 多维向量

%m 均值向量

%s 协方差矩阵

d=length(x);%维数

x=x';

m=m';

mol=exp(-0.5*(x-m)'*inv(s)*(x-m));

den=(((2*pi)^(d/2))*sqrt(det(s)));

y=mol/den;%计算多维高斯分布密度

(c)

function y=proj1_3(n,d,c)

p1=0.2;p2=0.3;p3=0.5;%分3类的先验概率

n1=p1*n;n2=p2*n;n3=p3*n;

a=proj1_1(n1,d,[1 -1 0],[1 2 3;2 5 8;3 8 13]);%产生3个模式类b=proj1_1(n2,d,[2 -2 0],[1 3 2;3 10 7;2 7 5]);

c=proj1_1(n3,d,[3 -3 0],[3 2 1;2 2 3;1 3 9]);

a

b

c

(d)(e)

a=proj1_1(50,3,[1 2 4],[1 2 3;2 5 8;3 8 13]);

b=proj1_1(50,3,[1 3 2],[1 3 2;3 10 7;2 7 5]);

c=proj1_1(50,3,[1 4 5 ],[3 2 1;2 2 3;1 3 9]);

plot(a(:,1),a(:,2),'.r',b(:,1),b(:,2),'*g',c(:,1),c(:,2),'+b') xlabel('取第一维分量数据')

ylabel('取第二维分量数据')

title('3个模式的画图')

模式识别课matlab数字识别程序

名称:模式识别 题目:数字‘3’和‘4’的识别

实验目的与要求: 利用已知的数字样本(3和4),提取样本特征,并确定分类准则,在用测试样本对分类确定准则的错误率进行分析。进一步加深对模式识别方法的理解,强化利用计算机实现模式识别。 实验原理: 1.特征提取原理: 利用MATLAN 软件把图片变为一个二维矩阵,然后对该矩阵进行二值化处理。由于“3”的下半部分在横轴上的投影比“4”的下半部分在横轴上的投影宽,所以可以统计‘3’‘4’在横轴上投影的‘1’的个数作为一个特征。又由于‘4’中间纵向比‘3’的中间‘1’的个数多,所以可以统计‘4’和‘3’中间区域‘1’的个数作为另外一个特征,又考虑‘4’的纵向可能会有点偏,所以在统计一的个数的时候,取的范围稍微大点,但不能太大。 2.分类准则原理: 利用最近邻对测试样本进行分类 实验步骤 1.利用MATLAN 软件把前30个图片变为一个二维矩阵,然后对该矩阵进行二值化处理。 2.利用上述矩阵生成特征向量 3.利用MATLAN 软件把后5个图片变为一个二维矩阵,然后对该矩阵进行二值化处理。 4.对测试样本进行分类,用F矩阵表示结果,如果是‘1’表示分类正确,‘0’表示分类错误。 5.对分类错误率分析 实验原始程序: f=zeros(5,2) w=zeros(35,2) q=zeros(35,2) for i=1:35 filename_1='D:\MATLAB6p5\toolbox\images\imdemos\3\' filename_2='.bmp' a= num2str (i) b=strcat(filename_1,a) c=strcat(b,filename_2) d=imread(c) e=im2bw(d) n=0 for u=1:20 m=0 for t=32:36 if(e(t,u)==0) m=m+1 end end if(m<5) n=n+1 end end

北邮模式识别课堂作业答案(参考)

第一次课堂作业 1.人在识别事物时是否可以避免错识 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅 到的到底是真是的,还是虚假的 3.如果不是,那么你依靠的是什么呢用学术语言该如何表示。 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率 评价分类器性能。如果不采用统计学,你是否能想到还有什么合理地分类 器性能评价指标来替代错误率 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算 . 从不同事物所具有的不同属性为出发点认识事物. 一种是对事物的属性进行度量,属于定量的表示方法(向量表示法 )。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题,如”天气预报”),说明: 先验概率、后验概率和类条件概率 按照最小错误率如何决策 按照最小风险如何决策 ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率: 指根据以往经验和分析得到的该老师点名的概率,即为先验概率 P(ωi ) 后验概率: 在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x

模式识别实验报告

模式识别实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验报告 实验课程名称:模式识别 姓名:王宇班级: 20110813 学号: 2011081325 实验名称规范程度原理叙述实验过程实验结果实验成绩 图像的贝叶斯分类 K均值聚类算法 神经网络模式识别 平均成绩 折合成绩 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2014年 6月

实验一、 图像的贝叶斯分类 一、实验目的 将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。 二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念: 阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。 最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。 上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。这时如用全局阈值进行分割必然会产生一定的误差。分割误差包括将目标分为背景和将背景分为目标两大类。实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。 假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。以1p 与2p 分别表示目标与背景的灰度分布概率密度函数,1P 与2P 分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示为

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

DX3004模式识别与人工智能--教学大纲概要

《模式识别与人工智能》课程教学大纲 一、课程基本信息 课程代码:DX3004 课程名称:模式识别与人工智能 课程性质:选修课 课程类别:专业与专业方向课程 适用专业:电气信息类专业 总学时: 64 学时 总学分: 4 学分 先修课程:MATLAB程序设计;数据结构;数字信号处理;概率论与数理统计 后续课程:语音处理技术;数字图像处理 课程简介: 模式识别与人工智能是60年代迅速发展起来的一门学科,属于信息,控制和系统科学的范畴。模式识别就是利用计算机对某些物理现象进行分类,在错误概率最小的条件下,使识别的结果尽量与事物相符。模式识别技术主要分为两大类:基于决策理论的统计模式识别和基于形式语言理论的句法模式识别。模式识别的原理和方法在医学、军事等众多领域应用十分广泛。本课程着重讲述模式识别的基本概念,基本方法和算法原理,注重理论与实践紧密结合,通过大量实例讲述如何将所学知识运用到实际应用之中去,避免引用过多的、繁琐的数学推导。这门课的教学目的是让学生掌握统计模式识别基本原理和方法,使学生具有初步综合利用数学知识深入研究有关信息领域问题的能力。 选用教材: 《模式识别》第二版,边肇祺,张学工等编著[M],北京:清华大学出版社,1999; 参考书目: [1] 《模式识别导论》,齐敏,李大健,郝重阳编著[M]. 北京:清华大学出版社,2009; [2] 《人工智能基础》,蔡自兴,蒙祖强[M]. 北京:高等教育出版社,2005; [3] 《模式识别》,汪增福编著[M]. 安徽:中国科学技术大学出版社,2010; 二、课程总目标 本课程为计算机应用技术专业本科生的专业选修课。通过本课程的学习,要求重点掌握统计模式识别的基本理论和应用。掌握统计模式识别方法中的特征提取和分类决策。掌握特征提取和选择的准则和算法,掌握监督学习的原理以及分类器的设计方法。基本掌握非监督模式识别方法。了解应用人工神经网络和模糊理论的模式识别方法。了解模式识别的应用和系统设计。要求学生掌握本课程的基本理论和方法并能在解决实际问题时得到有效地运用,同时为开发研究新的模式识别的理论和方法打下基础。 三、课程教学内容与基本要求 1、教学内容: (1)模式识别与人工智能基本知识; (2)贝叶斯决策理论; (3)概率密度函数的估计; (4)线性判别函数; (5)非线性胖别函数;

贝叶斯决策理论-模式识别课程作业

研究生课程作业 贝叶斯决策理论 课程名称模式识别 姓名xx 学号xxxxxxxxx 专业软件工程 任课教师xxxx 提交时间2019.xxx 课程论文提交时间:2019 年3月19 日

需附上习题题目 1. 试简述先验概率,类条件概率密度函数和后验概率等概念间的关系: 先验概率 针对M 个事件出现的可能性而言,不考虑其他任何条件 类条件概率密度函数 是指在已知某类别的特征空间中,出现特 征值X 的概率密度,指第 类样品其属性X 是如何分布的。 后验概率是指通过调查或其它方式获取新的附加信息,利用贝叶斯公式对先验概率进行修正,而后得到的概率。贝叶斯公式可以计算出该样品分属各类别的概率,叫做后验概率;看X 属于那个类的可能性最大,就把X 归于可能性最大的那个类,后验概率作为识别对象归属的依据。贝叶斯公式为 类别的状态是一个随机变量.而某种状态出现的概率是可以估计的。贝叶斯公式体现了先验概率、类条件概率密度函数、后验概率三者关系的式子。 2. 试写出利用先验概率和分布密度函数计算后验概率的公式 3. 写出最小错误率和最小风险决策规则相应的判别函数(两类问题)。 最小错误率 如果12(|)(|)P x P x ωω>,则x 属于1ω 如果12(|)(|)P x P x ωω<,则x 属于2ω 最小风险决策规则 If 12(|) (|) P x P x ωλω< then 1x ω∈ If 12(|) (|) P x P x ωλω> then 2x ω∈

4. 分别写出以下两种情况下,最小错误率贝叶斯决策规则: (1)两类情况,且12(|)(|)P X P X ωω= (2)两类情况,且12()()P P ωω= 最小错误率贝叶斯决策规则为: If 1...,(|)()max (|)i i j j c p x P P x ωωω==, then i x ω∈ 两类情况: 若1122(|)()(|)()p X P p X P ωωωω>,则1X ω∈ 若1122(|)()(|)()p X P p X P ωωωω<,则2X ω∈ (1) 12(|)(|)P X P X ωω=, 若12()()P P ωω>,则1X ω∈ 若12()()P P ωω<,则2X ω∈ (2) 12()()P P ωω=,若12(|)(|)p X p X ωω>,则1X ω∈ 若12(|)(|)p X p X ωω<,则2X ω∈ 5. 对两类问题,证明最小风险贝叶斯决策规则可表示为, 若 112222221111(|)()() (|)()() P x P P x P ωλλωωλλω->- 则1x ω∈,反之则2x ω∈ 计算条件风险 2 111111221(|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑ 2 222112221 (|)(|)(|)(|)j j j R x p x P x P x αλωλωλω===+∑ 如果 111122(|)(|)P x P x λωλω+<211222(|)(|)P x P x λωλω+ 2111112222()(|)()(|)P x P x λλωλλω->- 211111122222()()(|)()()(|)P p x P p x λλωωλλωω->-

模式识别特征选择与提取

模式识别特征选择与提取 中国矿业大学计算机科学与技术学院电子信息科学系 班级:信科11-1班,学号:08113545,姓名:褚钰博 联系方法(QQ或手机):390345438,e-mail:390345438@https://www.wendangku.net/doc/da5531174.html, 日期:2014 年06月10日 摘要 实际问题中常常需要维数约简,如人脸识别、图像检索等。而特征选择和特征提取是两种最常用的维数约简方法。特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。 本文是对主成分分析和线性判别分析。 关键词:特征选择,特征提取,主成分分析,线性判别分析 1.引言 模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。本文要讨论的问题就是特征空间如何设计的问题。 基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。 基于线性判别分析的高维特征选择将单个特征的Fisher准则与其他特征选择算法相结合,分层消除不相关特征与冗余特征。不相关特征滤波器按照每个特征的Fisher评价值进行特征排序,来去除噪音和不相关特征。通过对高维数据特征关联性的分析,冗余特征滤波器选用冗余度量方法和基于相关性的快速过滤器算法。分别在不同情境下进行数据分类实验,验证其性能。

模式识别报告二

第二次试验报告 一 实验名称 贝叶斯分类器设计(最小风险贝叶斯决策和最小错误率贝叶斯抉择) 二 实验原理 最小错误率: 合理决策依据:根据后验概率决策 已知后验概率P(w 1|x), P(w 2|x), 决策规则: ? 当P(w 1|x)>P(w 2|x) x ∈w 1, ? 当P(w 1|x)

最小风险: 1. 已知类别的P(w i )及x 的p(x/w i ),利用贝叶斯公式,可得类别 的后验概率P(w i /x)。 2. 利用决策表和后验概率,计算最小条件风险 3. 决策:在各种决策中选择风险最小的决策 三 实验内容 ? 假定某个局部区域细胞识别中正常( w1)和非正常 ( w2)两类先验概率分别为 ? 正常状态:P (w1)=0.9; 异常状态:P (w2)=0.1。 1 (/)()(/)(/)()i i i c i i i p x w P w P w x p x w P w =?=∑

?现有一系列待观察的细胞,其观察值为x: -3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532 ?类条件概率分布正态分布分别为(-2,0.5)(2,2)试对观察的结果进行分类。 四实验步骤及贴图 步骤: ?1.用matlab完成分类器的设计,说明文字程序相应语句,子程 序有调用过程。 ?2.根据例子画出后验概率的分布曲线以及分类的结果示意图。 ?3.最小风险贝叶斯决策,决策表如下: ?重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应 的后验概率的分布曲线和分类结果,并比较两个结果。

模式识别作业(全)

模式识别大作业 一.K均值聚类(必做,40分) 1.K均值聚类的基本思想以及K均值聚类过程的流程图; 2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。给出具体的C语言代码, 并加注释。例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义; 3.给出函数调用关系图,并分析算法的时间复杂度; 4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环 迭代的次数; 5.分析K均值聚类的优缺点。 二.贝叶斯分类(必做,40分) 1.什么是贝叶斯分类器,其分类的基本思想是什么; 2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数; 3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一 类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内; 4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来; 5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比, 并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 7.分析上述实验的结果。 8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩 阵以及判别函数; 三.特征选择(选作,15分) 1.经过K均值聚类后,Iris数据被分作3类。从这三类中各选择10个样本点; 2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中

北邮模式识别课堂作业答案(参考)

第一次课堂作业 ? 1.人在识别事物时是否可以避免错识? ? 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅到的到底 是真是的,还是虚假的? ? 3.如果不是,那么你依靠的是什么呢?用学术语言该如何表示。 ? 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率评价分类 器性能。如果不采用统计学,你是否能想到还有什么合理地分类器性能评价指标来替代错误率? 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算.从不同事物所具有的不同属性为出发点认识事物.一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 ?作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题, 如”天气预报”),说明: ?先验概率、后验概率和类条件概率? ?按照最小错误率如何决策? ?按照最小风险如何决策? ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率:指根据以往经验和分析得到的该老师点名的概率,即为先验概率P(ωi ) 后验概率:在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x 2)计算条件风险

模式识别实验报告(一二)

信息与通信工程学院 模式识别实验报告 班级: 姓名: 学号: 日期:2011年12月

实验一、Bayes 分类器设计 一、实验目的: 1.对模式识别有一个初步的理解 2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识 3.理解二类分类器的设计原理 二、实验条件: matlab 软件 三、实验原理: 最小风险贝叶斯决策可按下列步骤进行: 1)在已知 ) (i P ω, ) (i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计 算出后验概率: ∑== c j i i i i i P X P P X P X P 1 ) ()() ()()(ωωωωω j=1,…,x 2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑== c j j j i i X P a X a R 1 )(),()(ωω λ,i=1,2,…,a 3)对(2)中得到的a 个条件风险值) (X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的 决策k a ,即()() 1,min k i i a R a x R a x == 则 k a 就是最小风险贝叶斯决策。 四、实验内容 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=; 异常状态:P (2ω)=。 现有一系列待观察的细胞,其观察值为x : 已知先验概率是的曲线如下图:

)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,)(2,4)试对观察的结果 进行分类。 五、实验步骤: 1.用matlab 完成分类器的设计,说明文字程序相应语句,子程序有调用过程。 2.根据例子画出后验概率的分布曲线以及分类的结果示意图。 3.最小风险贝叶斯决策,决策表如下: 结果,并比较两个结果。 六、实验代码 1.最小错误率贝叶斯决策 x=[ ] pw1=; pw2=; e1=-2; a1=; e2=2;a2=2; m=numel(x); %得到待测细胞个数 pw1_x=zeros(1,m); %存放对w1的后验概率矩阵 pw2_x=zeros(1,m); %存放对w2的后验概率矩阵

神经网络大作业

神经网络的基本特征及其在战斗识别领域的应用前景简介 —神经网络原理及应用报告 课程名称:神经网络原理及应用 课程编号: 指导教师: 学院: 班级: 姓名: 学号: 日期:

神经网络的基本特征及其在战斗识别领域的应用前景简介 摘要:在未来的军事对抗上,对军事打击的物理距离越来越大,对打击的反应时间的要求越来越短,对打击的精度要求越来越高。在这种情况下,迅速且精确的敌我识别系统显得尤其重要。传统的战斗识别方式早已遇到了瓶颈,而神经网络因为它在信息、信号处理、模式识别方面有些独到之处,近年来受到各国军界的普遍重视。 关键词:军事,战斗识别,模式识别,敌我识别,神经网络 1 引言 众多科学家预言,21世纪将是“生物”世纪。这说明生物学的研究和应用已进入了空前繁荣的时代。神经网络系统理论就是近十多年来受其影响而得到飞速发展的一个世界科学研究的前沿领域。这股研究热潮必然会影响到军事技术的研究。在现代战争中,因为远程制导武器的广泛应用,绝大多数军事打击都不再依靠肉眼来辨析敌我,战场上的敌我识别变成了一个重要的问题。据统计,1991年的海湾战争期间,美军与友军之间的误伤比例高达24%;在伊拉克战争期间,共发生17起误伤事件,死18人,伤47人。两场战争的伤亡结果表明,单一的敌我识别武器已不能适应现代战争复杂的作战环境和作战要求。所以提高军队战斗识别的效率是现代军事科技研究中一个极其重要的课题。神经网络作为新的热门技术,必然受到军事研究学者们的青睐。本文只选取战斗识别这一领域,简要探讨神经网络技术在战斗识别领域中的应用前景,但求管中一窥,抛砖引玉。 2 神经网络简介 2.1 神经网络的历史 神经网络的研究可以追溯到上个世纪的1890年。但真正展开神经网络理论研究却始于本世纪40年代。1943年,有心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型——MP模型,从此开创了神经网络理论研究的新时代。MP模型以集体并行计算结构来描述神经网络及网络的运行机制,可完成有限的逻辑运算。 1949年,Hebb通过对大脑神经的细胞、人的学习行为和条件反射等一系列

模式识别课程设计

模式识别 课程设计 关于黄绿树叶的分类问题 成员:李家伟2015020907010 黄哲2015020907006 老师:程建 学生签字:

一、小组分工 黄哲:数据采集以及特征提取。 李家伟:算法编写设计,完成测试编写报告。 二、特征提取 选取黄、绿树叶各15片,用老师给出的识别算法进行特征提取 %Extract the feature of the leaf clear, close all I = imread('/Users/DrLee/Desktop/kmeans/1.jpg'); I = im2double(I); figure, imshow(I) n = input('Please input the number of the sample regions n:'); h = input('Please input the width of the sample region h:'); [Pos] = ginput(n); SamNum = size(Pos,1); Region = []; RegionFeatureCum = zeros((2*h+1)*(2*h+1)*3,1); RegionFeature = zeros((2*h+1)*(2*h+1)*3,1); for i = 1:SamNum P = round(Pos(i,:)); rectangle('Position', [P(1) P(2) 2*h+1 2*h+1]); hold on Region{i} = I(P(2)-h:P(2)+h,P(1)-h:P(1)+h,:); RegionFeatureCum = RegionFeatureCum + reshape(Region{i},[(2*h+1)*(2*h+1)*3,1]); end hold off RegionFeature = RegionFeatureCum / SamNum 1~15为绿色树叶特征,16~30为黄色树叶特征,取n=3;h=1,表示每片叶子取三个区域,每个区域的特征为3*3*3维的向量,然后变为27*1的列向量,表格如下。

华南理工大学《模式识别》大作业报告

华南理工大学《模式识别》大作业报告 题目:模式识别导论实验 学院计算机科学与工程 专业计算机科学与技术(全英创新班) 学生姓名黄炜杰 学生学号201230590051 指导教师吴斯 课程编号145143 课程学分2分 起始日期2015年5月18日

实验概述 【实验目的及要求】 Purpose: Develop classifiers,which take input features and predict the labels. Requirement: ?Include explanations about why you choose the specific approaches. ?If your classifier includes any parameter that can be adjusted,please report the effectiveness of the parameter on the final classification result. ?In evaluating the results of your classifiers,please compute the precision and recall values of your classifier. ?Partition the dataset into2folds and conduct a cross-validation procedure in measuring the performance. ?Make sure to use figures and tables to summarize your results and clarify your presentation. 【实验环境】 Operating system:window8(64bit) IDE:Matlab R2012b Programming language:Matlab

《模式识别》大作业人脸识别方法

《模式识别》大作业人脸识别方法 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器 一、 理论知识 1、主成分分析 主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。当特征较多时,在高维空间中研究样本的分布规律就更麻烦。主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。 1.1 问题的提出 一般来说,如果N 个样品中的每个样品有n 个特征12,,n x x x ,经过主成分分析,将 它们综合成n 综合变量,即 11111221221122221122n n n n n n n nn n y c x c x c x y c x c x c x y c x c x c x =+++?? =+++?? ? ?=+++? ij c 由下列原则决定: 1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立; 2、y 的排序原则是方差从大到小。这样的综合指标因子分别是原变量的第1、第2、……、 第n 个主分量,它们的方差依次递减。 1.2 主成分的导出 我们观察上述方程组,用我们熟知的矩阵表示,设12n x x X x ??????= ?????? 是一个n 维随机向量,12n y y Y y ??????=?????? 是满足上式的新变量所构成的向量。于是我们可以写成Y=CX,C 是一个正交矩阵,满足CC ’=I 。 坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。变换后的N 个点在1y 轴上

模式识别课程作业proj03-01

模式识别理论与方法 课程作业实验报告 实验名称:Maximum-Likelihood Parameter Estimation 实验编号:Proj03-01 姓 名: 学 号:规定提交日期:2012年3月27日 实际提交日期:2012年3月27日 摘 要: 参数估计问题是统计学中的经典问题,其中最常用的一种方法是最大似然估计法,最大似然估计是把待估计的参数看作是确定性的量,只是其取值未知。最佳估计就是使得产生已观测到的样本的概率为最大的那个值。 本实验研究的训练样本服从多元正态分布,比较了单变量和多维变量的最大似然估计情况,对样本的均值、方差、协方差做了最大似然估计。 实验结果对不同方式计算出的估计值做了比较分析,得出结论:对均值的最大似然估计 就是对全体样本取平均;协方差的最大似然估计则是N 个)'?x )(?x (u u k k --矩阵的算术平均,对方差2 σ的最大似然估计是有偏估计。 一、 技术论述

(1)高斯情况:∑和u 均未知 实际应用中,多元正态分布更典型的情况是:均值u 和协方差矩阵∑都未知。这样,参数向量θ就由这两个成分组成。 先考虑单变量的情况,其中参数向量θ的组成成分是:221,σθθ==u 。这样,对于单个训练样本的对数似然函数为: 2 12 2 )(212ln 21)(ln θθπθ θ-- - =k k x x p (1) 对上式关于变量θ对导: ???? ? ???????-+--=?=?2 2 2 12 12 2)(21 )(1 )(ln θθθθθθθθk k k x x x p l (2) 运用式l θ?=0,我们得到对于全体样本的对数似然函数的极值条件 0)?(?1 n 112=-∑=k k x θθ (3) 0?) (?11 2 2 2 112 =-+ -∑ ∑==n k k n k x θθθ (4) 其中1?θ,2?θ分别是对于1θ,2θ的最大似然估计。 把1?θ,2?θ用u ?,2?σ代替,并进行简单的整理,我们得到下述的对于均值和方差的最大似然估计结果 ∑==n k k x n u 1 1 ? (5) 2 1 2 )?(1 ?∑=-= n k k u x n σ (6) 当高斯函数为多元时,最大似然估计的过程也是非常类似的。对于多元高斯分布的均值u 和协方差矩阵∑的最大似然估计结果为: ∑=1 1 ?n k x n u (7) t k n k k u x u x )?()?(n 1 ?1 --=∑ ∑= (8) 二、 实验结果

模式识别文献综述报告

指导老师:马丽 学号:700 班级: 075111 姓名:刘建 成绩: 目录 ............................................................ 一、报告内容要点............................................................ 二、《应用主成分分解(PCA)法的图像融合技术》............................................................ 三、《基于类内加权平均值的模块 PCA 算法》............................................................

四、《PCA-LDA 算法在性别鉴别中的应用》 ............................................................ 五、《一种面向数据学习的快速PCA算法》 ............................................................ 六、《Theory of fractional covariance matrix and its applications in PCA and 2D-PCA》 ............................................................ 七、课程心得体会 ............................................................ 八、参考文献 ............................................................ 一、报告内容要点 ①每篇论文主要使用什么算法实现什么 ②论文有没有对算法做出改进(为什么改进,原算法存在什么问题,改进方法是什么) ③论文中做了什么对比试验,实验结论是什么?可以加入自己的分析和想法,例如这篇论文还存在什么问题或者缺点,这篇论文所作出的改进策略是否好,你自己对算法有没有什么改进的想法? 二、《应用主成分分解(PCA)法的图像融合技术》 第一篇《应用主成分分解(PCA)法的图像融合技术》,作者主要是实现用PCA可以提取图像数据中主要成分这一特点,从元图像获得协方差矩阵的特征值和特征向量,据此确定图像融合算法中的加权系数和最终融合图像。 作者在图像融合的算法上进行改进,用PCA获得待融合的每幅图像的加权系数Wi。是这样实现的:计算待融合的i幅图像数据矩阵的协方差矩阵,从中获

《模式识别基础》课程标准

《模式识别基础》课程标准 (执笔人:刘雨审阅学院:电子科学与工程学院)课程编号:08113 英文名称:Pattern Recognition 预修课程:高等数学,线性代数,概率论与数理统计,程序设计 学时安排:40学时,其中讲授32学时,实践8学时。 学分:2 一、课程概述 (一)课程性质地位 模式识别课基础程是军事指挥类本科生信息工程专业的专业基础课,通信工程专业的选修课。在知识结构中处于承上启下的重要位置,对于巩固已学知识、开展专业课学习及未来工作具有重要意义。课程特点是理论与实践联系密切,是培养学生理论素养、实践技能和创新能力的重要环节。是以后工作中理解、使用信息战中涉及的众多信息处理技术的重要知识储备。 本课程主要介绍统计模式识别的基本理论和方法,包括聚类分析,判别域代数界面方程法,统计判决、训练学习与错误率估计,最近邻方法以及特征提取与选择。 模式识别是研究信息分类识别理论和方法的学科,综合性、交叉性强。从内涵讲,模式识别是一门数据处理、信息分析的学科,从应用讲,属于人工智能、机器学习范畴。理论上它涉及的数学知识较多,如代数学、矩阵论、函数论、概率统计、最优化方法、图论等,用到信号处理、控制论、计算机技术、生理物理学等知识。典型应用有文字、语音、图像、视频机器识别,雷达、红外、声纳、遥感目标识别,可用于军事、侦探、生物、天文、地质、经济、医学等众多领域。 (二)课程基本理念 以学生为主体,教师为主导,精讲多练,以用促学,学以致用。使学生理解模式识别的本质,掌握利用机器进行信息识别分类的基本原理和方法,在思、学、用、思、学、用的循环中,达到培养理论素养,锻炼实践技能,激发创新能力的目的。 (三)课程设计思路 围绕培养科技底蕴厚实、创新能力突出的高素质人才的目标,本课程的培养目标是:使学生掌握统计模式识别的基本原理和方法,了解其应用领域和发展动态,达到夯实理论基础、锻炼理论素养及实践技能、激发创新能力的目的。 模式识别是研究分类识别理论和方法的学科,综合性、交叉性强,涉及的数学知识多,应用广。针对其特点,教学设计的思路是:以模式可分性为核心,模式特征提取、学习、分类为主线,理论上分层次、抓重点,方法上重比较、突出应用适应性。除了讲授传统的、经典的重要内容之外,结合科研成果,介绍不断出现的新理论、新方法,新技术、新应用,开拓学生视野,激发学习兴趣,培养创新能力。 教学设计以章为单元,用实际科研例子为引导,围绕基本原理展开。选择两个以上基本方法,辅以实验,最后进行对比分析、归纳总结。使学生在课程学习中达到一个思、学、用、

人工智能 多种模式识别的调研报告

郑州科技学院 本科毕业设计(论文) 题目多种模式识别的调研报告 姓名闫永光 专业计算机科学与技术 学号201115025 指导教师 郑州科技学院信息工程系 二○一四年六月

摘要 信息技术的飞速发展使得人工智能的应用范围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。 模式识别(Pattern Recognition)是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;人工智能;多种模式识别的应用;模式识别技术的发展潜力

引言 随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能力”,诸如对声音、文字、图像、温度以及震动等外界信息,这样就可以依靠计算机来对人类的生存环境进行数字化改造。但是从一般的意义上来讲,当前的计算机都无法直接感知这些信息,而只能通过人在键盘、鼠标等外设上的操作才能感知外部信息。虽然摄像仪、图文扫描仪和话筒等相关设备已经部分的解决了非电信号的转换问题,但是仍然存在着识别技术不高,不能确保计算机真正的感知所采录的究竟是什么信息。这直接使得计算机对外部世界的感知能力低下,成为计算机应用发展的瓶颈。这时,能够提高计算机外部感知能力的学科——模式识别应运而生,并得到了快速的发展。人工智能中所提到的模式识别是指采用计算机来代替人类或者是帮助人类来感知外部信息,可以说是一种对人类感知能力的一种仿真模拟。它探讨的是计算机模式识别系统的建立,通过计算机系统来模拟人类感官对外界信息的识别和感知 1、模式识别 什么是模式和模式识别? 模式可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。 模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。

相关文档