文档库 最新最全的文档下载
当前位置:文档库 › 高中数学苏教版高二选修2-1学业分层测评:第2章_圆锥曲线与方程_2.3.2 含解析

高中数学苏教版高二选修2-1学业分层测评:第2章_圆锥曲线与方程_2.3.2 含解析

高中数学苏教版高二选修2-1学业分层测评:第2章_圆锥曲线与方程_2.3.2 含解析
高中数学苏教版高二选修2-1学业分层测评:第2章_圆锥曲线与方程_2.3.2 含解析

高中数学苏教版高二选修2-1学业分层测评:第2章_圆锥

曲线与方程_2.3.2 含解析

学业分层测评

(建议用时:45分钟)

学业达标]

一、填空题

1.设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________. 【解析】 由题意可知,双曲线的焦点在x 轴上, 且c =2,a =1,则b 2=c 2-a 2=1, 所以双曲线C 的方程为x 2-y 2=1. 【答案】 x 2-y 2=1

2.双曲线的渐近线方程为y =±

34x ,则双曲线的离心率为________. 【解析】 e =c

a =

1+? ??

??b a 2, 当b a =34时,e =54;当b a =43时,e =53. 【答案】 53或5

4

3.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为________. 【解析】 方程可化为y 2

-x 2

-1m

=1.

由条件知2

-1m =2×2,解得m =-14.

【答案】 -1

4

4.若双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的实轴长、虚轴长、焦距成等差数列,则双曲线的离心率为________.

【解析】 由2a +2c =4b ,得a +c =2b =2

c 2-a 2,即a 2+2ac +c 2=4c 2-4a 2,得5a 2

+2ac -3c 2=0,(5a -3c )·(a +c )=0,即5a =3c ,e =c a =5

3.

【答案】 5

3

5.已知双曲线中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5∶4,则双曲线的标准方程是________.

【解析】 双曲线中心在原点,一个顶点的坐标为(3,0),则焦点在x 轴上,且a =3,焦距与虚轴长之比为5∶4,即c ∶b =5∶4,解得c =5,b =4,则双曲线的标准方程是x 29-y 2

16=1.

【答案】 x 29-y 2

16=1

6.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2

b 2=1,C 1与C 2的离心率之积为3

2,则C 2的渐近线方程为________. 【导学号:09390037】

【解析】 由题意知e 1=c 1a ,e 2=c 2

a , ∴e 1·e 2=c 1a ·c 2a =c 1c 2a 2=3

2.

又∵a 2=b 2+c 21,c 22=a 2+b 2,∴c 21=a 2-b 2, ∴c 21c 22a 4=a 4-b 4a 4=1-? ????b a 4,即1-? ??

??b a 4=34,

解得b a =±22,∴b a =2

2.

令x 2a 2-y 2

b 2=0,解得bx ±ay =0,∴x ±2y =0. 【答案】 x ±2y =0

7.双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于________.

【解析】 双曲线的一条渐近线方程为x a -y

b =0,即bx -ay =0,焦点(c,0)到该渐近线的距离为

bc

a 2+

b 2

=bc c =3,故b =3,结合c

a =2,c 2=a 2+

b 2得

c =2,则双曲线C 的焦距为2c

=4.

【答案】 4

8.y =kx +2与双曲线x 29-4y 2

9=1右支交于不同的两点,则实数k 的取值范围是________.

【解析】

由???

y =kx +2,

x 29-4

9y 2=1,

消去y 得(1-4k 2)x 2-16kx -25=0,

∴???????

1-4k 2≠0,

Δ=4(25-36k 2

)>0,

16k 1-4k 2>0,-25

1-4k

2

>0,∴-56

2.

【答案】 ? ????-5

6,-12

二、解答题

9.已知双曲线的中心在原点,对称轴为坐标轴,过点P (3,-1),一条渐近线与直线3x -y =2平行,求双曲线的标准方程.

【解】 ①若双曲线的焦点在x 轴上,则由渐近线方程y =3x 得b

a =3,∴

b =3a .故可设双曲线的标准方程为x 2a 2-y 2

(3a )2

=1,又双曲线过点P (3,-1),

∴9a 2-19a 2=1,解得a 2=80

9,∴b 2=80, ∴所求双曲线的标准方程为x 2809

-y 2

80=1.

②若双曲线的焦点在y 轴上,则由渐近线方程y =3x 得a

b =3,∴a =3b .故可设双曲线的标准方程为y 2(3b )2-x 2

b

2=1.

∵点P (3,-1)在双曲线上,∴(-1)29b 2-32

b 2=1,解得9b 2=-80,不合题意.

综上所述,所求双曲线的标准方程是x 2809

-y 2

80=1.

10.直线l 在双曲线x 23-y 2

2=1上截得的弦长为4,其斜率为2,求l 的方程. 【解】 设直线l 的方程为y =2x +m ,

由???

y =2x +m ,x 23-y 2

2=1,

得10x 2+12mx +3(m 2+2)=0.(*)

设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 由根与系数的关系,

得x 1+x 2=-65m ,x 1x 2=3

10(m 2+2). 又y 1=2x 1+m ,y 2=2x 2+m , ∴y 1-y 2=2(x 1-x 2),

∴AB 2=(x 1-x 2)2+(y 1-y 2)2=5(x 1-x 2)2 =5(x 1+x 2)2-4x 1x 2] =5??????

3625m 2-4×310(m 2+2). ∵AB =4,∴36

5m 2-6(m 2+2)=16. ∴3m 2=70,m =±210

3. 由(*)式得Δ=24m 2-240, 把m =±210

3代入上式,得Δ>0, ∴m 的值为±210

3.

∴所求l 的方程为y =2x ±210

3.

能力提升]

1.如图2-3-2,F 1和F 2分别是双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|长为半径的圆与该双曲线左支的两个交点,且△F 2AB 是等边三角形,则双曲线的离心率为________. 【导学号:09390038】

图2-3-2

【解析】 连接AF 1,

∵|F 1F 2|=2c ,且△AF 2B 为等边三角形, 又|OF 1|=|OA |=|OF 2|,∴△AF 1F 2为直角三角形, 又∵∠AF 2F 1=1

2×60°=30°, ∴|AF 2|=3c ,|AF 1|=c .

由双曲线的定义知3c -c =2a ,∴e =c a =23-1

=3+1.

【答案】

3+1

2.过双曲线C :x 2a 2-y 2

b 2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为________.

【解析】 由直线方程x =a 和渐近线方程y =b

a x 联立解得A (a ,

b ).由以C 的右焦点为圆心,4为半径的圆过原点O ,可得

c =4,即右焦点F (4,0).由该圆过A 点,可得|F A |2=(a -4)2+b 2=a 2+b 2-8a +16=c 2-8a +16=c 2,所以8a =16,则a =2,所以b 2=c 2-a 2=16-4=12.

故双曲线C 的方程为x 24-y 2

12=1. 【答案】 x 24-y 2

12=1

3.已知F 1,F 2为双曲线x 25-y 2

4=1的左、右焦点,P (3,1)为双曲线内一点,点A 在双曲线

上,则AP +AF 2的最小值为________.

【解析】 首先根据定义,得AF 2=AF 1-2a . ∵AP +AF 2=AP +AF 1-2a =AP +AF 1-25,

∴要求AP +AF 2的最小值,只需求AP +AF 1的最小值.由图可知,当F 1,A ,P 三点共线时,AP +AF 1=PF 1取得最小值,最小值为37,∴AP +AF 2的最小值为37-2 5.

【答案】

37-2 5

4.已知双曲线C :x 2-y 2=1及直线l :y =kx -1.

(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;

(2)若直线l 与双曲线C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.

【解】 (1)联立方程组?????

y =kx -1,

x 2-y 2=1,

消去y 并整理得,(1-k 2)x 2+2kx -2=0. ∵直线与双曲线有两个不同的交点,

则?????

1-k 2≠0,

Δ=4k 2+8(1-k 2

)>0,

解得-2

∴若l 与C 有两个不同交点,实数k 的取值范围为 (-2,-1)∪(-1,1)∪(1,2). (2)法一 设A (x 1,y 1),B (x 2,y 2), 对于(1)中的方程(1-k 2)x 2+2kx -2=0, 由根与系数的关系,

得x 1+x 2=-2k 1-k 2,x 1x 2=-2

1-k 2

, ∴AB =1+k 2|x 1-x 2|

1+k 2

·

? ????-2k 1-k 22+81-k

2 =

(1+k 2)(8-4k 2)

(1-k 2)

2

.

又∵点O (0,0)到直线y =kx -1的距离d =11+k

2

∴S △AOB =12·AB ·d =1

2

8-4k 2(1-k 2)

2

=2,

即2k 4-3k 2=0,解得k =0或k =±62. ∴实数k 的值为±6

2或0. 法二 设A (x 1,y 1),B (x 2,y 2), 由(1)得x 1+x 2=-

2k

1-k 2,x 1x 2=-2

1-k 2

.又直线l 过点D (0,-1), ∴S △OAB =S △OAD +S △OBD =12|x 1|+1

2|x 2| =1

2|x 1-x 2|=2,

∴(x 1-x 2)2

=(22)2

,即? ????-2k 1-k 22

+81-k

2=8, 解得k =0或k =±62. 由(1)知上述k 的值符合题意, ∴实数k 的值为0或±6

2.

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

新编高中数学人教A版必修一 学业分层测评(一) 含答案

新编人教版精品教学资料 学业分层测评(一) 集合的含义 (建议用时:45分钟) [学业达标] 一、选择题 1.下列对象能构成集合的是() ①NBA联盟中所有优秀的篮球运动员,②所有的钝角三角形,③2015年诺贝尔经济学奖得主,④大于等于0的整数,⑤莘县第一中学所有聪明的学生.A.①②④B.②⑤ C.③④⑤D.②③④ 【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合. 【答案】 D 2.已知集合M中的元素a,b,c是△ABC的三边,则△ABC一定不是() A.锐角三角形B.钝角三角形 C.直角三角形D.等腰三角形 【解析】因为集合中元素具有互异性,所以a,b,c互不相等,因此选D. 【答案】 D 3.下面有三个命题:①集合N中最小的数是1;②若-a?N,则a∈N;③若a∈N,b∈N,则a+b的最小值是2. 其中正确命题的个数是() A.0个B.1个 C.2个D.3个 【解析】因为自然数集中最小的数是0,而不是1,所以①错;对于②,取a=2,则-2?N,2?N,所以②错;对于③,a=0,b=0时,a+b取得最小

值是0,而不是2,所以③错. 【答案】 A 4.下列正确的命题的个数有( ) ①1∈N ;②2∈N *;③12∈Q ;④2+2?R ;⑤42?Z . A .1个 B .2个 C .3个 D .4个 【解析】 ∵1是自然数,∴1∈N ,故①正确;∵2不是正整数,∴2?N *,故②不正确; ∵12是有理数,∴12∈Q ,故③正确;∵2+2是实数,∴2+2∈R ,所以④不正确; ∵42=2是整数,∴42∈Z ,故⑤不正确. 【答案】 B 5.给出下列说法,其中正确的个数为( ) (1)由1,32,64,??????-12,12 这些数组成的集合有5个元素; (2)方程(x -3)(x -2)2=0的解组成的集合有3个元素; (3)由一条边为2,一个内角为30°的等腰三角形组成的集合中含有4个元素. A .0 B .1 C .2 D .3 【解析】 (1)不正确.对于一个给定的集合,它的元素必须是互异的,即集 合中的任意两个元素都是不同的,而32与64相同,???? ??-12与12相同,故这些数组成的集合只有3个元素. (2)不正确.方程(x -3)(x -2)2=0的解是x 1=3,x 2=x 3=2,因此写入集合时只有3和2两个元素. (3)正确.若2为底边长,则30°角可以是顶角或底角;若2为腰长,则30°角也可以是顶角或底角,故集合中有4个元素.

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

人教A版高中数学必修五学业分层测评5

高中数学学习材料 金戈铁骑整理制作 学业分层测评(五) (建议用时:45分钟) [学业达标] 一、选择题 1.已知方程x2sin A+2x sin B+sin C=0有重根,则△ABC的三边a,b,c 的关系满足() A.b=ac B.b2=ac C.a=b=c D.c=ab 【解析】由方程有重根,∴Δ=4sin2B-4sin A sin C=0,即sin2B=sin A sin C,∴b2=ac. 【答案】 B 2.在△ABC中,A=60°,b=1,S△ABC=3,则角A的对边的长为() A.57 B.37 C.21 D.13 【解析】∵S △ABC = 1 2bc sin A= 1 2×1×c×sin 60°=3,∴c=4.由余弦定理 a2=b2+c2-2bc cos 60°=1+16-2×1×4×1 2=13. ∴a=13. 【答案】 D 3.在△ABC中,a=1,B=45°,S△ABC=2,则此三角形的外接圆的半径R =() A.1 2B.1

C .2 2 D .522 【解析】 S △ABC =12ac sin B =2 4c =2,∴c =4 2. b 2=a 2+c 2-2ac cos B =1+32-82×2 2=25, ∴b =5.∴R =b 2sin B =5 2×22=522. 【答案】 D 4.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32 B.332 C. 3+62 D . 3 +39 4 【解析】 在△ABC 中,由余弦定理可知: AC 2=AB 2+BC 2-2AB ·BC cos B , 即7=AB 2+4-2×2×AB ×12. 整理得AB 2-2AB -3=0. 解得AB =-1(舍去)或AB =3. 故BC 边上的高AD =AB ·sin B =3×sin 60°=33 2 . 【答案】 B 5.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( ) A .4∶3∶2 B .5∶6∶7 C .5∶4∶3 D .6∶5∶4

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学人教a版高二选修2-3_第一章_计数原理_1.2-1.2.2-第1课时学业分层测评_word版有答案

学业分层测评 (建议用时:45分钟) [学业达标] 一、选择题 1 ?以下四个命题,属于组合问题的是() A ?从3个不同的小球中,取出2个排成一列 B ?老师在排座次时将甲、乙两位同学安排为同桌 C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星 D .从13位司机中任选出两位开同一辆车往返甲、乙两地 【解析】 从100位幸运观众中选出2名幸运之星,与顺序无关,是组合问题. 【答案】 C 2. 某新农村社区共包括8个自然村,且这些村庄分布零散,没有任何三个村庄在一条直 线上,现要在该社区内建“村村通”工程,共需建公路的条数为 ( ) A . 4 B . 8 C . 28 D . 64 【解析】 由于“村村通”公路的修建,是组合问题.故共需要建 C 8 = 28条公路. 【答案】 C 3. 组合数 c n (n>r > 1,n , r € N )恒等于( ) 【答案】 D 4 .满足方程Cx 2 —X 16= C 6— 5的x 值为() C . 1,3,5 D . 3,5 【解析】 依题意,有 x — x = 5x — 5 或 x 2 — x + 5x — 5= 16,解得 x = 1 或 x = 5; x = — 7 或 A . 1,3,5,— 7 B . 1,3 A. r + 1 r — 1 B . (n + 1)(r + 1)c n — C . n rC n —11 n r —1 D F —1 【解析】 ?C n —1 n (n — 1)! r 'r — 1 ! n — r ! n !

x= 3,经检验知,只有x= 1或x= 3符合题意. 【答案】B

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

高考数学专题复习曲线与方程

第8讲 曲线与方程 一、选择题 1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D 2. 动点P (x ,y )满足5x -1 2 y -2 2 =|3x +4y -11|,则点P 的轨迹 是 ( ). A .椭圆 B .双曲线 C .抛物线 D .直线 解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |= x -1 2 y -2 2 ,点P 到直线l 的距离d =|3x +4y -11| 5 . 由已知得|PF | d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直 线.选D. 答案 D 3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 225-4y 2 21 =1 D.4x 225+4y 2 21 =1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴

a =52,c =1,则 b 2=a 2- c 2=214 , ∴椭圆的标准方程为4x 225+4y 2 21=1. 答案 D 4.在△ABC 中,A 为动点,B ,C 为定点,B ? ? ???- a 2,0,C ? ????a 2,0且满足条件 sin C -sin B =1 2sin A ,则动点A 的轨迹方程是( ) A.16x 2 a 2-16y 2 15a 2=1(y ≠0) B.16y 2a 2-16x 2 3a 2=1(x ≠0) C.16x 2a 2-16y 2 15a 2=1(y ≠0)的左支 D.16x 2a 2-16y 2 3a 2=1(y ≠0)的右支 解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值). ∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a 4,焦距为 |BC |=a . ∴虚半轴长为? ????a 22-? ?? ??a 42 =34a ,由双曲线标准方程得动点A 的轨迹方程 为16x 2 a 2-16y 2 3a 2=1(y ≠0)的右支. 答案:D 5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =3 7 .动点 P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16 B .14 C .12 D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

学业分层测评(十六)

学业分层测评(十六) Ⅰ.单句语法填空 1.The audience applauded loudly because the dancers had danced so (graceful). 2. The young man was praised for his (brave) of saving the boy from the big fire. 3.It is very (move) to see how much strangers can care for each other. 4.-It is four years since Jack (fall) in love with Mary. -But they are not (marry) yet. 5.-Why does Lily have few friends? -Because she thinks only of herself and doesn't care other people. 6.It is Yang Liwei circled the earth more than 21 hours in the capsule. 7.The car (belong) to Mr Smith was seriously broken in a traffic accident last night. 8.He is very popular among his students as he always tries to make them (interest) in his lecture. 9.Although the main (character)in this movie are so true to life, they are imaginary. 10. After five days of the fantastic space trip, the two astronauts walked out of the spaceship, (tire) but happy. 【答案】 1.gracefully 2.bravery 3.moving 4.fell;married 5.about 6.hat/who7.belonging8.interested9.characters 10tired Ⅱ.单句改错 1.The first attempt may fail,but we don't care for that. 2.Much to us surprise,the old man survived the big fire.

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

2016-2017学年高中数学北师大版必修1学业分层测评10 二次函数的性质

学业分层测评(十) (建议用时:45分钟) [学业达标] 一、选择题 1.函数y =3+2x -x 2(0≤x ≤3)的最小值为( ) A .-1 B .0 C .3 D .4 【解析】 y =3+2x -x 2=-(x -1)2+4,∵0≤x ≤3, ∴当x =3时,y min =3+6-9=0. 【答案】 B 2.若抛物线y =x 2-(m -2)x +m +3的顶点在y 轴上,则m 的值为( ) A .-3 B .3 C .-2 D .2 【解析】 由题意知其对称轴为x =--(m -2)2 =m -2 2=0,即m =2. 【答案】 D 3.设函数f (x )=??? 1,x >0, 0,x =0, -1,x <0, g (x )=x 2f (x -1),则函数g (x )的递减区间是 ( ) A .(-∞,0] B .[0,1) C .[1,+∞) D .[-1,0] 【解析】 g (x )=??? x 2,x >1, 0,x =1, -x 2,x <1. 如图所示,其递减区间是[0,1).故选B.

【答案】 B 4.若f (x )=x 2+bx +c 的对称轴为x =2,则( ) A .f (4)<f (1)<f (2) B .f (2)<f (1)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1) 【解析】 f (x )的对称轴为x =2,所以f (2)最小.又x =4比x =1距对称轴远,故f (4)>f (1),即f (2)<f (1)<f (4). 【答案】 B 5.(2016·资阳高一检测)已知函数f (x )=x 2-2x +4在区间[0,m ](m >0)上的最大值为4,最小值为3,则实数m 的取值范围是( ) A .[1,2] B .(0,1] C .(0,2] D .[1,+∞) 【解析】 f (x )=(x -1)2+3, f (x )的对称轴为x =1,f (x )在(-∞,1]上单调递减,在[1,+∞)上单调递增. 当x =1时,f (x )取到最小值3, 当x =0或2时,f (x )取到最大值4, 所以m ∈[1,2]. 【答案】 A 二、填空题 6.(2016·丹东高一检测)函数y =(m -1)x 2+2(m +1)x -1的图像与x 轴只有一个交点,则实数m 的取值集合为________. 【解析】 当m =1时,f (x )=4x -1,其图像和x 轴只有一个交点? ????14,0, 当m ≠1时,依题意,有Δ=4(m +1)2+4(m -1)=0, 即m 2+3m =0,解得m =-3或m =0, 所以m 的取值集合为{-3,0,1}.

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

相关文档
相关文档 最新文档