文档库 最新最全的文档下载
当前位置:文档库 › 预应力混凝土简支小箱梁大作业计算书

预应力混凝土简支小箱梁大作业计算书

预应力混凝土简支小箱梁大作业计算书
预应力混凝土简支小箱梁大作业计算书

结构设计原理课程设计

——部分预应力混凝土A类构件简支小箱梁

学号:21010234

姓名:江神文

指导老师:杨明

一、 钢筋面积的估算及钢束布置

1. 预应力钢筋数量的确定及布置

按照构件正截面抗裂性要求估算预应力钢筋数量。

对于A 类部分预应力混凝土构件,根据跨中截面的抗裂要求,由下式可得跨中截面所需的有效预加力为:

/0.71s tk

pe p

c M W f N A W

-≥

+

式中的M s 为正常使用极限状态按作用(或荷载)短期效应组合计算的弯矩值;查表3:10788.980s M kN m =?

钢筋估算时,截面性质近似取用全截面的性质来计算,截面形式如图:

图1-1 全截面(尺寸:mm )

图1-2 全截面分块

跨中截面几何特性计算表表2-2

在工程设计中,主梁几何特性多采用分块数值求和法进行,其计算式为

全截面面积:

∑=i

A A

全截面重心至梁顶的距离:A

y

A y i

i

u ∑=

式中 i A ——分块面积;

i y ——分块面积的重心至梁顶边的距离。

相关资料跨中截面和变截面处几何特征相同,见上表2-2。

712.2i

u S

y mm A

=

=∑

1780712.21067.8b y mm =-=

截面抗弯效率指标ρ

u b

K K h

ρ+=

式中 u K ——截面上核心距,可按下式计算

4

51321475.1210396.6212118001067.8

u u I K mm Ay ∑?===∑?

b K ——截面下核心距,可按下式计算

4

51321475.1210594.661211800712.2

b b I K mm Ay ∑?===∑?

因此截面效率指标

396.62594.66

0.561780

u b K K h ρ++=

== 而T 形截面梁亦可达到0.50左右,故该箱型截面形式合理。

截面几何性质: A =1211800mm 2, h =1780mm ,y b =1068 mm ,全截面对抗裂验算边缘的弹性抵抗矩为W =I y b ?=5.1321×10111068 ?=4.8053×108mm 3;

设预应力钢筋截面重心距截面下缘为a p =160mm ,则预应力钢筋的合力作用点至截面重心轴的距离为e p =y b ?a p =1068?160=908mm

所以有效预加力合力为

N pe≥M s

W?0.7f tk

(1A+

e p

W)

=

10788.980×106

4.8053×108?0.7×2.65

(1

1211800+

908

4.8053×108)

=7587026N

预应力钢筋的张拉控制应力为σcon=0.75f pk=0.75×1860=1395MPa,预应力损失按张拉控制预应力的20%估算,则可得需要预应力钢筋的面积为

A p=

N pe

(1?0.2)σcon

=

7704451

0.8×1395

=6798mm2

采用8束7Φs15.2预应力(低松弛)钢绞线,预应力钢筋的截面积为A p=8×7×139=7784mm2。采用OVM.M15-7型锚具,Φ70金属波纹管成孔,预留孔道直径75 mm。预应力钢筋布置见图1-3,1-4,1-5,1-6。

钢束位置及倾角计算见表1-7,1-8。

图1-3 跨中截面(尺寸:mm)

图1-4 变截面(尺寸:mm)

图1-5 L/4截面(尺寸:mm)

图1-6 支点截面(尺寸:mm)

预应力筋束曲线要素表表1-7

各计算截面预应力钢束的位置和倾角表1-8

2. 非预应力钢筋截面积估算及布置

按构件承载能力极限状态要求估算非预应力钢筋数量:

在确定预应力钢筋数量后,非预应力钢筋根据正截面承载能力极限状态的要求来确定。

设预应力钢筋和非预应力钢筋的合力点到截面底边的距离为a =140mm ,则有

h 0=h ?a =1780?140=1640mm

依据《桥规》(JTG D62)第4.2.3条确定箱型截面翼缘板的有效宽度,对于中间梁:

i f mi b b ρ= m l l i 39== 44b b f m ρ=

05.039

7

.04<=i l b 33b b f m ρ=

05.03953.03<=i l b 66b b f m ρ=

05.039

53.06<=i l b

根据上述i i l b /的比值,由《桥规》(JTG D62)图4.2.3-2查得0

.1=f ρ, 所以,m b b m 7.044==,m b b m 53.033==,m b b m 53.066==。 因此,有效工作宽度

m

b b b b m m f 8.2)7.053.017.0(2)(243=++?=++='

先假定为第一类T 形截面,由公式

)

2(00x

h x b f M f cd d -'≤γ,求解x :

61.016104.861022.42800(1640/2)x x ??=?-

解之得:2007020050

164.861601702800340

f x mm h mm ?+?'=<=+

=-。

中性轴在上翼缘中通过,确实为一类T 形,则

2

22.42800164.812607784

1887.2280

cd f pd p

s sd

f b x f A A f mm '-=??-?=

=

如果按照γ0=1.1进行计算,则可得到x =182.4mm >170mm ,为第二类截面,且满足适用条件00.561640918.4b x h mm ξ≤=?=

由'

'

()cd cd f f pd P sd S f bx f h b b f A f A +-=+

得到的A s =3389.28mm 2。对比所给资料,可知资料中非预应力钢筋面积很可能采用了γ0

=1.1进行计算。这样设计使得结构更加偏于安全。

验算混凝土受压区高度x :

x =f pd A p +f sd A s cd f ′

=1260×7784+280×3563=171.4mm >h f ′=170mm 为第二类T 形截面。重新计算混凝土受压区高度:

x =

f pd A p +f sd A s ?f cd (b f ′?b )h f ′

cd =

1260×7784+280×3563?22.4×(2800?340)×170=188.8mm 为了简化计算,采用资料中所给配筋方式。

即主梁跨中截面非预应力钢筋选用14根直径为18mm 的HRB335钢筋;提供钢筋截面面积23563s A mm =,钢筋重心到截面底边距离40s a mm =,预应力钢筋到截面底边距离为160p a mm =,则预应力筋和普通钢筋的合力作用点到截面底边的距离为

12607784160280356340

148.9126077842803563

pd p p sd s s

sp pd p sd s

f A a f A a a mm

f A f A +??+??=

=

=+?+?01780148.91631sp h h a mm

=-=-=

二、 计算主梁截面几何性质

本大作业采用后张法施工,内径70mm 的波纹管成孔,当混凝土达到设计强度时进行张拉,张拉顺序与钢筋束序号相同,年平均湿度为75%。

计算过程分为三个阶段:阶段一为预制构件阶段,施工荷载为预制梁(包括横隔板)的自重,受力构件按预制梁的净截面计算;阶段二为现浇混凝土形成整体化阶段,但不考虑现浇混凝土的承受荷载能力,施工荷载除上述荷载之外还应包括现浇混凝土板的自重,受力构件按预制梁灌浆后的换算截面计算;阶段三的荷载除了阶段一、二的荷载之外,还应包括二期恒载以及活载,受力构件按现浇后的换算截面计算。

预应力混凝土构件各阶段截面几何性质见表2-1。

预应力混凝土构件各阶段截面几何性质 表2-1

三、 持久状况截面承载能力极限状态计算

1. 正截面承载力计算

一般取弯矩最大的跨中截面进行正截面承载力计算。

预应力束和普通钢筋的合力点到截面边缘距离148.9sp a mm =,

01780148.91631sp h h a mm =-=-=,

上翼缘平均厚度为:170f h mm

'=。

1) 求受压区高度x

首先按式pd p sd s cd f f f A f A f b h ''+≤判断截面类型:

kN A f A f s sd p pd 5.1080510)356328077841260(3=??+?=+-

kN

h b f f f cd 4.106621017028004.223=???=''-

f

f cd s sd p pd h b f A f A f ''>+,属于第二类T 形。

由''

()cd cd f f pd P sd S f bx f h b b f A f A +-=+计算混凝土受压区高度。

mm

b

f h b b f A f A f x cd f

f cd s sd p pd 8.1883404.22170

)3402800(4.22356328077841260)(=??-?-?+?=

'-'-+=

故170f x h mm '>=且00.561631913.4b x h mm ξ<=?=。 2) 正截面承载力计算

188.8mm x = 代入下式计算截面承载力。 003

0()()()22

170188.8

[22.4(2800340)170(1631)22.4340188.8(1631)]1022

16691.91 1.016104.86016104.86f

du cd f f cd d h x

M f b b h h f bx h kN m M kN m γ-'''=--

+-=?-??-+???-?=?>=?=?计算结果表明,跨中截面的抗弯承载力满足要求。 2. 斜截面承载力计算

1) 斜截面抗剪承载力计算

计算受弯构件斜截面抗剪承载力时,其计算位置按下列规定采用: ① 距支座中心h/2处截面; ② 受拉区弯起钢筋弯起点处截面;

③ 锚于受拉区的纵向钢筋开始不受力处的截面; ④ 箍筋数量或间距改变处的截面; ⑤ 构件腹板宽度变化处的截面。

选取距指点h/2和变截面点处进行斜截面抗剪承载力复核。预应力筋的位置及弯起角度按表4和表5采用。箍筋HRB235钢筋,直径为12 mm ,双箍四肢,间距s v =200mm ;距支点相当于一倍梁高范围内,箍筋间距s v =100mm 。 a) 据支点h ∕2截面斜截面抗剪承载力计算

首先,根据公式进行截面抗剪强度上、下限复核,即

0.5×10?3α2f td b?0≤γ0V d ≤0.51×10?3√f cu,k b?0

式中:

d

V ——验算截面处剪力组合设计值,根据弯矩以二次抛物线分布,采用依

内插法求得距支点h/2=890mm 处的弯矩为

2

890(39000890)

16104.861436.5419500

d M kN m ?-=?

=?, 剪力为1731.32315.139

1731.328901666.6819500

d V kN -=-?= (见表3)

; 2α——预应力提高系数,对预应力混凝土受弯构件,取为1.25; b ——验算截面处的截面腹板宽度,640340

6408905814500

b mm -=-

?=

0h ——剪力组合设计值处的截面有效高度,即自纵向受拉钢筋合力点(包括预应力钢筋和非预应力钢筋)至混凝土受压边缘的距离,本例中预应力钢筋均弯起,0h 近似取为跨中截面的有效高度值,即01631h mm =。

?0为相应于剪力组合设计值处的截面有效高度,即自纵向受拉钢筋合力点(包括预应力钢筋和非预应力钢筋)至混凝土受压边缘的距离,这里经差值后得到:

支点处有效高度h 0 ?0=??a =??

f pd A p a p +f sd A s a S f pd A p +f sd A s

=1780?1260×7784×952+280×3563×40

1260×7784+280×3563

=912mm

变截面处有效高度h 0 ?0=??a =??

f pd A p a p +f sd A s a S f pd A p +f sd A s

=1780?1260×7784×638.5+280×3563×40

1260×7784+280×3563

=1197mm

则由内插可得到所求截面有效高度?0=968.4mm 则

0.5×10?3α2f td b?0=0.5×10?3×1.25×1.83×581×968.4=643.52kN

<γ0V d =1666.8kN

0.51×10?3√f cu,k b?0=0.51×10?3×√50×581×968.4=2029.02kN >γ0V d

=1666.8kN

计算结果表明,截面尺寸满足要求,但需配置抗剪钢筋。

斜截面抗剪承载力按下式计算:

式中:d V ——斜截面受压端正截面处的剪力组合设计值,其值应按

00.62

h

x mh =

+重新补插,先假定斜截面水平投影长度c=968.4mm,由此可以计算出斜截面的顶端距支点位置为:x=h/2+968.4=1858.4mm,由内插法求得在

01858.41029.7x mm h mm ==, 处,

2

1858.4(390001858.4)

16104.862923.3919500d M kN m ?-=?

=?

1731.32315.139

1731.321858.41596.3519500d V kN -=-?=

m ——剪跨比,3

02923.39

1.781596.351029.710

d d M m V h -=

==?? 00.60.6 1.781029.71099.7c mh ==??=

在00.61989.717802

h

x mh mm mm =

+=>处的剪力为: 1731.32315.139

1731.321989.71586.919500

d V kN -=-?=

cs V ——斜截面内混凝土与箍筋共同作用时的抗剪承载力,由下式计算:

sv sv k cu cs f f P bh V ρααα,03321)6.02(1045.0+?=-

式中:

1α——异号弯矩影响系数,简支梁取为1.0;

2α——预应力提高系数,对预应力混凝土受弯构件,取2α=1.25;

3α——受压翼缘的影响系数,取1.1;

b ——斜截面受压端正截面处截面腹板宽度(x=1989.7mm 处),

640340

6401989.75074500

b mm -=-

?= ;

P ——斜截面纵向受拉钢筋配筋百分率,100P ρ= ,0

pb p s

A A A bh ρ++=

,如

pb

cs d V V V +≤0γ

果5.2>P ,取P=2.5,77843563

100 2.175071029.7

P +=?

=?;

sv ρ——箍筋配筋率,4113.10.00446507200

sv sv

v A bS ρ?===?。

31.25 1.10.45105071029.71455.6cs V kN

-=?????=pb

V ——与斜截面相交的预应力弯起钢束的抗剪承载力,由下式计算

∑-?=p pd pd pb A f V θsin 1075.03

式中,

pd

A ——斜截面内在同一弯起平面的预应力弯起钢筋的截面面积;

p

θ——预应力弯起钢筋在斜截面受压端正截面处的切线与水平线的夹角,

由表5中的曲线要素可求得:1234 4.000p p p p θθθθ====。

kN V pb 12.5134sin 778412601075.03=????=-

该截面的抗剪承载力为:

01455.6513.121968.71586.9du cs pb d V V V kN V kN γ=+=+=>=

说明距支点h/2截面抗剪承载力是足够的。 b) 变截面点出斜截面抗剪承载力计算

首先进行截面抗剪强度上、下限复核:

0,3

00231051.0105.0bh f V bh f k cu d td --?≤≤?γα

式中: 1323.774340d V kN b mm

==,, 变截面处有效高度h 0

012607784638.5280356340

17801197126077842803563pd p p sd s S

pd p sd s

f A a f A a h h a h f A f A mm

+=-=-+??+??=-

=?+?

332000.5100.510 1.25 1.833401197465.51323.774td d f bh kN V kN

αγ--?=?????=

<

=3000.51100.511034011971467.71323.774d kN V kN

γ--?=??=>=

计算表明,截面尺寸满足要求,但需配置抗剪钢筋。 斜截面抗剪承载力按下式计算:

pb

cs d V V V +≤0γ

L/4截面处有效高度h 0

012607784388.5280356340

17801423.7126077842803563

pd p p sd s S

pd p sd s

f A a f A a h h a h f A f A mm

+=-=-+??+??=-

=?+?

先假定斜截面水平投影长度c=1197mm,由此可以计算出斜截面的顶端距支点位置为:x=4500+1197=5697mm,由内插法求得在056971254x mm h mm ==,处,

2

2

(195005697)16104.86(1)8035.619500

d M kN m -=?-=? 1731.32315.1386

1731.3270901317.619500

d V kN -=-

?=

3

08035.6

4.86 3.01317.6125410d d M m V h -=

==>??,取m=3.0 00.60.6312542257.2c mh mm ==??=

在045000.66757.2x mh mm =+=处的剪力为:

1731.32315.139

1731.326757.21240.619500

d V kN -=-

?=

sv sv k cu cs f f P bh V ρααα,03321)6.02(1045.0+?=-

式中:77843563

100 2.66 2.5, 2.53401254

P P +=?

=>=?故;

0066.02003401

.1134=??==

v sv sv bS A ρ;

31.25 1.10.451034012541488.9cs V kN

-=?????=∑-?=p

pd pd pb A f V θsin 1075.03

kN 12.5134sin 778412601075.03=????=-

该截面的抗剪承载力为:

01488.9513.1220021317.6du cs pb d V V V kN V kN γ=+=+=>=

说明变截面抗剪承载力是足够的。非预应力构造钢筋作为承载力储备,未予考虑。

2) 斜截面抗弯承载力

由于钢束均锚固与梁端,钢束数量沿跨长方向没有变化,且弯起角度缓和,其斜截面抗弯强度一般不控制设计,故不另行验算。

四、 钢束预应力损失计算

1. 摩阻损失1l σ

()1[1]kx l con e μθσσ+=-

式中:

c o n σ——张拉控制应力,MPa f pk con 1395186075.075.0=?==σ; μ——钢筋与管道壁间的摩擦系数,预埋金属波纹管时,查得25.0=μ; k ——管道每米长度的局部偏差对摩擦的影响系数,查得0015.0=k ;

x ——从张拉端至计算截面的管道长度在构件纵轴上的投影长度;

θ——从张拉端至计算截面间管道平面曲线的夹角之和,即曲线包角。如管

道为竖平面内和水平面内同时弯曲的三维空间曲线管道,则θ可按下式计算:

2

2

V H θθθ+=

H θ、V θ——分别为在同段管道水平面内的弯曲角与竖向平面内的弯曲角;

由于1号钢筋的平弯角很小,故忽略不计,且2号、3号、4号钢筋的平弯角为0。

计算结果见下表:

结果整理如下表,得

2. 锚具变形损失2l σ

计算锚具变形、钢筋回缩引起的应力损失,后张法曲线布筋的构件应考虑锚固后反磨阻影响。首先根据下式计算反磨阻影响长度l f ,即

l f =√∑Δl ?E p ∕Δσd

式中的∑Δl 为张拉端锚具变形值,由附表2-6查得夹片式锚具顶压张拉时Δl 为4 mm ;5p 1.9510E MPa =?

Δσd 为单位长度由管道磨阻引起的预应力损失,

Δσd =

σ0?σl

l

σ0为张拉端锚下张拉控制应力,σl 为扣除沿途管道摩擦后锚固端预拉应力,σl =σ0?σl1;l 为张拉端至锚固端的距离。

将各截面各束预应力钢筋的反磨阻影响长度列表计算于下表

σ

求得l f后可知四束预应力钢绞线均满足l f≤l,所以距张拉端为x处的截面由锚具变形和钢筋回缩引起的考虑反磨阻后的预应力损失Δσx(σl2)按下式计算,即

Δσx(σl2)=Δσl f?x l f

式中的Δσ为张拉端由锚具变形引起的考虑反磨阻后的预应力损失,Δσ=2Δσd l f。若x>l f则表示该截面不受反磨阻影响。将个控制截面Δσx(σl2)的计算列于下表。

3. 预应力钢筋分批张拉时混凝土弹性压缩引起的应力损失4l σ

混凝土弹性压缩引起的应力损失取按应力计算需要控制的截面进行计算。对于简支梁可取/4L 截面按下式进行计算,并以其结果作为全梁各截面预应力钢筋应力损失的平均值。

∑?=pc EP l σασ4

式中

EP α——预应力钢筋与混凝土弹性模量之比, 652.51045.31095.14

5

=??==c p

EP

E E α ∑?pc

σ

——在计算截面先张拉的钢束重心处,由后张拉的各批钢筋产生的混凝土法

向应力,可按下式计算:

n

pi

p n

po

pc I e M

A N

∑∑∑+

=

?0

σ

式中 0p N 、0p M ——分别为钢束锚固时预加的纵向力和弯矩; pi e ——计算截面上钢束重心至净截面重心轴的距离。

根据参考资料,本题中预应力筋钢束的张拉顺序为:1→2→3→4,分批张拉损失计算如表所示:

预应力混凝土简支T梁计算报告midas

4po 指导老师:李立峰 专业:桥梁工程 班级:桥梁一班 姓名: * * * 学号: **********

一、计算资料 跨度与技术指标 标准跨径:L=25m 计算跨径:L0=24m 汽车荷载:公路一级 设计安全等级:二级 桥梁概况及一般截面 此计算为一预应力混凝土简支梁中梁的计算,不计入现浇带,其跨中与支点截面如图1-1所示,纵断面图如图1-2所示。 使用的材料及其容许应力 混凝土:C50,轴心抗压强度设计值m mm=22.4mmm ,抗拉强度设计值m mm= 1.83mmm,弹性模量m m=3.45×104mmm。 钢筋混凝土容重:γ=26kN/m3

钢筋:预应力钢束采用3束φ×7的钢绞线,抗拉强度标准值m mm=1860mmm,张拉控制应力σcon==1395MPa 截面面积:m m=3×140×7=2940mm2,孔道直径:77mm 预应力钢筋与管道的摩擦系数: 管道每米局部偏差对摩擦的影响系数:(1/m) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 纵向钢筋:采用φ16的HRB335级钢筋,底部配6根,间距为70mm,翼缘板配16根,间距为100mm。 施工方法 采用预制拼装法施工;主梁为预制预应力混凝土T梁,后张法工艺;预制梁混凝土立方体强度达到设计混凝土等级的85%,且龄期不少于7天后方可张拉预应力钢束;张拉时两端对称、均匀张拉(不超张拉),采用张拉力与引伸量双控。 钢束张拉顺序为:N2—N3—N1 二、计算模型 模型的建立 本计算为一单跨预应力混凝土简支T梁桥中梁模型(图2-1),其节点的布置如图2-2 所示。在计算活载作用时,横向分布系数取m=,并不沿纵向变化。在建立结构模型时,取计算跨径m0=24m,由于该结构比较简单,计算跨度只有24m,故增加单元不会导致计算量过大,大多数单元长度为1m。建立保证控制截面在单元的端部,以便于读取数据。 对于横隔板当作节点荷载加入计算模型,其所起到的横向联系作用已在横向分布系数中考虑。 每个节点对应的x坐标值如表2-1所示

部颁图 米小箱梁计算书

目录

预应力混凝土公路桥梁通用设计图成套技术 通用图计算书 (30m 装配式预应力混凝土连续箱梁) 1 计算依据与基础资料 1.1 标准及规范 1.1.1 标准 ?跨径:桥梁标准跨径30m ;跨径组合5×30m(正交); ?设计荷载:公路-Ⅰ级; ?桥面宽度:(路基宽28m ,高速公路),半幅桥全宽13.5m , 0.5m(护栏墙)+12.0m(行车道)+ 1.0m 波型护栏)=13.5m ; ?桥梁安全等级为一级,环境条件Ⅱ类。 1.1.2 规范 ?《公路工程技术标准》JTG B01-2003 ?《公路桥梁设计通用规范》JTG D60-2004(简称《通规》) ?《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 1.1.3 参考资料 ?《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3) 1.2 主要材料 1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40; 2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa =? 3)普通钢筋:采用HRB335,335sk f MPa =,52.010S E Mpa =? 1.3 设计要点 1)本计算示例按后张法部分预应力混凝土A 类构件设计,桥面铺装层80mmC40混凝土不参与截面组合作用;

2)根据组合箱梁横断面,采用荷载横向分布系数的方法将组合箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法、刚(铰)接梁法和比拟正交异性板法(G-M 法)计算,取其中大值进行控制设计。 3)预应力张拉控制应力值0.75con pk f σ=,混凝土强度达到90%时才允许张拉预应力钢束; 4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d; 5)环境平均相对湿度RH=80%; 6)存梁时间为60d 。 2 横断面布置 2.1 横断面布置图 单位:m 2.2跨中计算截面尺寸 单位:mm 边、中梁毛截面几何特性 表2 梁号 边梁 中梁 几何特性 面积 () 2m A 抗弯弹性 模量 () 4 m I 截面重心到顶板距离()m y x 面积 () 2m A 抗弯弹性模量 () 4m I 截面重心到顶板距离()m y x 1.2853 0.3946 0.550 1.2729 0.394 0.553 3 汽车荷载横向分布系数、冲击系数计算 3.1 汽车荷载横向分布系数计算 3.1.1 刚性横梁法 1) 抗扭惯矩计算 宽跨比B/L =13.5/30=0.45≤0.5,可以采用刚性横梁法。 荷载横向分布系数计算时考虑主梁抗扭刚度的影响,抗扭刚度采用公式

箱梁模板设计计算汇总

箱梁模板设计计算 1箱梁侧模 以新安江特大桥主桥箱梁为例。 现浇混凝土对模板的侧压力计算:新浇筑的初凝时间按8h,腹板一次浇注高度4.5m,浇注速度1.5m/h,混凝土无缓凝作用的外加剂,设计坍落度16mm。 F=0.22*26*8*1.0*1.15*1.51/2=64.45KN/m2 F=26*4.5=117.0KN/m2 故F=64.45KN/m2作为模板侧压力的标准值。 q1=64.45*1.2+(1.5+4+4)*1.4=90.64KN/m2(适应计算模板承载能力) q2=64.45*1.2=77.34KN/m2(适应计算模板抗变形能力) 1.1侧模面板计算 面板为20mm厚木胶板,模板次楞(竖向分配梁)间距为300mm,计算高度1000mm。面板截面参数:Ix=666670mm4,Wx=66667mm3,Sx=50000mm3,腹板厚1000mm。

按计算简图1(3跨连续梁)计算结果:Mmax=0.82*106N.mm,Vx=16315N,fmax=0.99mm。 由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为 2.48MPa,大于1.35MPa不满足。 由 Mx/Wx得计算得强度应力为4.89MPa,满足。 由fmax/L得挠跨比为1/304,不满足。 按计算简图2(较符合实际)计算结果:Mmax=0.25*106 N.mm,Vx=9064N,fmax=0.12mm。 由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为0.68MPa,满足。 由 Mx/Wx得计算得强度应力为3.82MPa,满足。 由fmax/L得挠跨比为1/1662,满足。 由此可见合理的建立计算模型确实能减少施工投入避免不必要的浪费。 1.2竖向次楞计算 次楞荷载为:q3=90.64*103*0.3=27192N/m=27.19N/mm,选用方木100*100mm,截面参数查附表。水平主楞间距为900mm,按3跨连续梁计算。

20米小箱梁张拉计算书

千斤顶张拉力与对应油表读数计算 一、锚下控制应力:K=0.75fpa=1395Mpa 二、预应力筋的截面面积Ap=140mm2 三、单艮钢绞线张拉的张拉力F= k*Ap=1395Mpa*140mm 2=195300N 四、25m箱梁钢绞线的张拉控制力: 3 根钢绞线束:F仁3* K*AP=3*195.3KN=585.9KN 4 根钢绞线束:F2=4* K*AP=4*195.3KN=781.2KN 5 根钢绞线束:F3=5* K*AP=5*195.3KN=976.5KN 五、1#千斤顶张拉、9953号油表时: 千斤顶回归方程:P=0.0478F(KN)+0.66 式中:P――油压表读数(Mpa)F――千斤顶拉力(KN)油压表读数计算如下 六、1#千斤顶张拉、5247号油表时: 千斤顶回归方程:P=0.0484F(KN)-0.25 式中:P――油压表读数(Mpa)F――千斤顶拉力(KN)油压表读数计算如下

七、2#千斤顶张拉、7297号油表时: 千斤顶回归方程:P=0.0482F(KN)+0.22 式中:P――油压表读数(Mpa)F――千斤顶拉力(KN )油压表读数计算如下 八、2#千斤顶张拉、7424号油表时: 千斤顶回归方程:P=0.0502F(KN)+0.21 式中:P――油压表读数(Mpa)F――千斤顶拉力(KN)油压表读数计算如下

伸长量验算 一、锚下控制应力:K=0.75fpa=1395Mpa 二、预应力筋的截面面积Ap=140mm2 三、单根钢绞线张拉的张拉力P= k*Ap=1395Mpa*140mm2=195300N 四、预应力平均张拉力计算公式及参数: Pp=P* (1-e-(kx+ ge)/ (kx+ ") Pp 预应力筋的平均张拉力(N) 式 中: P ——预应力筋张拉端的张拉力(N) X ――从张拉端至计算截面的孔道长度(m) e――从张拉端至计算截面的曲线孔道部分切线的夹角之和( rad ) K ――孔道每米局部偏差对摩擦的影响系数,取0.0015 五、预应力筋的理论伸长量计算公式及参数: △L=Pp*L/Ap*Ep 式中:Pp预应力筋平均张拉力(N) L ——预应力筋的长度(mm) Ap------ 预应力筋的截面面积(mrh ,取140mfri Ep ――预应力筋的弹性模量(N/mm),取1.95 x iO5Pa 六、伸长量计算: ( 1 )20m 中跨一片预制箱梁 1、N1 束一端的伸长量:

30m预应力混凝土简支T梁

一、计算依据与基础资料 (一)、设计标准及采用规范 1、标准 跨径:桥梁标准跨径30m;计算跨径(正交、简支);预知T梁长。 设计荷载:公路——Ⅱ级 桥面宽度:分离式路基宽(高速公路),半幅桥全宽 桥梁安全等级为一级,环境条件为Ⅱ类 2、采用规范:交通部颁布的预应力混凝土简支T梁设计通用图; 《公路桥涵设计通用规范》JTG D60-2004; 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004; 刘效尧等编著,《公路桥涵设计手册-梁桥》,人民交通出版社,2011; 强士中,《桥梁工程(上)》,高等教育出版社,2004。 (二)、主要材料 1、混凝土:预制T梁,湿接缝为C50、现浇铺装层为C50、护栏为C30. 2、预应力钢绞线:采用钢绞线s ㎜,?pk=1860MPa,E p=×105MPa 3、普通钢筋:采用HRB335,? sk =335MPa,E s =×105MPa (三)、设计要点 1、简支T梁按全预应力构件进行设计,现浇层80mm厚的C40的混凝土不参与截面组合作用。 2、结构重要性系数取; 3、预应力钢束张拉控制应力值σ con =? pk ; 4、计算混凝土收缩、徐变引起的预应力损失时传力锚固龄期为7d; 5、环境平均相对湿度RH=55%; 6、存梁时间为90d; 7、湿度梯度效应计算的温度基数,T 1=14℃,T 2 =℃。 二、结构尺寸及结构特征(一)、构造图

构造图如图1~图3所示。

(二)、截面几何特征 边梁、中梁毛截面几何特性见表1 边梁、中梁毛截面几何特性 (全截面) 边梁中梁(2号梁) 毛截面面 积A(㎡) 抗弯惯矩 I(m4) 截面重心 到梁顶距 离y x (m) 毛截面面 积A(㎡) 抗弯惯矩 I(m4) 截面重心 到梁顶距 离y x (m) 支点几何特性跨中几何特性 (预制截面) 边梁中梁(2号梁) 毛截面面 积A(㎡) 抗弯惯矩 I(m4) 截面重心 到梁顶距 毛截面面 积A(㎡) 抗弯惯矩 I(m4) 截面重心 到梁顶距

20m箱梁模板计算书

20米箱梁模计算书1.砼侧压力计算 最大侧压力可按下列二式计算,并取其最小值: F=0.22γ c t β 1 β 2 V1/2 F=γ c H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γ c ---- 混凝土的重力密度(kN/m3)取26 kN/m3 t ------新浇混凝土的初凝时间(h),h=3.5小时。 V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08 m H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4m β1------外加剂影响修正系数,不掺外加剂时取1; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。此处取1.15, F=0.22γ c t β 1 β 2 V1/2 =0.22x26x3.5x1x1.15x1.081/2 =24kN/m2 F=γ c H =26x1.4=36.4kN/ m2 取二者中的较小值,F=24kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4 kN/ m2,取为35 kN/ m2 有效压头高度:H0=35/26=1.35m 2.面板验算(6mm钢板) 最大跨距: l=300mm, 每米长度上的荷载:q=FD=35x0.9=31.5KN/m。D为背杠的间距 弯矩:Mmax=0.1ql2=0.1x31.5x0.32=0.2835KN.m

箱梁模板支架验算(两箱室)

箱梁模板(碗扣式)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工碗扣式钢管脚手架安全技术规范》JGJ166-2008 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2001 5、《钢结构设计规范》GB 50017-2003 一、工程属性 箱梁类型双室梁A(mm) 4550 B(mm) 900 C(mm) 3000 D(mm) 1200 E(mm) 400 F(mm) 200 G(mm) 3000 H(mm) 0 I(mm) 3365 J(mm) 1040 K(mm) 220 L(mm) 1330 M(mm) 520 箱梁断面图 二、构造参数 底板下支撑小梁布置方式垂直于箱梁断面横梁和腹板底的小梁间距l2(mm) 200 箱室底的小梁间距l3(mm) 200 翼缘板底的小梁间距l4(mm) 200 标高调节层小梁是否设置否可调顶托内主梁根数n 2 主梁受力不均匀系数ζ0.5 立杆纵向间距l a(mm) 900 横梁和腹板下立杆横向间距l b(mm) 600 箱室下的立杆横向间距l c(mm) 900 翼缘板下的立杆横向间距l d(mm) 900 模板支架搭设的高度H(m) 8

立杆计算步距h(mm) 1200 立杆伸出顶层水平杆长度a(mm) 200 斜杆或剪刀撑设置剪刀撑符合《规范》JGJ166-2008设置要求 支架立杆步数8 次序横杆依次间距hi(mm) 1 350 2 1200 3 1200 4 1200 5 1200 6 1200 7 600 8 600 箱梁模板支架剖面图 三、荷载参数 新浇筑混凝土、钢筋自重标准值G1k(kN/m3) 26 模板及支撑梁(楞)等自重标准值G2k(kN/m2) 1 支架杆系自重标准值G3k(kN/m) 0.15 其它可能产生的荷载标准值G4k(kN/m2) 0.4

(参考资料)32m预制箱梁计算书

32m 预制箱梁计算书 1. 计算依据与基础资料 1.1. 标准及规范 1.1.1. 标准 ?跨径:桥梁标准跨径30m ; ?设计荷载:公路-I 级(城-A 级验算); ?桥面宽度:(路基宽26m ,城市主干路),半幅桥全宽13m ,0.5m (栏杆)12.25m (机动车道)+0.5/2m (中分带)=13m 。 ?桥梁安全等级为一级,环境类别一类。 1.1.2. 规范 《公路工程技术标准》JTG B01-2013 《公路桥涵设计通用规范》(JTGD60-2015);(简称《通规》) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 《城市桥梁设计规范》(CJJ11-2011); 1.1.3. 参考资料 《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3) 1.2. 主要材料 1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40; 2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa = × 3)普通钢筋:采用HRB400,400=sk f MPa ,5 2.010S E Mpa =× 1.3. 设计要点 1)预制组合箱梁按部分预应力砼A 类构件设计; 2)根据小箱梁横断面,采用刚性横梁法计算汽车荷载横向分布系数,将小箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法计算。 3)预应力张拉控制应力值0.75σ=con pk f ,混凝土强度达到90%时才允许张拉预

应力钢束; 4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d; 5)环境平均相对湿度RH=80%; 6)存梁时间不超过90d。 2.标准横断面布置 2.1.标准横断面布置图 2.2.跨中计算截面尺寸

30箱梁模板计算书模板

目录 30m预制箱梁模板计算书 (2) 一、工程概况 (2) 二、预制箱梁模板体系说明 (2) 三、箱梁模板力学验算原则 (2) 四、计算依据 (3) 五、箱梁模板计算 (3) 4.1 荷载计算及组合 (3) 4.2 模板材料力学参数 (5) 4.3 力学验算 (6) 4.3.2 横肋力学验算 (7) 4.3.3 竖肋支架验算 (8) 4.3.4 拉杆验算 (9)

30m预制箱梁模板计算书 一、工程概况 呼和浩特市2012年南二环快速路工程二标段,在2013年5月份进场施工。原设计为3km整体现浇,考虑到整体现浇工期长,前期投入大,经项目部前期策划,变更为装配式30m预制箱梁,预制部分梁长为29.4m,梁高为1.6m,设计图纸为国家标准通用图,移梁采用兜底吊,预制数量为1327片,采用预制厂集中生产。 二、预制箱梁模板体系说明 箱梁模板分为底模、侧模、芯模三部分,底模焊接在预制台座上,台座设计时需考虑箱梁在预制过程中分阶段受力状态,即:浇注时,底座承受箱梁混凝土自重下的均布力;在预应力拉后,台座承受箱梁两端支点的集中力。所以在台座设计时,需在台座两端设置扩大基础来满足集中荷载形式下的承载力需要。 模在箱梁预制过程中承受腹板混凝土侧向力以及顶板混凝土竖向力,侧模承受底腹板混凝土侧压力。 箱梁侧模承载箱梁外露面混凝土的重量,混凝土侧压力向外传递顺序为:面板→横肋→纵肋→拉杆。 三、箱梁模板力学验算原则 1、在满足结构受力(强度)情况下考虑挠度变形(刚度)控制; 2、根据侧压力的传递顺序,先后对面板、横肋、纵肋支架、拉杆进行力学验算。 3、根据受力分析特点,简化成受力模型,进行力学验算。

30米箱梁张拉计算书

G3012喀什至疏勒段公路工程项目KS-1标段 (K0+000~K22+000) 30m预制箱梁张拉计算方案 编制: 审核: 审批: 中铁二十三局集团有限公司 G3012喀什至疏勒段公路项目KS-1标 项目经理部 二0一六年五月

目录 一、基础数据.............................................................................................................................. - 2 - 二、预应力钢束张拉力计算...................................................................................................... - 2 - 三、压力表读数计算.................................................................................................................. - 3 - 四、理论伸长量的复核计算...................................................................................................... - 6 - 五、张拉施工要点及注意事项.................................................................................................. - 8 -

预应力混凝土简支T梁桥

西南交通大学土木工程专业 桥梁工程课程设计 ――混凝土简支梁桥 设计计算书 姓名:余章亮 学号: 20060046 班级:土木2班 指导教师:荣国能 成绩: 二○○九年十二月

目录 第一章设计依据 (4) 一、设计规范 (4) 二、方案简介及上部结构主要尺寸 (4) 三、基本参数 (5) 四、计算模式及采用的程序 (7) 第二章荷载横向分布计算 (8) 第三章主梁内力计算 (12) 一、计算模型 (12) 二、恒载作用效应计算 (12) 1 恒载作用集度 (12) 2 恒载作用效应 (13) 三、活载作用效应计算 (14) 1 冲击系数和车道折减系数 (14) 2 车道荷载取值 (15) 3 活载作用效应的计算 (15) 三、主梁作用效应组合 (18) 第四章预应力钢筋设计 (19) 一、预应力钢束的估算及其布置 (19) 1 跨中截面钢束的估算和确定 (19) 2 预应力钢束布置 (20) 二、计算主梁截面几何特性 (22) 1 截面面积及惯性矩计算 (22) 2 截面几何特性汇总 (24) 三、钢束预应力损失计算 (24) 1 预应力钢束与管道壁之间的摩擦引起的预应力损失 (24) 2 由锚具变形、钢束回缩引起的预应力损失 (25) 3 混凝土弹性压缩引起的预应力损失 (26) 4 由钢束应力松弛引起的预应力损失 (26) 5 混凝土收缩和徐变引起的预应力损失 (27) 6 钢束预应力损失汇总 (29) 第五章主梁验算 (30) 一、持久状况承载能力极限状态承载力验算 (30) 1 正截面承载力验算 (30) 二、持久状况下正常使用极限状态抗裂验算 (35) 1 正截面抗裂验算 (35) 2 斜截面抗裂验算 (36) 三、持久状况构件的应力验算 (38)

30m箱梁模板计算书

中铁三局五公司右平项目 30m箱梁 模板计算书 山西昌宇工程设备制造有限公司 技术部 2015年11月21日

30米箱梁模计算书 本工程所用30m箱梁,梁底模板直接采用混凝土台座,不再另行配置底模板。 1.砼侧压力计算 最大侧压力可按下列二式计算,并取其最小值: F=0.22γ c t β 1 β 2 V1/2 F=γ c H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γ c ---- 混凝土的重力密度(kN/m3)取26 kN/m3 t ------新浇混凝土的初凝时间(h),h=3.5小时。 V------混凝土的浇灌速度(m/h);取27方/h,即27/25/1=1.08 m H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取1.4m β1------外加剂影响修正系数,不掺外加剂时取1; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—90mm时,取1;110—150mm时,取1.15。此处取1.15, F=0.22γ c t β 1 β 2 V1/2 =0.22x26x3.5x1x1.15x1.081/2 =24kN/m2 F=γ c H =26x1.4=36.4kN/ m2 取二者中的较小值,F=24kN/ m2作为模板侧压力的标准值,并考虑倾倒混凝土产生的水平载荷标准值4 kN/ m2,分别取荷载分项系数1.2和1.4,则作用于模板的总荷载设计值为:F=24x1.2+4x1.4=34.4 kN/ m2,取为35 kN/ m2 有效压头高度:H0=35/26=1.35m 2.面板验算(6mm钢板) 最大跨距: l=300mm, 每米长度上的荷载:q=FD=35x0.8=28KN/m。D为背杠的间距

预应力混凝土简支T梁计算报告(midas)

预应力混凝土简支T梁计算报告 指导老师:李立峰 专业:桥梁工程 班级:桥梁一班 姓名:* * * 学号:**********

一、计算资料 跨度与技术指标 标准跨径: 计算跨径: 汽车荷载:公路一级 设计安全等级:二级 桥梁概况及一般截面 此计算为一预应力混凝土简支梁中梁的计算,不计入现浇带,其跨中与支点截面如图1-1所示,纵断面图如图1-2所示。 使用的材料及其容许应力

混凝土:C50,轴心抗压强度设计值,抗拉强度设计值,弹性模量。 钢筋混凝土容重: 钢筋:预应力钢束采用3束φ×7的钢绞线,抗拉强度标准值,张拉控制应力σcon==1395MPa 截面面积:,孔道直径:77mm 预应力钢筋与管道的摩擦系数: 管道每米局部偏差对摩擦的影响系数:(1/m) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 纵向钢筋:采用φ16的HRB335级钢筋,底部配6根,间距为70mm,翼缘板配16根,间距为100mm。 施工方法 采用预制拼装法施工;主梁为预制预应力混凝土T梁,后张法工艺;预制梁混凝土立方体强度达到设计混凝土等级的85%,且龄期不少于7天后方可张拉预应力钢束;张拉时两端对称、均匀张拉(不超张拉),采用张拉力与引伸量双控。 钢束张拉顺序为:N2—N3—N1 二、计算模型 模型的建立 本计算为一单跨预应力混凝土简支T梁桥中梁模型(图2-1),其节点的布置如图2-2所示。在计算活载作用时,横向分布系数取m=,并不沿纵向变化。在建立结构模型时,取计算 跨径,由于该结构比较简单,计算跨度只有24m,故增加单元不会导致计算量过大, 大多数单元长度为1m。建立保证控制截面在单元的端部,以便于读取数据。 对于横隔板当作节点荷载加入计算模型,其所起到的横向联系作用已在横向分布系数中考虑。

箱梁设计计算书

1 设计资料及构造布置1.1 桥梁跨径及桥宽: 标准跨径:40m 主梁全长:39.96m 计算跨径:39 m 桥面净空:净11.25+2×1 1.2 设计荷载: 公路I级人群荷载:3kN/m2,每侧栏杆,人行道重量的作用力分别为5kN/m和3.0kN/m 1.3 材料及工艺: 混凝土:主梁C50,栏杆及桥面铺装C30 钢筋:预应力钢筋采用φj15.2低松弛钢绞线,每束6根; 普通钢筋:直径大于和等于12mm的采用Ⅱ级热扎螺纹钢筋,直径小于12mm的均用Ⅰ级热扎光圆钢筋; 钢板:锚头下支承垫板、支座垫板等均采用A3碳素钢。 按后张法施工工艺制作主梁,采用直径70mm的波纹管和OVM. 1.4 设计依据: 《公路桥涵设计通用规范》(JTG D60—2004) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004) 《公路工程技术标准》(JTG 001—2004) 2. 构造布置: 2.1 主梁尺寸的拟定: 预应力混凝土简支梁的主梁高度与其跨径之比通常在1/15~1/25之间,本设计主梁高度取用200cm,其高跨比为1/18~1/19之间。 2.2 横断面布置(见图1) 依据《公路桥梁设计规范》主梁间距为 3.25米,翼板宽均为270厘米,净 11.25+2×1.0米的桥宽选用4片主梁(见图1) 2.3 主梁截面细部尺寸: 箱梁翼板的厚度主要取决于桥面板系承受车轮局部荷载的要求,还应考虑能否满足主梁受弯时翼板受压要求。 绘制梁截面如图2所示。

2.4主梁截面几何特性的计算 跨中截面几何特性计算表 检验截面效率指标ρ(希望ρ在0.5以上) 上核心距 k u =ΣI/ΣA i y b =47.14cm 下核心距 k b =ΣI/ΣA i y u =64.81cm 截面效率指标ρ= (ku+ kb)/h= 0.559751>0.5 符合要求。 上述计算结果表明,初拟的主梁跨中截面是合理的。 支点截面几何特性计算表 检验截面效率指标ρ(希望ρ在0.5以上) 上核心距 k u =ΣI/ΣA i y b =48.92cm 下核心距 k b =ΣI/ΣA i y u =55.76cm 截面效率指标ρ= (ku+ kb)/h= 0.52>0.5 符合要求。 上述计算结果表明,初拟的主梁支点截面是合理的。 2.6 横隔梁的设置

部颁图30米小箱梁计算书

目录 1 计算依据与基础资料 (1) 1.1 标准及规范 (1) 1.1.1 标准 (1) 1.1.2 规范 (1) 1.1.3 参考资料 (1) 1.2 主要材料 (1) 1.3 设计要点 (2) 2 横断面布置 (2) 2.1 横断面布置图 (2) 2.2跨中计算截面尺寸 (3) 3 汽车荷载横向分布系数、冲击系数计算 (3) 3.1 汽车荷载横向分布系数计算 (3) 3.1.1 刚性横梁法 (3) 3.1.2 刚接梁法 (7) 3.1.3 铰接梁法 (10) 3.1.4 比拟正交异性板法(G-M法) (14) 3.1.5 荷载横向分布系数汇总 (17) 3.2 剪力横向分布系数 (18) 3.3 汽车荷载冲击系数μ值计算 (18) 3.3.1汽车荷载纵向整体冲击系数μ (18) 3.3.2 汽车荷载的局部加载的冲击系数 (18)

4 主梁纵桥向结构计算 (18) 4.1箱梁施工流程 (18) 4.2 有关计算参数的选取 (19) 4.3 计算程序 (20) 4.4 持久状况承载能力极限状态计算 (20) 4.4.1 正截面抗弯承载能力计算 (20) 4.4.2 斜截面抗剪承载能力计算 (21) 4.5 持久状况正常使用极限状态计算 (21) 4.5.1 抗裂验算 (22) 4.5.2 挠度验算 (23) 4.6 持久状况和短暂状况构件应力计算 (25) 4.6.1 使用阶段正截面法向应力计算 (25) 4.6.2 使用阶段混凝土主压应力、主拉应力计算 (26) 4.6.3 施工阶段应力验算 (27) 4.7 中支点下缘配筋计算 (29) 4.8 支点反力计算 (29) 4.9 其他 (30) 5 桥面板配筋计算 (30) 5.1 荷载标准值计算(弯矩) (30) 5.1.1 预制箱内桥面板弯矩计算 (31) 5.1.2 现浇段桥面板弯矩计算 (33) 5.1.3 悬臂段桥面板弯矩计算 (35)

预应力混凝土简支T梁计算报告(midas)

预应力混凝土简支T梁计算报告 指导老师:立峰 专业:桥梁工程 班级:桥梁一班 姓名: * * * 学号: **********

一、计算资料 1.1 跨度与技术指标 标准跨径:L=25m 计算跨径:L0=24m 汽车荷载:公路一级 设计安全等级:二级 1.2 桥梁概况及一般截面 此计算为一预应力混凝土简支梁中梁的计算,不计入现浇带,其跨中与支点截面如图1-1所示,纵断面图如图1-2所示。 1.3 使用的材料及其容许应力 混凝土:C50,轴心抗压强度设计值m mm=22.4mmm ,抗拉强度设计值m mm= 1.83mmm,弹性模量m m=3.45×104mmm。 钢筋混凝土容重:γ=26kN/m3 钢筋:预应力钢束采用3束φ15.2mm×7的钢绞线,抗拉强度标准值m mm=

1860mmm,拉控制应力σcon=0.75f ak=1395MPa 截面面积:m m=3×140×7=2940mm2,孔道直径:77mm 预应力钢筋与管道的摩擦系数:0.25 管道每米局部偏差对摩擦的影响系数:0.0015(1/m) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 纵向钢筋:采用φ16的HRB335级钢筋,底部配6根,间距为70mm,翼缘板配16根,间距为100mm。 1.4 施工方法 采用预制拼装法施工;主梁为预制预应力混凝土T梁,后法工艺;预制梁混凝土立方体强度达到设计混凝土等级的85%,且龄期不少于7天后方可拉预应力钢束;拉时两端对称、均匀拉(不超拉),采用拉力与引伸量双控。 钢束拉顺序为:N2—N3—N1 二、计算模型 2.1 模型的建立 本计算为一单跨预应力混凝土简支T梁桥中梁模型(图2-1),其节点的布置如图2-2 所示。在计算活载作用时,横向分布系数取m=0.5,并不沿纵向变化。在建立结构模型时,取计算跨径m0=24m,由于该结构比较简单,计算跨度只有24m,故增加单元不会导致计算量过大,大多数单元长度为1m。建立保证控制截面在单元的端部,以便于读取数据。 对于横隔板当作节点荷载加入计算模型,其所起到的横向联系作用已在横向分布系数中考虑。 每个节点对应的x坐标值如表2-1所示 节点的x坐标值表2-1

3×20普通钢筋箱梁计算书讲解

目录 1、工程概况 (2) 2、主要技术标准 (2) 3、采用规范 (2) 4、主要材料 (2) 5、计算参数 (2) 6、结构计算模型 (3) 7、持久状况承载能力极限状态计算 (4) 8、持久状况正常使用极限状态计算 (6) 9、横梁的计算 (8) 10、构件构造要求 (10) 11、结论 (10)

1、工程概况 本桥是黑龙江省伊绥高速公路南互通E匝道桥第四联钢筋混凝土箱梁桥。采用3-20米等高度现浇钢筋混凝土箱梁桥。 2、主要技术标准 设计荷载:公路—I级 桥面宽度:B=10.5m 2个车道 设计安全等级二级 3、采用规范 《公路桥涵设计通用规范》(JTG D60-2004) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路工程技术标准》(JTG B01-2003) 4、主要材料 主梁材料:C40混凝土 普通钢筋: HRB335钢筋,抗拉强度设计值为280MPa; 5、计算参数 (1)、采用空间有限元杆系将主梁离散为35个节点, 34个单元。荷载组合及验算内容一律按《公路桥涵设计通用规范》(JTG D60-2004)与《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)相关条文执行。 (2)、活载布置采用外侧偏载最不利方式布载。 (3)、荷载取值: ●恒载:一期恒载混凝土容重为26kN/m3;二期恒载为10cm沥青 铺装,容重为26kN/m3,防撞栏杆为9.6kN/m; ●活载:荷载标准为公路I级,并考虑汽车荷载引起的冲击力,

冲击系数的取值参照《公路桥涵设计通用规范》(JTG D60-2004)计算,由程序计算出此结构的自振频率为9.8Hz, 得到冲击系数 =0.36; ●汽车引起的离心力:取值参照《公路桥涵设计通用规范》(JTG D60-2004); ●汽车引起的制动力:取值参照《公路桥涵设计通用规范》(JTG D60-2004),如果有离心力参与荷载组合是制动力取值按照0.7 倍考虑; ●基础变位:基础作用按照支座不均匀沉降考虑,支座的沉降量 为0.5cm; ●温度梯度:依据《公路桥涵设计通用规范》(JTG D60-2004) 4.3.10 第3 条,对结构的梯度温度引起的效应进行考虑,取 值参照表4.3.10-3竖向日照正温差计算温度基数表混凝土铺 装的结构类型取值。混凝土上部结构竖向日照反温差为正温差 乘以-0.5。铺装为10cm沥青,T1取14 ℃,T2取 5.5℃; ●均匀温度:依据《公路桥涵设计通用规范》(JTG D60-2004), 取升温为30℃,降温38℃。 6、结构计算模型 采用空间杆系将上部主梁离散成51个节点,50个单元。结构离散图如下所示:

现浇箱梁支架及模板计算书资料

附件1:连续箱梁施工工艺流程图

附件3:质量保证体系 制度保证 经济法规 经济责任制 优 质 优价 完善计量支付手续 制定 奖罚措施 签定包保责任状 奖优罚劣 经济兑现 质 量 保 证 体 系 思想保证 提高质量意识 TQC 教育 检查落实 改进工作质量 组织保证 项目经理部质量 管理领导小组 项目队质量小组 总结表彰先进 技术保证 贯彻ISO9000系列质量标准,推行全面质量管理 各项工作制度和标准 提高工作技能 技术岗位责任制 质量责任制 质量评定 反 馈 实 现 质 量 目 标 质量第一 为用户服务 制定教育计划 质量 工作检查 现场Q C 小组活动 岗前 技术培训 熟悉图纸掌握规范 技术 交底 质量 计划 测量 复核 应用新技 术工艺 施工保证 创优规划 检查 创 优 效 果 制定 创 优措施 明确创优 项目 接受业主和监理监督 定期不定期质量检查 进行自检互检交接检 加强现场试验控制 充分利用现代化检测手段

附件4:安全、质量保证体系图 制度保证 经济法规 经济责任制 优 质优价 完善 计 量支 付 手 续 制 定奖罚措施 签定包保责任状 奖优罚劣 经济兑现 质 量 保 证 体 系 思想保证 提高质量意识 TQC 教育 检查落实 改进工作质量 组织保证 项目经理部质量 管理领导小组 项目队质量小组 总结表彰先进 技术保证 贯彻ISO9000系列质量标准,推行全面质量管理 各项工作制度和标准 提高工作技能 技术岗位责任制 质量评定 反 馈 实 现 质 量 目 标 质量 第一 为用户服务 制定教育计划 质量工作检查 现场QC 小组活 动 岗前 技 术培训 熟 悉图纸掌握规 范 技术交底 质量计划 测量复核 应 用新技术工艺 施工保证 创优规划 检查创优效果 制定创优措施 明确创优项目 接受业主和监理监督 定期不定期质量检查 进行自检互检交接检 加强现场试验控制 充分利用现代化检测手段

小箱梁计算书

上部结构验算 一、计算内容及方法 (一)、计算和复核的主要内容 1、后张预应力小箱梁正截面应力验算; 2、后张预应力小箱梁抗弯、抗剪强度验算; 3、后张预应力小箱梁刚度验算。 (二)、计算方法 小箱梁纵向计算均按平面杆系理论,并采用桥梁博士进行计算 1、计算对象作为平面梁划分单元作出结构离散图; 2、根据小箱梁的实际施工过程和施工方案划分施工阶段; 3、进行荷载组合,并求得结构在施工阶段和使用阶段时的应力、内力和 位移; 4、根据规范中所规定的各项容许指标,验算主梁是否满足结构承载力要 求、材料强度要求和结构的整体刚度要求。 (三)、计算原则 1、计算图示及离散图均按照原设计文件确定。 2、施工流程图按原设计文件提出的施工方案、现浇方法确定。 3、主要材料及设计参数根据设计文件及规范取值,见下表: 4、预应力钢筋按设计文件中提供的钢绞线信息确定

(四)、荷载取值与荷载组合 1、荷载取值 (1)、一期恒载主要是小箱梁自重。混凝土容重取26kN/m 3。 ( 2)、二期恒载包括防撞护栏和桥面铺装见下表: 预应力小箱梁二期恒载 (3)、活载 各项活载横向分布系数:按刚接板法计算各小箱梁的荷载横向分布系数,见下表。 (4)、温度力 ○ 1体系升温20℃;体系降温20℃ ○2小箱梁上下缘温差5℃。 2、荷载组合 组合一:恒载+汽车 二、小箱梁应力复核计算 1、结构离散图

《公桥规》第5.2.21条规定:在使用荷载作用下,预应力混凝土构件的法向压应力(扣除全部的预应力损失)应符合下列要求: 组合Ⅰ:C50混凝土容许压应力[R a]=0.5x35=17.50(MPa); 《公桥规》第5.2.23条规定:在使用荷载作用下,部分预应力混凝土A类受弯构件的法向拉应力(扣除全部的预应力损失)应符合下列要求:组合Ⅰ:C50号混凝土容许拉应力[R l]=0.8x3=2.40(MPa); 结论:施工及使用阶段时,40米小箱梁中梁、边梁最大拉应力满足规范要求,压应力不满足规范要求,验算不通过。 3、小箱梁刚度验算 按规范规定,预应力混凝土受弯构件在计算变形时的截面刚度应采用0.85EI,其中E为混凝土的弹性模量,I为截面的换算惯性矩。 汽车荷载作用下(不计冲击力)小箱梁跨中最大竖向位移值参见下表。 根据《公桥规》第4.2.3条规定,活载作用下跨中的最大挠度允许值为:

箱梁预应力张拉计算书25、30米(读书油表)

箱梁预应力拉计算书 武(陟)西(峡)高速公路桃花峪黄河大桥工程,是市西南绕城高速公路向北延伸与(州)焦(作)晋(城)高速公路相接的南北大通道。第3标段长度:1250.43m(K28+917.57~K30+168)。桥梁长度:7联35孔1244.7m(跨堤桥1联3孔,引桥6联32孔)。 引桥全长955.43m,6联32孔预制安装(先简支后连续)的预应力连续小箱梁结构。第1联6孔,左幅(25+30+35+35+25+25)m、右幅(25+25+25+35+35+30)m;第2联6孔均为30m;第3、4、5、6联,均为5孔30m。每孔左右幅共12榀小箱梁。 一、拉计算所用常量: 预应力钢材弹性模量Eg=1.95×105Mpa=1.95×105N/mm2 预应力单数钢材截面面积Ag=139mm2 预应力钢材标准强度f pk=1860Mpa 孔道每米局部偏差对摩擦的影响系数k=0.0015 预应力钢材与孔道壁的摩擦系数μ=0.17 设计图纸要求:锚下拉控制应力σ 1 =0.75 f pk =1395MPa 二、计算所用公式: 1、P的计算: P=σ k ×Ag×n× 1000 1 ×b (KN) (1) 式中:σ k ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ 预应力钢材的拉控制应力(Mpa); Ag ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力单束钢筋截面面积(mm2); n  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄同时拉预应力筋的根数(mm2);

b  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄超拉系数,不超拉取1.0。 2、p 的计算: p = μθ μθ+-+-kl e p kl (1( (KN ) (2) 其中:P  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢筋拉端的拉力(N ); l  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄从拉端至计算截面的孔道长(m ); θ  ̄ ̄ ̄ ̄ ̄ ̄ 从拉端至计算截面曲线孔道部分切线的夹角之和(Rad ); k  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄孔道每米局部偏差对摩擦的影响系数; μ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材与孔道壁的摩擦系数。 3、预应力钢材拉时理论伸长值的计算: ΔL= Eg Ay L p ?? (3) 其中:p  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材的平均拉力(N ); L  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材长度(cm ); Ay  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材截面面积(mm 2); Eg  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材弹性模量(N/mm 2)。 三、计算过程 1、P 的计算: 本标段采用φj 15.2钢绞线作为预应力钢材,依据通用图及施工图纸,刚束的组成形式一共有三种:φj 15.2-5、φj 15.2-4、φj 15.2-3。 实际拉力控制 控制拉力为在锚固点下的力,在确定千斤顶的拉力时,应考虑锚固口摩阻损失,此摩阻损失以1%计算,故拉时千斤顶实际拉力为:

预应力混凝土简支T梁桥的设计

预应力混凝土简支T梁桥的设计 摘要预应力混凝土简支T梁公路桥,公路一级,有防撞栏杆,无人行道。设计首先确定截面尺寸,梁的片数的确定,然后荷载的计算,包括恒载(一期,二期),活载等,完成在极限承载力状态和正常使用极限状态下的验算。接着完成预应力钢筋的估束,钢筋的配置和预应力的损失。主要截面的验算。最后完成控制截面的承载能力、抗裂性、应力水平及结构的变形等多项指标进行验算。 关键字内力计算承载能力极限状态正常使用极限状态预应力钢束预应力损失截面验算 设计基本流程: 1.根据桥型方案,确定结构的相关基本尺寸。 2.结构内力计算。对于本课程设计而言,结构内力计算的主要工作包括荷载横向分布系数和单根T梁的内力计算。并完成在承载能力极限状态下和正常使用极限状态下的相 应内力组合。 3.预应力钢束的设计。按照结构的受力及构造等的要求,完成预应力钢束的布置工作,并完成预应力损失的计算。 4.主要截面的验算。主要针对控制截面的承载能力、抗裂性、应力水平及结构的变形等多项指标进行验算。

对于装配式预应力混凝土简支T梁桥而言,多片T梁通过横隔板及桥面板联系在一起形成一个整体受力结构。由于结构的空间整体性,当桥上作用荷载时,各片主梁将共同参与工作,形成了各片主梁之间的内力分布。对于绝大多数工程设计人员而言,直接应用空间分析方法进行结构设计是不现实的。按照《材料力学》和《结构力学》方法计算结构内力。计算内容包括: 1.各片主梁的内力计算结果(考虑对称性,只给出一半主梁的结果); 2.控制断面(包括支座断面、1/8跨断面、1/4跨断面、3/8跨断面和跨中断面等)的弯矩和剪力; 3.单独列出自重、二期恒载和活载的计算结果; 4.对于移动荷载(本课程设计中的车道荷载)应按影响线进行最不利加载。对于影响线的求法,可以参考《结构力学》的相关内容(如机动法)。 目前,对于多主梁结构的荷载横向分布系数的计算方法有:刚性横梁法、绞接板法、刚接梁法以及正交异性板法(G-M 法)等。关于荷载横向分布系数的计算方法可以参考相关专业书籍和文献。在设计中,在支座位置处荷载横向分布系数可按“杠杆原理法”(关于杠杆原理的相关理论,可参考相关书籍,本课程设计不作专门介绍)进行计算,而跨中位置处荷载横向分布系数按“刚性横梁法”进行计算。 据反力互等原理,单位荷载作用在某一根主时,各主梁的反力等于单位荷载在这些主梁上移动时该主梁的反力变

相关文档
相关文档 最新文档