文档库 最新最全的文档下载
当前位置:文档库 › 等离子弧焊接的材料、装配、工艺与缺陷形式

等离子弧焊接的材料、装配、工艺与缺陷形式

等离子弧焊接的材料、装配、工艺与缺陷形式
等离子弧焊接的材料、装配、工艺与缺陷形式

等离子弧焊接的材料、装配、工艺与缺陷形式(图)

焊接材料

(1)母材凡氩弧焊能够焊接的材料均可用等离子弧焊接,如碳钢、耐热钢、蒙乃力<合金、可伐合金、钛合金、铜合金、铝合金以及镁合金等。

除铝、镁及其合金外,其余材料均采用直流正接法焊接:铝、镁及其合金采用交流或直流反接法焊接。直流正接等离子弧单道可焊材料厚度范围一般为0.3—6.4mm。交流变极性等离子弧单道可焊铝合金厚度可达12.7mm(小孔法)。

等离子弧焊接的冶金过程与氩弧焊相同,只是由等离子弧具有较小的弧柱直径,焊接时母材熔化量少,所以焊缝深宽比大、热影响区窄。每一种母材金属焊接时对预热、后热以及气体保护等工艺要求与氩弧焊相同。

(2)填充金属与氩弧焊一样,等离子弧焊工艺可以使用填充金属。填充金属一般制成光焊丝或者光焊条。自动焊使用光焊丝作填充金属,手工焊则用光焊条作填充金属。填充金属的主要成分与被焊母材相同。

(3)气体等离子焊枪有两层气体,即从喷嘴流出的离子气及从保护气罩流出的保护气。有时为了增强保护,还需使用保护拖罩及通气的背面垫板以扩大保护气的保护范围。对钨极应该是惰性的;以免钨极烧;护气对母材一般是惰性的,但如果类取决于被焊金属,可供选择的气体有:

1)Ar气Ar气用于焊接碳钢、高强度钢及活性金属,如钛、钽及锆合金。焊接这些金属所用的气体中,即使含有极小量的H,也可能导致焊缝产生气孔、裂纹或降低力学性能。

2)Ar-H2混合气焊接奥氏体不锈钢、镍合金及铜镍合金时,允许使用Ar-H2混合气体。

Ar气中填加H2气可提高电弧温度及电弧电场强度,能够更有效地将电弧热量传递给工件,在给定的电流条件下可以得到较高的焊接速度。同时,H2具有还原性,使用Ar-H2混合气体可以获得更光亮的焊缝外观。但H2含量过多焊

缝易出现气孔及裂纹,一般φ(H2)限制在7.5%以下。然而,在小孔焊接工艺中,由于气体以充分逸出,加φ(H2)范围为5%一15%,工件越薄,允许H2的比例越大。如小孔法焊6.4mm不锈钢时,加φ(H2)为5%;而进行3。8mm不锈钢管道高速焊时,允许加φ(H2)达15%。”使用Ar-H2混合气体作离。混合气体作离子气时,由于电弧温度较高,应降低喷嘴孔径的额定电流。

3)Ar-He混合气He气也是—种惰性气体,当被焊工件不允许使用Ar-H2混合气时,可考虑使用Ar-He 混合气。在Ar-He混合气体中,φ甲(He)超过40%以上电弧热量才能有明显的变化。φ(He)超过75%时,其性能基本与纯He相同,通常在Ar气中加入φ(He)=50%~75%进行钛、铝及其合金的小孔焊及在所有金属材料上熔敷焊道。

4)He气采用纯He作离子气时,由于弧柱温度较高,会降低喷嘴的热负载,会降低喷嘴的使用寿命及承载电流的能力,另外He气密度较小,在合理的离子气流量下难以形成小孔。所以,纯He仅用于熔透法焊接,如焊接铜。

5)Ar-C02混合气由于保护气体不与钨极接触,在小电流焊接低碳钢及低合金钢时,允许在保护气中添加适性气体,其流量在10~15L/min之内。如在Ar中加甲(C02)为25%作保护气焊接铁心叠片。

典型大电流焊接及小电流焊接条件下的气体选择分别见表1及表2。

表1 大电流等离子弧焊接用气体选择

表2 小电流等离子弧焊接用气体选择

焊接工装

(1)接头形式用于等离子弧焊接的通用接头形式为:I形坡口、单面V形和U形坡口以及双面V形和U 形坡口。这些坡口形式用于从一侧或两侧进行对接接头的单道焊或多道焊,除对接接头外,等离子弧焊也适合于焊接角焊缝和T形接头,而且具有良好的熔透性。

厚度大于1.6mm但小于表3所列厚度值的工件,可不开坡口,采用小孔法单面一次焊成。

对于厚度较大的工件,需要开坡口对接焊时,与钨极氩弧焊相比,可采用较大的钝边和较小的坡口角度。第一道焊缝采用小孔法焊接,填充焊道则采用熔透法完成。图1为两种焊接方法所需V形坡口几何形状的比较。

图1 等离子弧焊和钨极氩弧焊V形坡口形状的对比

……钨极氩弧焊

——等离子弧焊

焊件厚度如果在0.05~1.6mm之间,通常使用熔透法焊接。常用接头型式如图2所示。

图2 薄板焊接接头形式

a) I形对接接头b) 卷边对接接头 d) 卷边角接接头 d)端接接头

t—板厚(0.025~1mm)h—卷边高度=(2~5)

表3 一次焊透的厚度(单位:mm)

(2)装配与夹紧小电流等离子弧焊对接头的装配要求和钨极氩弧焊相同。引弧处坡口边缘必须紧密接触,间隙不应超过金属厚度的10%,难以保持上述公差时必须添加填充金属。对于厚度不大于0.8mm的金属,焊接接头的装配和夹紧要求如表4、图3和图4所示。

表4 厚度<0.8mm的薄板对接接头装配要求

①背面用Ar或He保护。

②板厚小于0.25mm的对接接头推荐采用卷边焊缝。

图4 厚度小于0.8mm的薄板对接接头

图5 厚度小于0.8mm的薄板端面接头装配要求

a) 间隙 b) 错边 c) 夹紧距离

图4给出了接头间隙和错边的允许偏差、压板间距以及垫板凹槽等的尺寸。允许偏差与板厚成比例,I 形坡口对接接头允许的最大间隙为0.2t。图5给出了端接接头的装配和夹紧的允许偏差。端接接头的允许偏差比对接接头大得多。所以端接接头是金属箔片较方便的连接接头。

焊接如壁厚0.1~0.2mm的金属薄片时,焊口附近微小的热量波动都可能使融化焊道分离,以致无法得到连续的焊缝。因此要求夹具在整个焊接过程中年工件紧密接触,利用夹具对焊件的良好散热作用稳定焊缝成形以及降低焊接变形。如普通夹具压紧箔件效果不好,司考虑使用气动琴键夹具或弹簧琴键夹具。图6是焊接lmm以下不锈钢对接接头的工装参数曲线。

焊接夹具一般分为压板和带凹槽的垫板(图6)。当采用熔透法焊接时,垫板与氩弧焊时相同,开口凹槽的垫板用以支撑熔池,但采用小孔法焊接时,熔池是由表面张力支撑的,熔化的铁水不与垫板凹槽相接触。小孔法焊接用的典型垫板如图7所示,凹槽通常宽13mm,深19mm,这样的凹槽不仅能够容纳背面保护气,还为等离子射流提供一个穿出的空间。

图6 小电流焊接不锈钢对接接头的工装参数曲线

虚线示例:T=板厚,0.5 mmC=压板间距,3.5 mmD=垫板槽宽,2.0 mmI=焊接电流,9A

图7 小孔法等离子弧焊接用的典型垫板

1—焊枪 2—等离子射流 3—工件 4—背面保护气 5—垫板

(3)焊枪定位与氩弧焊一样,等离子弧可以进行全位置焊接。由于等离子弧指向性强,弧柱直径小,所以要求焊接时焊枪能够更精确地对准焊缝,即严格地限制焊枪喷嘴轴线沿焊缝中心线的横向摆动。等离子电弧对弧长不敏感,所以焊枪喷嘴至工件的距离不像氩弧焊时要求那么严格。

焊接工艺

(1)熔透法可以选择手工及自动两种方式进行熔透法焊接。

1)手工熔透法手工熔透法焊接的最佳电流范围是0。1~50A。当电流超过50A,使用于工氩弧焊更为经济。使用等离子弧焊设备的过程是先引燃维弧,开始焊接时再引燃主弧。如—段时间内需焊接多段焊缝或多个焊点,在完成一段焊缝或一个焊点时,可以只熄灭主弧,保存维弧。这样,在下—次焊接时,便可以方便地引燃主弧,而不像氩弧焊那样反复地使用高频引弧。而且,等离子弧长偏差±1mm对焊缝质量无影响,所以手工等离子弧特别适合焊接需要反复引燃主弧,而又无法精确控制弧长的焊接工艺,如焊接丝网。

2)自动熔透法自动熔透法焊接工艺应用广泛,特别是焊接小型精密元件如医疗设备元件、光学仪器元件、精密仪器元件、丝材、膜盒或波纹管等。

在许多焊接应用中,熔透法等离子弧应用微程序控制焊接参数。如控制起弧电流、电流上升、脉冲电流、电流衰减及引弧电流。

由于高频引弧器仅用来引燃维弧,焊接时无需再用高频引弧器便可以顺利地在工件与电极之间建立起转移弧。因此,等离子弧设备工作时不会损坏周围其他的电子设备。这种特点使等离子弧设备可以在电子检测设备、机器人、计算机周围使用而无需对这些设备加以隔离或防护。

熔透型等离子弧焊接工艺参数参考值见表5及6。

(2)小孔法小孔法只能采用自动焊。小孔法焊接需要精确地控制起弧与-收弧、离子气流量、焊接电流、焊接速度等工艺参数。

1)起弧与收弧板厚小于3mm时,可以直接在焊件上起弧及收弧。板厚大于3mm时,对于纵缝,可以采用引弧板及引出板,将小孔起始区及收尾区排除在焊缝之外。环缝焊接时,须采用电流及离子气量递增的方式形成合适的小孔形成区,而采用电流及离子气量递减的方式获得小孔收尾区。图8是小孔焊时电流及离子弧气流量斜率控制曲线。有的等离子弧设备配备了先进的流量控制器,可以在焊接过程中精确地控制离子气流量。

表5 熔透型等离子弧焊接工艺参数参考值

表6 微束等离子弧焊接不锈钢的焊接工艺参数参考值

注:1.保护气:95%Ar-5%H2、流量10L/min。

2.背面保护气:Ar,流量5L/min。

①离子气:Ar。

②填充丝:310不锈钢,砂1.1mm。

③填充丝:310不锈钢,φ1.4mm。

图8 厚板环缝小孔焊时焊接电流及离子气流量斜率控制曲线

2)离子气流量离子气流量增加,可使等离子流力和熔透能力增大,在其他条件不变时,为了形成小孔,必须要有足够的离子气流量,但是离子气流量过大也不好,会使小孔直径过大而不能保证焊缝成形,喷嘴孔径确定后,离子气流量大小视焊接电流和焊接速度而定,亦即离子气流量、焊接电流和焊接速度这三者之间—要有适当的匹配。

3)焊接电流焊接电流增加等离子弧穿透能力增加,和其他电弧焊方法一样,焊接电流总是根据板厚或熔透要求来选定的,电流过小,不能形成小孔,电流过大,又将因小孔直径过大而使熔池金属坠落。此外,电流过大还可能引起双弧现象。为此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能被限定在某一个合适的范围内,而且这个范围与离子气的流量有关。图9a为喷嘴结构、板厚和其他工艺参数给定时,用实验方法在8mm厚不锈钢板上测定的小孔型焊接电流和离子气流量的匹配关系。图中1为普通圆柱型喷嘴,2为收敛扩散型喷嘴,后者降低了喷嘴压缩程度,因而扩大了电流范围,即在较高的电流—F也不会出现双弧。由于电流上限的提高,因此采用这种喷嘴可提高工件厚度和焊接速度。

表7 小孔型等离子弧焊接工艺参数参考值

图9 小孔型焊接工艺参数匹配

4)焊接速度焊接速度也是影响小孔效应的一个重要工艺参数。其他条件一定时,焊速增加,焊缝热输入减小,小孔直径亦随之减小,最后消失。反之,如果焊速太低,母材过热,背面焊缝会出现下陷甚至熔池泄漏等缺陷。焊接速度的确定,取决于离子气流量和焊接电流,这三个工艺参数相互匹配关系见图9b。由图可见,为了获得平滑’的小孔焊接焊缝,随着焊速的提高,必须同时提高焊接电流,如果焊接电流一定,增大离子气流量就要增大焊速,若焊速一定时,增加离子气流量应相应减小电流。

5)喷嘴距离距离过大,熔透能力降低:距离过小则造成喷嘴被飞溅物粘污。一般取3—8mm,和钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。

6)保护气体流量保护气体流量应与离子气流量有一个适当的比例,离子气流量不大而保护气体流.量太大时会导致气流的紊乱,将影响电弧稳定性和保护效果。小孔型焊接保护气体流量一般在15~30L/min范围内。

常用四类金属(碳钢和低合金钢、不锈钢、钛合金、铜和黄铜)小孔型焊接的工艺参考值见表7。

表7 小孔型等离子弧焊接工艺参数参考值

①碳钢和低合金焊接时喷嘴高度为1.2mm:焊接其它金属时。为4.8mm~采用多孔喷嘴;②预热到316~C~焊后加热至399~C:保温1h;③焊缝背面须用保护气体保护。④60°V形坡口,钝边高度4.8mm:⑤直径1.1mm 的填充金属丝,送丝速度152cm/min。⑥要求采用保护焊缝背面的气体保护装置和带后拖的气体保护装置:⑦30°V形坡口,钝边高度9.5mm:⑧采用一般常用的熔化技术和石墨支撑衬垫。

焊接缺陷

等离子弧焊常见特征缺陷有:咬边、气孔等。

(1)咬边不加填充丝时最易出现咬边,产生咬边的原因为:

1)离子气流量过大,电流过大及焊速过高。

2)焊枪向一侧倾斜。

3)装配错边,坡口两侧边缘高低不平,则高位置一边咬边。

4)电极与压缩喷嘴不同心。

5)采用多孔喷嘴时,两侧辅助孔位置偏斜。

6)焊接磁性材料时,电缆连接位置不当,导致磁偏吹,造成单边咬边。

(2)气孔等离子弧焊的气孔常见于焊缝根部,引起气孔的原因是:

1)焊接速度过高,在一定的焊接电流、电压下,焊接速度过高会引起气孔,小孔焊接时甚至产生贯穿焊缝方向的长气孔。

2)其他条件一定,电弧电压过高。

3)填充丝送进速度太快。

4)起弧和收弧处工艺参数配合不当。

钢,铜,铜合金焊接产生裂纹原因

一、是高导热率的影响。铜的热导热率比碳钢大7~11倍,当采用的工艺参数与焊接同厚度碳钢差不多时,则铜材很难熔化,填充金属和母材也不能很好地熔合。

二、是焊接接头的热裂倾向大。焊接时,熔池内铜与其中的杂质形成低熔点共晶物,使铜及铜合金具有明显的热脆性,产生热裂纹。

三、是产生气孔的缺陷比碳钢严重得多,与要是氢气孔。

四、是焊接接头性能的变化。晶粒粗化,塑性下降,耐蚀性下降等。

材料的等离子弧焊接

材料的等离子弧焊接 索引:穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V 形坡口多层焊。 关键词: 高温合金, 铝及铝合金, 钛及钛合金, 银与铂, 等离子弧焊接 穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚 2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V形坡口多层焊。

1.高温合金的等离子弧焊接 用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,可以填充焊丝也可以不加焊丝,均可以获得良好质量的焊缝。一般厚板采用小孔型等离子弧焊,薄板采用熔透型等离子弧焊,箔材用微束等离子弧焊。焊接电源采用陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有很高的同心度。等离子气流和焊接电流均要求能递增和衰减控制。 焊接时,采用氩和氩中加适量氢气作为保护气体和等离子气体,加入氢气可以使电弧功率增加,提高焊接速度。氢气加入量一般在5%左右,要求不大于15%。焊接时是否采用填充焊丝根据需要确定。选用填充焊丝的牌号与钨极惰性气体保护焊的选用原则相同。 高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的基本相同,应注意控制焊接热输入。镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。在焊接过程中应控制焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。

穿孔等离子弧焊接技术

穿孔等离子弧焊接技术研究*    中航一集团625所 朱轶峰 张 慧 董春林 邵亦陈  文摘论述了等离子弧焊接的新进展,介绍一脉一孔的等离子弧焊接工艺、正面弧光传感器、焊接质量模糊控制系统以及采用该系统进行的焊接质量控制的初步试验结果。研究表明在不锈钢等离子弧焊接过程中,采用该系统可以提高等离子弧焊接焊缝的质量。 主题词等离子弧焊一脉一孔弧光传感模糊控制 1 引言 进入21世纪,航空航天制造业对焊接技术提出了更高要求,人们在追求低成本高强度的焊接结构时对穿孔等离子弧焊接产生了新的兴趣。 等离子弧能量密度高、射流速度大、等离子流力强 [1],穿孔等离子弧焊接(K-PAW)时等离子弧穿透工件形成小孔,随着小孔的弥合形成焊缝。对于国防工业中常用金属材料如高强钢、高温合金、钛合金、不锈钢等,在中厚度(3~10mm)范围与钨极氩弧焊相比,PAW具有更佳的工艺焊接性,接头内部缺陷率降低、焊件变形减小、焊接效率提高。“单面焊接双面成形”是K-PAW的典型特征,特别适合密闭容器、小直径管焊缝等背面难于施焊的结构件焊接。 但是穿孔等离子弧焊接过程的稳定性及焊接工艺参数的再现性始终是摆在焊接科研人员面前的难题,制约着等离子弧焊接技术的工程应用。本研究通过采用优化工艺参数、脉冲焊接工艺方式以及增加质量控制的手段提高等离子弧焊接的工艺裕度、提高离子弧焊接过程的稳定性。 2 试验系统 建立一个能够满足焊接试验、参数实时采集、实时控制的完整的试验系统,是本研究课题的基础。 2.1 焊接电源 目前国内使用的等离子弧焊接电源中,以晶体管、可控硅电源为主,新型的IGBT电源还处于研究阶段,电源输出的稳定性难以保证,成为影响焊接质量稳定性的因素之一。 同时考虑到逆变电源的控制响应时间较快等因素,选用进口的等离子焊接电源及焊枪,逆变频率可达 32kHz,能够提供较好的输出特性,便于实现自动焊。 2.2 焊接夹具 自动等离子弧焊接工艺对焊接夹具的压紧均匀性、焊缝对中有一定要求,为此我们自行设计研制了具有琴键式压紧纵缝、机械对中装置的LCAW-2型纵缝和环缝自动焊机。 2.3 焊接质量模糊控制单元 利用具有内置模糊控制模块的可编程控制器,开发了外围数字接口电路,结合奔腾133计算机,再加上我们开发的模糊控制规则表,形成了质量模糊控制单元。 模糊控制系统执行机构为焊接电流控制器与焊接速度控制器。尽管影响等离子焊接焊缝成型质量的参数有很多,考虑到焊接电流和焊接速度对等离子焊接熔池的体积、温度及弧柱压力均有 收稿日期:2001-12-04 *本课题被评为2000年度国防科技进步二等奖 22

等离子切割工艺及技术

等离子切割 等离子弧切割是利用高温等离子电弧的热量使工件切口处的金属局部熔化(和蒸发),并借助高速等离子的动量排除熔融金属以形成切口的一种加工方法。等离子切割配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍)切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、几乎没有热影响区! 等离子切割发展到现在,可采用的工作气体(工作气体是等离子弧的导电介质,又是携热体,同时还要排除切口中的熔融金属)对等离子弧的切割特性以及切割质量、速度都有明显的影响。常用的等离子弧工作气体有氩、氢、氮、氧、空气、水蒸气以及某些混合气体。等离子切割机广泛运用于汽车、机车、压力容器、化工机械、核工业、通用机械、工程机械、钢结构等各行各业。 一、等离子弧切割工艺参数 各种等离子弧切割工艺参数,直接影响切割过程的稳定性、切割质量和效果。主要切割规范简述如下: 1.空载电压和弧柱电压 等离子切割电源,必须具有足够高的空载电压,才能容易引弧和使等离子弧稳定燃烧。空载电压一般为120-600V,而弧柱电压一般为空载电压的一半。提高弧柱电压,能明显地增加等离子弧的功率,

因而能提高切割速度和切割更大厚度的金属板材。弧柱电压往往通过调节气体流量和加大电极内缩量来达到,但弧柱电压不能超过空载电压的65%,否则会使等离子弧不稳定。 2.切割电流 增加切割电流同样能提高等离子弧的功率,但它受到最大允许电流的限制,否则会使等离子弧柱变粗、割缝宽度增加、电极寿命下降。 3.气体流量 增加气体流量既能提高弧柱电压,又能增强对弧柱的压缩作用而使等离子弧能量更加集中、喷射力更强,因而可提高切割速度和质量。但气体流量过大,反而会使弧柱变短,损失热量增加,使切割能力减弱,直至使切割过程不能正常进行。 4.电极内缩量 所谓内缩量是指电极到割嘴端面的距离,合适的距离可以使电弧在割嘴内得到良好的压缩,获得能量集中、温度高的等离子弧而进行有效的切割。距离过大或过小,会使电极严重烧损、割嘴烧坏和切割能力下降。内缩量一般取8-11mm。 5.割嘴高度 割嘴高度是指割嘴端面至被割工件表面的距离。该距离一般为4~10mm。它与电极内缩量一样,距离要合适才能充分发挥等离子弧的切割效率,否则会使切割效率和切割质量下降或使割嘴烧坏。 6.切割速度

等离子焊接工艺

等离子焊接工艺 (1)焊接电流 焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。 (2)焊接速度 焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。 (3)喷嘴离工件的距离 ·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。 (4)等离于气及流量 等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。 离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。 保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。 小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊缝的焊接。 (5)引弧及收弧

等离子弧焊接原理及设备

第4章等离子弧焊接等离子弧焊接设备

4.1 等离子弧的产生及其特性1. 等离子弧的产生 1 )等离子弧概念 等离子电弧的形成及电弧形态比较 等离子弧是通过外部拘束 使自由电弧的弧柱被强烈 压缩形成的电弧。 通常情况下的GTA和GMA 电弧,为自由电弧,除受到电弧 自身磁场拘束和周围环境的冷却拘束 外,不受其他条件束缚,电弧相同相对比较扩展,电弧能量密度和温度较低。若把自由电弧缩进到喷嘴里,喷嘴的孔径小,电弧通过时,弧柱截面积受到限制,不能自由扩展,产生了外部拘束作用,电弧在径向上被强烈压缩,形成等离子弧。

2)等离子弧的工作方式 ①转移型等离子弧。 (a)等离子弧方式 在喷嘴内电极与被加工工件间 产生等离子弧。由于电极到工件的 距离较长,引燃电弧时,首先在电极 和喷嘴内壁间引燃一个小电弧,称作“引燃弧”, 电极被加热,空间温度升高,高温气流从喷嘴孔道中流出,喷射到工件表面,在电极与工件间有了高温气层,随后在主电源较高的空载电压下,电弧能够自动的转移到电极与工件之间燃烧,称为“主弧”或“转移弧”。

②等离子焰流 在钨电极与喷嘴内壁之间引燃等离子弧。由于保护气通过电弧区被加热,流出喷嘴时带出高温等离子焰流,堆被加工工件进行加热,称作“等离子焰流”。电极与喷嘴内壁间的电弧,其电流值较小,电弧温度低,故等离子焰流的温度也明显低于电弧,指向性不如等离子弧。 等离子焰流方式 ③混合型等离子弧 当电弧引燃并形成转移电弧后仍然能保持引燃弧的存在,即形成两个电弧同时燃烧的局面,效果是转移弧的燃烧更为稳定。

2. 等离子弧特性及用途 1)电弧静特性 与TIG电弧相比,等离子弧的静特性的特点: ①受到水冷喷嘴孔道壁的拘束,弧柱截面积小,弧柱电场强度增大,电弧电压明显提高,从大范围电流变化看,静特性曲线中平特性区不明显,上升特性区斜率增加。 等离子弧静特性变化特点 (a)等离子弧与TIG电弧静特性(b)小弧电流对等离子弧静特性影响

等离子弧焊接技术

等离子弧焊接技术 摘要:焊接技术可以追溯到几千年前的青铜器时代,在人类早期工具制造中,无论是中国还是当时的埃及等文明地区都能见到焊接 技术的雏形。 关键词:等离子弧焊 焊接是指通过适当的物理化学过程使两个分离的固态物体产生原子(分子)间的结合力而连接成一体的连接方法。被连接的两个物体可以是各种同类或不同类的金属、非金属,也可以是一种金属与一种非金属。由于金属的连接在现代工业中具有很重要的实际意义,因此,狭义地说,焊接通常就是指金属的焊接。等离子弧焊是一种不熔化极电弧焊,是钨极氩弧焊的进一步发展。等离子弧是自由电弧压缩而成,其功率密度比自由电弧可提高100倍以上。其离子气为氩气、氮气、氦气或其中二者的混合气。等离子弧的能量集中,温度高,焰流速度大。这些特性使得等离子弧广泛应用于焊接、喷涂和堆焊。 等离子弧焊的起源 在第三次工业革命,这阶段在能源、微电子技术、航天技术等领域取得重大突破,推动了焊接技术的发展,1950年后成为又一次焊接方法迅速发展的时期,在这个阶段各个国家的焊接工作者开发了不少崭新的焊接方法。1957年美国的盖奇发明了等离子弧焊;20世纪40年代德国和法国科学家发明的电子束焊,也在

20世纪50年代得到了应用和进一步发展;20世纪60年代又出现了激光焊。等离子、电子束和激光焊接方法的出现,标志着高能量密度熔焊的新发展,大大改善了材料的焊接性,使得许多难以用其他方法焊接的材料和结构得以焊接。 等离子弧焊的原理 等离子弧焊(PAW,Plasma Arc Welding)是利用等离子弧作为热源的焊接方法。气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦、氮、氩或其中两者混合的混合气体的。 等离子弧焊的分类 按焊缝成型原理等离子弧焊分为: a.穿孔型等离子弧焊 b.熔透型等离子弧焊 c.微束等离子弧焊 脉冲等离子弧焊、交流等离子弧焊、熔化极等离子弧焊等 1.穿孔型等离子弧焊 原理:利用等离子弧能量密度大和等离子流吹力大的特点,将工件完全熔透,并在熔池上产生一个贯穿焊件的小孔。

数控等离子下料切割工艺

目录 1 适用范围 (1) 2 引用标准 (1) 3 术语和定义 (1) 4 施工准备 (1) 5 人员要求 (1) 6 安全要求 (2) 7 设计要求 (2) 8 工艺要求 (3) 9 工艺流程 (5) 9.1 钢板吊运上台 (5) 9.2 核对信息 (5) 9.3 外观检查 (6) 9.4 数控切割 (6) 9.5 号料 (6) 9.6 分类码放 (6) 9.7 完工处理 (7) 10 标准作业周期 (7) 11 参考资料 (7) 附件1 (8)

1 适用范围 本工艺规定了数控等离子切割机开工前的作业准备、人员要求、工艺要求、精度控制方法及自检项目等内容。 本工艺适用于船厂钢板的干式等离子数控下料切割工作,其它数控切割机的钢板切割,以及铝合金板材等材质的数控切割工作也可参照使用。 2 引用标准 CB/T 4000-2005 中国造船质量标准 3 术语和定义 等离子弧切割:利用高温等离子弧的热量使工件切口处的金属局部融化,并借助高速等离子束排除熔融金属以形成切口的一种加工方法; 4 施工准备 4.1 工具设备 4.1.1 盒尺、盘尺等测量工具; 4.1.2 撬棍、记号笔等定位、号料工具; 4.1.3 手持切割、打磨工具; 4.1.4 U盘等数据存储工具。 4.2 技术准备 4.2.1 根据生产计划,提前向设计所拷贝数切程序,准备数切小样及数切套图,并检查数切小样及数切套图是否一致,如有差别,及时向设计反馈进行确认修改,检查无误后,将数切套图裁减为单板数切小样,分发到号料人员,同时将数切程序拷贝到各数切机; 4.2.2 确保数切机安全可靠运行,切割前重点检查数切机精度校验记录表(附件1),确保数切机具有可靠的精度保障; 4.2.3 根据生产计划,切割主管人员提前到板材发放处进行登记,并由板材发放人员检查待切割板材准备情况,如有缺漏,立即向上工序反馈,如存在板材代用情况,切割主管必须在钢板预处理后,及时将代用信息书写在钢板上,要求清晰、易见; 4.2.4 确保切割平台安全可靠,无废料等杂物,同时保证数切机气压、电源正常可靠。 5 人员要求 5.1 施工人员应接受过数切机操作、保养培训,并能够熟练使用; 5.2 施工人员应熟知本工艺,或在熟知本工艺的人员带领下施工;

电子束焊及等离子弧焊特点

电子束焊 真空电子束焊接具有以下特点: ●电子束能焊接不同的金属及合金材料,尤其高难熔金属都能焊接 ●电子束可以精确的确定焊缝的位置,精度和重复性误差为0% 。 ●最大的穿透深度,可达15MM ●最高的深宽比大于10:1。 ●焊接直径可达400MM ●电子束焊接,其焊缝化学成份纯净, 焊接接头强度高、质量好。 ●电子束焊接所需线能量小,而焊接速度高,因此焊件的热影响区小、焊件变形小,除一般焊接外,还可以对精加工后的零部件进行焊接。 ●可焊接异种金属, 如铜和不锈钢、钢与硬质合金、铬和钼、铜铬和铜钨等。 ●真空电子束焊接不仅可以防止熔化金属受到氧、氮等有害气体的污染,而且有利于焊缝金属的除气和净化,因而特别适于活泼金属焊接。也常用于电子束焊接真空密封元件,焊后元件内部保持在真空状态 ●在真空中进行焊接,焊缝纯净、光洁,呈镜面,无氧化等缺陷。 ●电子束能量密度高达108瓦/厘米2,能把焊件金属迅速加热到很高温度,因而能熔化任何难熔金属与合金。熔深大、焊速快,热影响区极小,因此对接头性能影响小,接头基本无变形。 ●与普通焊接相比, 其焊接速率更高(尤其对于大厚件的焊接工件)。 等离子弧焊 1.1 等离子弧的产生: (1)等离子弧的概念: 自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。 等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。 自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。

等离子弧焊概要

等离子弧焊接(WP 15) 一、等离子弧焊原理及方法分类 1. 等离子弧: 是等离子体组成。自由电弧被强迫压缩后,电流密度增加,导致电弧温度升高,电离度增大,中性气体充分电离,就形成等离子弧。 2.等离子弧产生的三要素 (1)机械压缩作用: 利用水冷喷嘴孔道限制弧柱直径,提高弧柱的能量密度和温度。 (2)热收缩作用: 由于水冷喷嘴,在喷嘴内壁建立一层冷气膜,迫使弧柱导电断面进一步减小,电流密度进一步提高。这叫热收缩,也叫热压缩。 (3)磁收缩作用: 弧柱电流本身产生的磁场对弧柱再压缩作用。也叫磁收缩效应。电流密度越大,磁收缩作用越强。 3.等离子弧的特点 (1)能量集中(能量密度105~6 W/cm2TIG自由电弧<10 4W/cm2)。 (2)温度高(18000K~24000K)。 图1 自由电弧和等离子弧的比较图

4.等离子弧的三种基本形式 (1)非转移型等离子弧 钨极为负,喷嘴为正,钨极与喷嘴之间产生等离子弧。(等离子束焊接) 图2 非转移型等离子弧示意图 (2)转移型等离子弧 钨极为负,工件为正,钨极与喷嘴之间先引弧后,转移到钨极与工件之间产生等离子弧。(等离子弧焊接) 图3 转移型等离子弧示意

(3)联合型等离子弧 非转移型和转移型弧同时并存。主要用于微束等离子弧焊、粉末堆焊等方面。 图4 联合型等离子弧示意图 5.等离子弧焊基本方法 (1)小孔型等离子弧焊(穿孔、锁孔、穿透焊) 利用能量密度大和等离子流力大的特 点,将工件完全熔透并产生一个贯穿工件的 小孔,熔化金属被排挤在小孔的周围,沿着 电弧周围的熔池壁向熔池后方移动,使小孔 跟着等离子弧向前移动,形成完全熔透的焊 缝。 一般大电流等离子弧(100~300安培) 时采用该方法。 图5 小孔型等离子弧焊焊缝成形原理

常用等离子切割方法及其工艺特性(精)

常用等离子切割方法及其工艺特性 1. 1 等离子空气切割法 等离子空气切割法以干燥的压缩空气作为加工气体,主要用于切割碳钢,也可用于切割不锈 钢和铝。由于空气主要由氮气和氧气组成,切割碳钢时,切口中的氧与铁的放热反应提供了附加的 热量,同时生成表面张力低、流动性好的FeO 熔渣,改善了切口中熔融金属的流动性,因此不但切割速度较快,而且切割面较光洁,切口下缘基本不粘渣,切割面斜角较小。切割不锈钢和铝时,氧与不锈钢中的铬和铝起反应,其切割面较粗糙,一般对切割表面质量要求较高时不采用这种加工方 法。 等离子空气切割法主要存在如下缺点: a . 切割面上附有氮化层,焊接时焊缝中会产生气孔。因此用于焊接的切割边,需用砂轮打磨,去除氮化层。 b. 由于存在氧化作用,电极和喷嘴易损耗, 使用寿命较短。 由于压缩空气的成本较低,这种切割方法在大批量的非焊接碳钢板的切割中使用较为广泛。不同 电流强度下,等离子空气切割碳钢时常用板厚和切割速度之间的关系如图 1 所示。 图1 等离子空气切割碳钢 1. 2 等离子氧气切割法 等离子氧气切割法以氧气作为工作气体,主要用于切割碳钢、铝。氧的离解热高、携热性好,粒子复合时的放热量大,投入切割的热量多,因此可获得较高的切割速度。在加工碳钢时,因切割过程中的铁2氧反应提供了大量的附加热量,促进了切割速度的进一步提高。与等离子空气切割法相比,等离子氧气切割法在切割碳钢时有以下优点: a . 切割速度更快; b. 切割面更光洁,呈金属光泽,尤其是无氮化层,切割后可直接用于焊接; c. 切口下缘不粘渣; d. 切割变形小,精度高。 等离子氧气切割法也存在如下缺点: a . 因氧化作用强,电极损耗更快,使用寿命短; b. 切割面斜角较大。 不同电流强度下,等离子氧气切割碳钢和铝时常用板厚和切割速度之间的关系如图 2 和图3所示。

等离子切割工艺及技术

等离子切割工艺及技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

等离子切割 等离子弧切割是利用高温等离子电弧的热量使工件切口处的金属局部熔化(和蒸发),并借助高速等离子的动量排除熔融金属以形成切口的一种加工方法。等离子切割配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍)切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、几乎没有热影响区! 等离子切割发展到现在,可采用的工作气体(工作气体是等离子弧的导电介质,又是携热体,同时还要排除切口中的熔融金属)对等离子弧的切割特性以及切割质量、速度都有明显的影响。常用的等离子弧工作气体有氩、氢、氮、氧、空气、水蒸气以及某些混合气体。等离子切割机广泛运用于汽车、机车、压力容器、化工机械、核工业、通用机械、工程机械、钢结构等各行各业。 一、等离子弧切割工艺参数 各种等离子弧切割工艺参数,直接影响切割过程的稳定性、切割质量和效果。主要切割规范简述如下: 1.空载电压和弧柱电压 等离子切割电源,必须具有足够高的空载电压,才能容易引弧和使等离子弧稳定燃烧。空载电压一般为120-600V,而弧柱电压一般为

空载电压的一半。提高弧柱电压,能明显地增加等离子弧的功率,因而能提高切割速度和切割更大厚度的金属板材。弧柱电压往往通过调节气体流量和加大电极内缩量来达到,但弧柱电压不能超过空载电压的65%,否则会使等离子弧不稳定。 2.切割电流 增加切割电流同样能提高等离子弧的功率,但它受到最大允许电流的限制,否则会使等离子弧柱变粗、割缝宽度增加、电极寿命下降。 3.气体流量 增加气体流量既能提高弧柱电压,又能增强对弧柱的压缩作用而使等离子弧能量更加集中、喷射力更强,因而可提高切割速度和质量。但气体流量过大,反而会使弧柱变短,损失热量增加,使切割能力减弱,直至使切割过程不能正常进行。 4.电极内缩量 所谓内缩量是指电极到割嘴端面的距离,合适的距离可以使电弧在割嘴内得到良好的压缩,获得能量集中、温度高的等离子弧而进行有效的切割。距离过大或过小,会使电极严重烧损、割嘴烧坏和切割能力下降。内缩量一般取8-11mm。 5.割嘴高度 割嘴高度是指割嘴端面至被割工件表面的距离。该距离一般为4~10mm。它与电极内缩量一样,距离要合适才能充分发挥等离子弧的切割效率,否则会使切割效率和切割质量下降或使割嘴烧坏。

等离子焊机说明书

目录 1.等离子焊接方法简介 (2) 1.1简介 (2) 1.2等离子电弧 (2) 1.3等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功能 (3) 2.1 PHOENIX EWA 400DC-P等离子焊接电源 (3) 2.2 HP400等离子焊枪 (5) 2.3等离子焊接控制电源 (6) 2.4 RC-3型冷却水箱 (6) 2.5焊接工装 (7) 3.等离子焊接方法的主要参数 (8) 3.1焊接电流 (8) 3.2等离子气流量 (8) 3.3焊接速度 (8) 3.4喷嘴距离 (9)

3.5正面保护气流量 (9) 4.等离子焊接操作及其注意事项 (9) 5.常见故障及其解决方法 (11) 1.等离子焊接方法简介 1.1简介 等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达0.1~500A,适合于厚度在0.1mm~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显着的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 1.2 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。

安全:等离子弧焊接及切割的操作技术

安全:等离子弧焊接及切割的操作技术 等离子弧焊接及切割的安全操作技术 1.等离子弧焊接和切割用电源的空载电压较高,尤其在乎操作时,有电击妁危险。因此: (1)电源在使用时必须可靠接地。 (2)焊枪枪体或割枪枪体与手触摸部分必须可靠绝缘。 (3)可以采用较低电压引燃非转移弧后再接通较高电压的转移弧回路。 (4)如果起动开关装在手把上,必须对外露开关套上绝缘橡胶管,避免手直接接触开关。 (5)等离子弧焊接和切割用喷嘴及电极的寿命相对较短,要经常更换,更换时要保证电源处于断开状态。 2.防电弧光辐射 等离子弧较其他电弧的光辐射强度更大,尤其是紫外线强度,故对皮肤损伤严重,操作者在焊接和切割时必须戴上良好的面罩、手套,颈部也要保护。面罩上除具有黑色目镜外,最好加上吸收紫外线的镜片。自动操作时,可在操作者与操作区之间设置防护屏。等离子弧切割时,可采用水下切割方法,利用水来吸收光辐射。 3.防高频和射线

等离子弧焊接和切割都采用高频振荡器引弧,但高频对人体有一定的危害。引弧频率选择在20~60kHz较为合适,还要求工件接地可靠,转移弧引弧后,立即可靠地切断高频振荡器电源。等离子弧焊接和切割采用钍钨极时,同钨极氩弧焊一样,要注意射线的危害。 4.防灰尘和烟气 等离子弧焊接和切割过程中伴随有大量气化的金属蒸气、臭氧、氮氧化物等。尤其切割时,由于气体流量大,致使工作场地上的灰尘大量扬起,这些烟气和灰尘对操作工人的呼吸道、肺等产生严重影响。因此要求工作场地必须配罩良好的通风设备措施。切割时,在栅格工作台下方还可安置排风装置,也可以采取水中切割方法。 5.防噪声 等离子弧会产生高强度、高频率的噪声,尤其采用大功率等离子弧切割时,其噪声更大,这对操作者的听觉系统和神经系统非常有害。要求操作者必须戴耳塞,或可能的话,尽量采用自动化切割,使操作者在隔音良好的操作室内工作,也可以采取水中切割方法,利用水来吸收噪声。

数控等离子切割机操作规程

数控等离子切割机安全操作规程 1.操作人员应遵守一般焊工安全操作规程。按规定穿戴好劳动防护用品。 2.操作人员必须经专门安全技术培训,方能上岗操作。 3.设备附近禁止存放易燃易爆物品,并应备有消防器材。 4.严禁在切割机导轨、工作面放置物品。不得在上面敲打、校直和修整工件。 5.新工件程序输入后,应先试运行,确认无误后再投入运行。 6.开机前应检查导轨、齿条及床身。检查气路系统有泄漏,排放储气筒、油水分离器内积水和杂质。检查消耗品及割炬防撞碰装置。 7.开机后应手动低速X、Y方向开动机床,检查确认有无异常情况。 8.手动升降割炬,检查动作有无异常。 9.起动等离子发生器,根据材料厚度调整气压。 10.切割过程中,观察调高系统及除尘系统工作是否正常,有异常应立即停机处理,排除故障。 11.工作时,操作人员不得离开岗位,注意观察机床运行情况,以免切割机走出有效行程范围或两台发生碰撞造成事故。 一、等离子切割机的开机、关机: 操作人员每天按照以下开关机的顺序进行操作: (1)启动空压机、空气干燥机; (2)启动机床控制柜;

(3)启动等离子电源; (4)设置好所有参数后启动程序进行切割。 (5)工作完成后,关闭所有电源、气源。 二、等离子切割机的工作流程: (1)用AUTOCAD制图或用已有Solidworks文件直接转换为DXF格式;(2)将DXF格式的零件图导入FastCAM中进行套料、转换程序,为方便程序的调用及管理,将程序名称保存为该零件的图号; (3)将转化好的程序用U盘拷入机床的控制柜上。 (4)根据所选择程序的材料及厚度,设置工艺参数; (5)调整好割枪在板材上的位置,启动程序进行切割; (6)结束切割,下料、清渣。 三、工艺参数的设定与调整: 所有工艺参数都依据说明书上的切割参数表来进行设定,改变材料及板材厚度时所有参数必须重新进行设定。 在等离子电源上调整的参数有: (1)电流:手动旋扭给定 (2)PG1引弧气气压及流量: (3)PG2切割气气压及流量: (4)WG1涡流气气压及流量: (5)WG2涡流气气压及流量: (6)板厚档位:共3个档位,根据参数表设定。 在机床控制柜上调整的参数有:

等离子切割工艺指导书

等离子切割工艺指导书 1.主题内容与适用范围: 本标准规定了等离子切割的一般技术要求及质量等级和尺寸偏差。 本标准适用于常用钢材的下料切割。 2.引用标准 GB 9448-1999 焊接与切割安全 JB/T 10045.4-1999 热切割等离子弧切割质量和尺寸偏差 3.等离子切割的一般要求 3.1从事等离子切割作业的人员必须经理论和技能培训,熟悉所用设备、工具的使 用性能,掌握安全操作技术和事故应急处理方案,并经安全技术部门考试合格 后,方可持证上岗操作。 3.2设备使用过程中,应严格遵守操作规程和维护保养规则。 4.切割前准备: 4.1 材料要求: 4.1.1 用于切割下料的钢板应经质量部门检查验收合格,其各项指标满足国家规范的 相应规定。 4.1.2 钢板在下料前应检查钢板的牌号、厚度和表面质量,如钢材的表面出现蚀点深 度超过国标钢板负偏差的部位不准用于产品。小面积的点蚀在不减薄设计厚度 的情况下,可以采用焊补打磨直至合格。 4.1.3 在下料时必须核对钢板的牌号、规格和表面质量情况,在确认符合后才可下料。 4.2 切割设备及工具: 4.2.1 切割下料设备主要包括数控等离子切割机。 4.2.2 在切割前,先检查整个切割系统的设备和工具全部运转正常,并确保安全的条 件下才能运行,而且在切割过程中应注意保持。 4.2.3 检测及标识工具分别为:钢尺、卷尺、拐尺、石笔、记号笔等。

5.切割工艺参数的选择 数控等离子机切割工艺参数的选择对切割质量、切割速度和效率等切割效果的影响是至关重要的。 5.1 空载电压和弧柱电压:等离子切割电源,必须具有足够高的空载电压,才能容易 引弧和使等离子弧稳定燃烧。空载电压一般为120-600V,而弧柱电压一般为空载电压的一半。提高弧柱电压,能明显地增加等离子弧的功率,因而能提高切割速度和切割更大厚度的金属板材。弧柱电压往往通过调节气体流量和加大电极内缩量来达到,但弧柱电压不能超过空载电压的65%,否则会使等离子弧不稳定。5.2切割电流:它是最重要的切割工艺参数,直接决定了切割的厚度和速度,即切割 能力。切割电流造成的影响: ①切割电流增大,电弧能量增加,切割能力提高,切割速度是随之增大; ②切割电流增大,电弧直径增加,电弧变粗使得切口变宽; ③切割电流过大使得喷嘴热负荷增大,喷嘴过早地损伤,切割质量自然也下降, 甚至无法进行正常切割。 所以在切割前要根据材料的厚度正确选用切割电流和相应的喷嘴。 5.3 切割速度:最佳切割速度范围可按照设备说明选定或用试验来确定,由于材料的 厚薄度,材质不同,熔点高低,热导率大小以及熔化后的表面张力等因素,切割速度也相应的变化。 5.3.1下图是空气等离子弧切割机与氧乙炔焰切割的速度对比,根据图示,当工件厚度 为12mm时,空气等离子弧切割速度是氧乙炔焰切割速度的2倍。当工件厚度 9mm时,切割速度是氧乙炔焰切割速度的3倍。由于切割速度快,人工费用相对降低,加之压缩空气价廉易得,空气等离子在切割板厚30mm以下碳钢时比氧乙炔焰切割更具有优势。但切割厚度超过30mm时,用氧乙炔焰切割较好。

数控等离子切割工艺

1、切割件的热变形及产生原因 数控切割机等离子切割时热变形虽然小,但金属板材在轧制、冷却过程中难免存在不均匀的残余内应力。切割时,金属受局部高温热源的影响沿切割方向急剧膨胀,而周围母板金属又限制其膨胀,使切口边缘金属产生应力,当应力超过金属屈服强度时,会产生压缩塑性变形,随之冷却就会收缩,冷却时,因受周围母材金属的限制,沿切割方向会产生一定的缩短变形,同时内部有一定的残余拉应力,这就是产生切割变形的原因所在。 2、切割工艺选择 为了减小切割变形,切割前必须保证金属板材的定位准确牢靠,尽量将金属板材放平。 数控等离子切割机的工作过程是按照事先编制好的程序自动控制的,其识别的是加工程序,所以在加工前选择合理的切割工艺,切割的起点、方向、顺序、速度等对切割件的加工质量起着决定性的作用。2.1、起弧点选择 一般情况下,切割件的起弧点应在金属板材边缘,或在已切割加工件的割缝中间最为理想。具体还得以切割要求来定。 2.2切割方向选择 正确的切割方向应该保证最后一条割边与母板大部分脱离。如果过早地与母板大部分脱离,则周边的边角框不足以抵抗切割过程中出现的热变形应力,造成切割件在切割过程中位移,出现尺寸偏差。

2.3切割顺序影响 切割顺序是指对钢板上若干大小嵌套的套排零件依次进行切割的顺序。一般应遵循“先内后外,先小后大”的原则。 2.4、切割速度选择 合适的切割速度是切口表面平直的重要条件。切割速度决定于材质板厚、切割电流、气体种类及流量、喷嘴结构和合适的后拖量等。在同样的功率下,增加切割速度将导致切口变斜。为了提高生产率,应在保证切割质量的前提下尽可能选用大的切割速度。 3、等离子工艺参数

等离子焊机说明书

目录 1.等离子焊接方法简 介 (2) 简介 (2) 等离子电弧 (2) 等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功 能 (3) PHOENIX EWA 400DC-P等离子焊接电源 (3) HP400等离子焊枪 (5) 等离子焊接控制电源 (6) RC-3型冷却水箱 (6) 焊接工装 (7) 3.等离子焊接方法的主要参 数 (8)

焊接电流 (8) 等离子气流量 (8) 焊接速度 (8) 喷嘴距离 (9) 正面保护气流量 (9) 4.等离子焊接操作及其注意事 项 (9) 5.常见故障及其解决方 法 (11) 1.等离子焊接方法简介 简介 等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达~500A,适合于厚度在~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显着的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行

业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。 自由电弧经过等离子焊枪中的三个压缩:机械压缩,热压缩和电磁压缩后形成等离子电弧,等离子电弧的功率及温度明显高于自由电弧,其功率基本上是自由电弧的两倍。 等离子电弧主要分为三种类型: 1.非转移型等离子电弧 主要用于非金属材料的焊接。 2.转移型等离子电弧

等离子弧焊的工艺参数

等离子弧焊的工艺参数 索引:等离子弧焊的几个工艺参数 关键词:焊接电流,焊接速度,喷嘴离工件的距离,等离子气及流量,引弧及收弧,接头形式和装配要求 (1)焊接电流 焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。 (2)焊接速度 焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。 (3)喷嘴离工件的距离

·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。 (4)等离于气及流量 等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。 离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。 保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。 小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊

等离子转移弧焊接设备介绍及应用

等离子转移弧焊介绍及应用 1.等离子定义: 等离子弧焊是由钨极惰性气体保护焊发展而成的一种高效、优质、经济的焊接方法。它利用各种约束机制,充分发挥了电弧等离子区的高温、高穿透能力,使电弧的特性发生了质的变化。 2.等离子焊与TIG焊的比较 A等离子电弧能量集中,弧柱的最高温度达到24000K以上。电弧高度稳定并具有很强的穿透能力。对于碳钢和不锈钢,一次行程可熔透的最大厚度为8mm,而传统的TIG焊仅为3.0mm B等离子弧具有良好的收孔效应,容易实现单面焊双面成型工艺。厚度8mm以下的对接接头可不开坡口,采用直边对接接头形式,可大大缩短焊前准备和焊接时间,与手工TIG焊相比,焊接效率可提高4~5倍 C等离子弧焊的焊缝成形具有深而窄的特点,热影响区小,几乎显示不出热影响区;而钨极氩弧焊的热影响区达到3~4mm,因此等离子弧焊具有焊接速度快;焊缝深度比大,截面积小;薄板焊接变形小,厚板焊接缩孔倾向小及热影响区窄等特点 D电弧挺直性好,离子弧焊弧长变化对焊缝成形的影响不明显 E等离子弧焊时,由于电弧稳定性高,焊缝外表成形均整美观,余高小。大大减少了焊缝焊后修整的工作量。在不锈钢焊件的焊接中,光滑的焊缝表面可显著提高接头的耐蚀性 F等离子弧焊焊缝的质量具有很好的重复性,等离子弧焊的抗干扰性强,特别适用于对焊缝质量要求高的焊接工程 GTIG焊钨极承载电流能力较差,过大的电流会引起钨极的熔化和蒸发,其微粒有可能进入熔池而引起夹钨。因此,熔敷速度小、熔深浅、生产率低。而等离子弧焊枪的钨极内缩在喷嘴之内,电极不可能与工件相接触,因而没有焊缝夹钨的问题

3.等离子发展趋势 目前国外使用比较普及,国内这几年也慢慢发展起来,国内也有几个厂家做一些功能简单的等离子焊接设备,但从功能稳定性,如电流稳定性,送粉精准度,气流量精准度,使用寿命上来说远不及国外品牌,国外品牌好点的等离子设备使用寿命可达20年到25年不等,例如:德国Castolin生产的等离子转移弧设备。产品焊接质量的好差功能稳定性是影响的直接因素。 4.等离子设备组成 焊接电源,送粉器,冷切箱,手动喷枪,自动喷枪,自动内孔喷枪,手动远程控制器等如下图: 5.等离子通常与自动化设备配套使用,形成自动化喷焊, 如下图:

等离子弧焊接及切割的安全操作技术(正式版)

文件编号:TP-AR-L4319 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 等离子弧焊接及切割的安全操作技术(正式版)

等离子弧焊接及切割的安全操作技 术(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1.等离子弧焊接和切割用电源的空载电压较 高,尤其在乎操作时,有电击妁危险。因此: (1)电源在使用时必须可靠接地。 (2)焊枪枪体或割枪枪体与手触摸部分必须可靠 绝缘。 (3)可以采用较低电压引燃非转移弧后再接通较 高电压的转移弧回路。 (4)如果起动开关装在手把上,必须对外露开关 套上绝缘橡胶管,避免手直接接触开关。 (5)等离子弧焊接和切割用喷嘴及电极的寿命相

对较短,要经常更换,更换时要保证电源处于断开状态。 2.防电弧光辐射 等离子弧较其他电弧的光辐射强度更大,尤其是紫外线强度,故对皮肤损伤严重,操作者在焊接和切割时必须戴上良好的面罩、手套,颈部也要保护。面罩上除具有黑色目镜外,最好加上吸收紫外线的镜片。自动操作时,可在操作者与操作区之间设置防护屏。等离子弧切割时,可采用水下切割方法,利用水来吸收光辐射。 3.防高频和射线 等离子弧焊接和切割都采用高频振荡器引弧,但高频对人体有一定的危害。引弧频率选择在20~

相关文档