文档库 最新最全的文档下载
当前位置:文档库 › 杆件的强度计算公式

杆件的强度计算公式

杆件的强度计算公式
杆件的强度计算公式

杆件的强度、刚度和稳定性计算

1.构件的承载能力,指的是什么?

答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。

(1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。

(3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。

2.什么是应力、正应力、切应力?应力的单位如何表示? 答:内力在一点处的集度称为应力。

垂直于截面的应力分量称为正应力或法向应力,用ζ表示;相切于截面的应力分量称切应力或切向应力,用η表示。

应力的单位为Pa 。

1 Pa =1 N /m 2

工程实际中应力数值较大,常用MPa 或GPa 作单位 1 MPa =106Pa

1 GPa =109Pa

3.应力和内力的关系是什么?

答:内力在一点处的集度称为应力。

4.应变和变形有什么不同?

答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。

单位横向长度上的变形称横向线应变,以ε/

表示横向应变。

5.什么是线应变?什么是横向应变?什么是泊松比? 答:(1)线应变

单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为

l l

?=

ε (4-2)

拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。

(2)横向应变

拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为

a a a -=?1 横向应变ε/

a a

?=

/ε (4-3)

杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/

为正值。因此,拉(压)杆的线应变ε

与横向应变ε/

的符号总是相反的。

(3)横向变形系数或泊松比

试验证明,当杆件应力不超过某一限度时,横向应变ε/

与线应变ε的绝对值之比为一常数。此比值称为横向变形系数或泊松比,用μ表示。

ε

εμ/

=

(4-4)

μ是无量纲的量,各种材料的μ值可由试验测定。

6.纵向应变和横向应变之间,有什么联系?

答:当杆件应力不超过某一限度时,横向应变ε/

与纵向应变ε的绝对值之比为一常数。此比值称为横向变形系数或泊松比,用μ表示。

ε

εμ/

=

(4-4)

μ是无量纲的量,各种材料的μ值可由试验测定。

7.胡克定律表明了应力和应变的什么关系?又有什么应用条件?

答:它表明当应力不超过某一限度时,应力与应变成正比。胡克定律的应用条件:只适用于杆内应力未超过某一限度,此限度称为比例极限。

8. 胡克定律是如何表示的?简述其含义。 答:(1)胡克定律内力表达的形式

EA l

F l N =

? (4-6)

表明当杆件应力不超过某一限度时,其纵向变形与杆件的轴力及杆件长度成正比,与杆件的横截面面积成反比。

(2)胡克定律应力表达的形式

εσ?=E (4-7)

是胡克定律的另一表达形式,它表明当应力不超过某一限度时,应力与应变成正比。

比例系数E 称为材料的弹性模量,从式(4-6)知,当其他条件相同时,材料的弹性模量越大,则变形越小,这说明弹性模量表征了材料抵抗弹性变形的能力。弹性模量的单位与应力的单位相同。

EA 称为杆件的抗拉(压)刚度,它反映了杆件抵抗拉伸(压缩)变形的能力。EA 越大,杆件的变形就越小。

需特别注意的是:

(1)胡克定律只适用于杆内应力未超过某一限度,此限度称为比例极限(在第三节将作进一步说明)。 (2)当用于计算变形时,在杆长l 内,它的轴力F N 、材料E 及截面面积A 都应是常数。

9.何谓形心?如何判断形心的位置?

答:截面的形心就是截面图形的几何中心。 判断形心的位置:

当截面具有两个对称轴时,二者的交点就是该截面的形心。据此,可以很方便的确定圆形、圆环形、正方形的形心;

只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。

10.具有一个对称轴的图形,其形心有什么特征?

答:具有一个对称轴的图形,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。

11.简述形心坐标公式。

答:建筑工程中常用构件的截面形状,一般都可划分成几个简单的平面图形的组合,叫做组合图形。例如T 形截面,可视为两个矩形的组合。若两个矩形的面积分别是A 1和A 2,它们的形心到坐标轴z 的距离分别为y 1和y 2,则T 形截面的形心坐标为

2

12

211A A y A y A y C +?+?=

更一般地,当组合图形可划分为若干个简单平面图形时,则有

∑∑?=

i

i

i C A

y A y (4-8)

式中y C ——组合截面在y 方向的形心坐标; A i ——组合截面中各部分的截面面积;

y i ——组合截面中各部分的截面在y 方向的形心坐标。 同理可得

∑∑?=

i

i

i C

A

z A z (4-9)

12.何谓静矩?

答:平面图形的面积A 与其形心到某一坐标轴的距离的乘积称为平面图形对该轴的静矩。一般用S 来表示,即:

C

y C

z z A S y A S ?=?=

即平面图形对z 轴(或y 轴)的静矩等于图形面积A 与形心坐标y C (或z C )的乘积。当坐标轴通过图形的形心时,其静矩为零;反之,若图形对某轴的静矩为零,则该轴必通过图形的形心。

13.组合图形的静矩该如何计算?

答:对组合图形,同理可得静矩的计算公式为

???

?

??=?=∑∑Ci i y Ci i z z A S y A S (4-10) 式中A i 为各简单图形的面积,y Ci 、z Ci 为各简单图形形心的y 坐标和z 坐标。(4-10)式表明:组合图形

对某轴的静矩等于各简单图形对同一轴静矩的代数和。

14.何谓惯性矩?、圆形截面的惯性矩公式如何表示?

答:截面图形内每一微面积dA 与其到平面内任意座标轴z 或y 的距离平方乘积的总和,称为该截面图形对z 轴或y 轴的惯性矩,分别用符号I z 和I y 表示。即

????

?==??A y A z dA z I dA

y I 22 (4-11)

不论座标轴取在截面的任何部位,y 2和z 2恒为正值,所以惯性矩恒为正值。惯性矩常用单位是m 4 (米

4

)或mm 4 (毫米4)。

15.试算出矩形、圆形的惯性矩。 答:(1)矩形截面

?

?-=

??==22

3

2

2

12

h h A

z bh dy b y dA y I

图4-10 图4-11

同理可求得

123h b I y =

对于边长为a 的正方形截面,其惯性矩为

124

a I I y z =

= (2)圆形截面

图4-12

图4-12所示圆形截面,直径为d ,半径为R ,直径轴z 和y 为其对称轴,取微面

dy

y R dA ?-=222

积分得圆形截面的惯性矩为:

??-=

=

-==R

R

A

z d R dy y R y

dA y I 644

24

4

2

22

2

ππ

同理可求得

644

d I y π=

16.试说出平行移轴公式每个量的计算方法。 答:(1)平行移轴公式

A a I I z z 2

1+= (4-12a ) 同理得

A

b I I y y 21+= (4-12b)

公式4-12说明,截面图形对任一轴的惯性矩,等于其对平行于该轴的形心轴的惯性矩,再加上截

面面积与两轴间距离平方的乘积,这就是惯性矩的平行移轴公式。

17.组合图形惯性矩的计算分哪几个步骤?

答:组合图形对某轴的惯性矩,等于组成它的各个简单图形对同一轴惯性矩之和。 (1)求组合图形形心位置;

(2)求组合图与简单图形两轴间距离;

(3)利用平行移轴公式计算组合图形惯性矩。

18.低碳钢拉伸时,其过程可分为哪几个阶段?

答:根据曲线的变化情况,可以将低碳钢的应力-应变曲线分为四个阶段:弹性阶段,屈服阶段,强化阶段,颈缩阶段。

19.为什么说屈服强度与极限强度是材料强度的重要指标? 答:屈服强度与极限强度是材料强度的重要指标:

(1)当材料的应力达到屈服强度ζs 时,杆件虽未断裂,但产生了显著的变形,势必 影响结构的正常使用,所以屈服强度ζs 是衡量材料强度的一个重要指标。

(2)材料的应力达到强度极限ζb 时,出现颈缩现象并很快被拉断,所以强度极限ζb 也是衡量材料强度的一个重要指标。

20.什么是试件拉断后的延伸率和截面收缩率?

答:(1)延伸率:试件拉断后,弹性变形消失,残留的变形称为塑性变形。试件的标距由原来的l 变为l 1,长度的改变量与原标距l 之比的百分率,称为材料的延伸率,用符号δ表示。

001100?-=

l l

l δ (4-14)

(2)截面收缩率:试件拉断后,断口处的截面面积为A 1。截面的缩小量与原截面积A 之比的百分率,称为材料的截面收缩率,用符号ψ表示。

001

100?-=

A A A ψ (4-15)

21. 试比较塑性材料与脆性材料力学性能有何不同?

答:塑性材料的抗拉和抗压强度都很高,拉杆在断裂前变形明显,有屈服、颈缩等报警现象,可及时采取措施加以预防。

脆性材料其特点是抗压强度很高,但抗拉强度很低,脆性材料破坏前毫无预兆,突然断裂,令人措手不及。

22.许用应力的涵义是什么?

答:任何一种构件材料都存在着一个能承受应力的固有极限,称极限应力,用ζ0表示。

为了保证构件能正常地工作,必须使构件工作时产生的实际应力不超过材料的极限应力。由于在实际设计计算时有许多不利因素无法预计,构件使用时又必须留有必要的安全度,因此规定将极限应力ζ0

缩小n 倍作为衡量材料承载能力的依据,称为许用应力,以符号[ζ]表示:

[]n 0

σσ=

(4-16)

n 为大于l 的数,称为安全因数。

23.轴向拉伸(压缩)正应力计算公式是什么?并解释每个量的物理意义。 答:如用A 表示杆件的横截面面积,轴力为F N ,则杆件横截面上的正应力为

A F N

=

σ (4-17)

正应力的正负号规定为:拉应力为正,压应力为负。

24.轴向拉伸(压缩)杆的最大应力出现在什么截面?

答:当杆件受几个轴向外力作用时,由截面法可求得最大轴力F Nmax ,对等直杆来讲,杆件的最大正应力算式为:

A F N max

max =

σ (4-18)

最大轴力所在的横截面称为危险截面,由式4-18算得的正应力即危险截面上的正应力,称为最大工作应力。

25.简述轴向拉伸(压缩)的强度计算

答:对于轴向拉、压杆件,为了保证杆件安全正常地工作,就必须满足下述条件

[]σσ≤max (4-19)

上式就是拉、压杆件的强度条件。对于等截面直杆,还可以根据公式(4-18)改为

[]σ≤A F N max

(4-20)

26.轴向拉伸(压缩)杆的强度条件可以解决哪三类问题?

答:在不同的工程实际情况下,可根据上述强度条件对拉,压杆件进行以下三方面的计算: (1)强度校核

如已知杆件截面尺寸、承受的荷载及材料的许用应力,就可以检验杆件是否安全,称为杆件的强度校核。

(2)选择截面尺寸

如已知杆件所承受的荷载和所选用的材料,要求按强度条件确定杆件横截面的面积或尺寸,则可将式(4-20)改为

[]

σmax

N F A ≥

(4-21)

(3)确定允许荷载

如已知杆件所用的材料和杆件横截面面积,要求按强度条件来确定此杆所能容许的最大轴力,并根据内力和荷载的关系,计算出杆件所允许承受的荷载。则可将公式(4-20)改为 []

σA F N ≤m ax (4-22)

27.平面弯曲的受力特征和变形特征是什么? 答:平面弯曲的受力特征

梁弯曲时,横截面上一般产生两种内力——剪力和弯矩。与剪力对应的应力为切应力,与弯矩对应的应力为正应力。梁的横截面由中性轴将其分为上下两部分,一部分受拉,另一部分受压。

平面弯曲的变形特征

梁的侧面画上与梁轴线平行的水平纵向线和与纵向线垂直的竖直线: (1) 各竖直线段仍为直线,不过相互间转了一个角度; (2) 各纵向水平直线变为曲线,但仍与竖直线垂直;

(3) 向下凸一边的纵向线伸长,且越靠近梁下边缘伸长越多;向里凹进的一边的纵向线缩短,且越靠近梁的上边缘的缩短越多。

28. 梁发生纯弯曲变形后,可看到哪些现象?根据上述试验现象,可作出哪些分析和假设

答:梁变形后,可看到下列现象:

(1) 各竖直线段仍为直线,不过相互间转了一个角度; (2) 各纵向水平直线变为曲线,但仍与竖直线垂直;

(3) 向下凸一边的纵向线伸长,且越靠近梁下边缘伸长越多;向里凹进的一边的纵向线缩短,且越靠近梁的上边缘的缩短越多。

根据上述试验现象,可作出如下分析和假设: (1) 平面假设:梁的横截面在变形后仍为一个平面,且与变形后的梁轴线垂直,只是转了一个角度;

(2) 单向受力假设:由于梁上部各层纵向纤维缩短,下部各层纵向纤维伸长,中间必有一层纵向纤维既不伸长也不缩短,这层纤维称为中性层。中性层与横截面的交线称为中性轴。

29.在推导梁的正应力计算公式时,要从几个方面去考虑?

答:在推导梁的正应力计算公式时,要从几何变形方面;应力与应变的物理关系;静力条件三方面去考虑。

30. 简述梁弯曲时横截面上任意一点的正应力计算公式,并说明其含义。正应力公式的适用条件如何?何谓抗弯刚度?

答:(1)梁弯曲时横截面上任意一点的正应力计算公式:

z I y

M ?=

σ (4-29)

此式表明:横截面上任意一点的正应力ζ与该截面上的弯矩M 和该点到中性轴的距离量y 成正比,与横截面对中性轴的惯性矩I z 成反比。正应力沿截面高度成直线变化,离中性轴愈远正应力愈大,中性轴上的正应力等于零。梁的横截面由中性轴将其分为上下两部分,一部分受拉,另一部分受压。

(2)正应力公式的适用条件:

1)在公式推导过程中运用了虎克定律,因此只有在材料处于弹性范围时该式才适用。

2)在非纯弯曲情况下,即横截面同时存在弯矩和剪力时,由于剪力对正应力的影响很小,因此,对非纯弯曲的情况该式仍可适用。

3)公式虽按矩形截面梁推导出来,但对具有对称轴的其它截面,如T 形、工字形、圆形等也都适用。

4)公式是在平面弯曲情况下推导出来的,但非平面弯曲的情况就不适用了。 (3)抗弯刚度:EI z 表示梁抵抗弯曲变形的能力,称为梁的抗弯刚度。

31.正应力强度条件可以计算哪三类问题? 答:梁的正应力强度计算公式即

[]σσ≤=

z

W M max

max (4-33)

式中[ζ]——弯曲时材料的许用正应力,可在有关规范中查到。 利用公式的强度条件,可进行以下三个方面的计算: (1) 强度校核

[]σ≤z W M max

(2) 选择截面尺寸

[]

σmax

M W z ≥

(3) 计算允许荷载

[]

σz W M ≤m ax

32. 提高梁抗弯强度的途径有哪些? 答:提高梁抗弯强度的途径:

(1)选择合理的截面形状

1)根据抗弯截面模量与截面面积的比值A W z

选择截面。工字形、槽形截面比矩形截面合理,矩形截

面比圆形截面合理。

2)根据材料特性选择截面

对于抗拉和抗压强度相等的塑性材料,一般采用对称于中性轴的截面,如矩形、工字形、圆形等截面,使得上、下边缘的最大拉应力和最大压应力相等,同时达到材料的许用应力值,比较合理。

对于抗拉和抗压强度不相等的脆性材料,最好选择不对称于中性轴的截面,如T 字形、槽形(平放)等截面。使得截面受拉、受压的边缘到中性轴的距离与材料的抗拉、抗压的许用应力成正比。 (2)合理安排梁的受力状态,以降低弯矩最大值 1)合理布置梁的支座

以简支梁受均布荷载作用为例,若将两端支座各向中间移动0.2l 则最大弯矩将减小为前者的1/5,梁的截面尺寸就可大大地减小。 2)适当增加梁的支座

由于梁的最大弯矩与梁的跨度有关,所以适当增加梁的支座,可以减小梁的跨度,从而降低最大弯矩值。

在可能的条件下,将集中荷载分散布置,可以降低梁的最大弯矩。 (3)采用变截面梁

为了充分利用材料,应当在弯矩较大处采用较大的截面,弯矩较小处采用较小的截面,使梁的各截面不相同。这种横截面沿着轴线变化的梁称为变截面梁。若使每一横截面上的最大正应力都恰好等于材料的许用应力[ζ],这样的梁称为等强度梁。等强度梁的W z 和M 成正比变化。

33. 简述梁的切应力强度计算公式。 答:梁的切应力强度条件为

[]

ττ≤??=

b

I S F z z

Q max

*

max max (4-33)

式中 [η]——许用切应力;

S *

zmax —一截面中性轴以上(或以下)的面积对中性轴的静矩。

34. 在梁的强度计算中,如何考虑正应力和切应力两个强度条件?

答:在梁的强度计算中,必须同时满足正应力和切应力两个强度条件。但在一般情况下,梁的强度计算由正应力强度条件控制。因此通常先按正应力强度条件选择梁的截面尺寸,然后根据需要作切应力强度条件校核。对于细长梁,按正应力强度条件设计,一般都能满足切应力强度条件要求,就不必再作切应力强度校核。但在以下几种情况下,需作切应力强度校核。

(1) 梁的跨度较小或在支座附近作用着较大荷载时,梁内可能出现弯矩较小而剪力很大的情况。 (2) 某些组合截面梁,当腹板宽度很小,横截面上的切应力数值很大时。

(3) 木梁。在横力弯曲时,横截面中性轴上切应力较大,根据切应力的特点,梁的中性层上也产生相同值的切应力。由于木梁在顺纹方向的抗剪能力较差,有可能使木梁发生顺纹方向的剪切破坏。

35. 组合变形的计算主要利用什么原理? 答:杆件组合变形时的强度计算方法是前面在求内力时曾经介绍过的叠加法。即先将荷载分解成只产生基本变形时的荷载,并分别计算各基本变形所产生的应力,然后根据叠加原理将所求截面的应力相应地叠加,最后根据叠加结果建立强度条件。

36.压杆的稳定平衡和不稳定平衡指的是什么?如何区别?

答:稳定平衡状态——如某物体由于某种原因使其偏离它原来的平衡位置,而当这种原因消除后,它能够回到其原来的位置,也就是说这种平衡状态是经得起干扰的,是稳定的平衡状态。

不稳定平衡状态——如某物体由于某种原因使其稍微偏离它原来的平衡位置,而这种原因消除后,它不但不能回到其原来的位置,而且继续增大偏离,显然,这种平衡状态是经不起干扰的,是不稳定的平衡状态。

37.什么叫柔度?它与哪些因素有关?

答:

i l

μλ=

为压杆的长细比或柔度,为无量纲的量。

长细比柔度λ与压杆两端的支承情况、杆长、截面形状和尺寸等因素有关,它表示压杆的细长程度。长细比大,压杆细长,临界应力小,临界力也小,杆件容易丧失稳定。反之,长细比小,压杆粗而短,临界应力大,临界力也大,压杆就不容易丧失稳定。所以,长细比是影响压杆稳定的重要因素。

38.何谓临界力?影响临界力的因素有哪些? 答:压杆稳定或不稳定与所受的轴向压力的大小有关,设压杆稳定与不稳定的临界状态时所承受的轴向压力为临界压力或临界力,用符号F Pcr 表示。

影响压杆的临界力的因素很多,主要有杆件的长度、截面形状及大小、杆件的材料以及杆件两端的支承情况等因素。

39.简述欧拉公式及长度系数的常见取值。?

答:当材料处于弹性阶段时,细长压杆的临界力可用欧拉推导出的公式计算。

22)(l EI F Pcr

μπ=

(4-34)

式中 E ——材料的弹性模量; I ——截面的最小惯性矩; l ——杆件的长度;

μ——长度系数,其按压杆两端的支承形式而定。两端铰支为1;两端固定为0.5;一端固定,一端铰支为0.7;一端固定,一端自由为2。

40. 欧拉公式的适用范圈如何? 答:欧拉公式的适用范圈:

欧拉公式是在假定材料处于弹性范围内并服从虎克定律的前提下推导出来的,因此,压杆在失稳前的应力不得超过材料的比例极限ζP ,即

P

P E λσπλ=≥/2 (4-36)

用λP 来表示欧拉公式的适用范围,当λ≥λP 时欧拉公式适用,当λ<λP 时欧拉公式不适用。这时压杆的临界应力采用经验公式来计算。我国根据试验得出经验公式为抛物线公式,即

20λσσk cr -=

其中ζ0、k 都是和材料有关的参数。如:

Q 235钢 200668.0235λσ-=cr λ<λP =123

16Mn 钢 2014.0343λσ-=cr λ<λP =109

40. 压杆的稳定条件如何表示?

答:压杆的稳定条件,就是压杆的实际压应力不可超过材料的许可临界应力[ζst ],即

[][]σ?σσ?=≤=

st N

A F

式中 F N ——轴向压力;

A ——杆件的横截面面积;

?——折减系数,其值随长细比而变化,且是一个小于或等于1的数。

上式通常写成:

[]

σ?≤A F N

(4-37)

41.什么叫折减系数? 答:在压杆的稳定条件

[][]σ?σ?=st 中,系数θ称为折减系数,其值随长细比而变化,且是一个

小于或等于1的数。常用材料的折减系数值列表,供计算时查用。

42.稳定性和强度有什么不同?

答:稳定性是要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 强度是要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。

43. 稳定条件的应用有哪三种情况? 答:稳定条件的应用,有如下三种情况 (1)稳定校核

对已知压杆的实际应力是否超过压杆稳定的许用应力进行验算,称为稳定校核。 (2)确定许可荷载

将公式4-37变换成F N ≤A θ[ζ],以计算压杆许可承受的压力。 (3)选择截面

将公式4-37换成

[]σ?N

F A ≥

,用来选择压杆的截面尺寸,但是在截面尺寸尚未确定的情况下,长

细比λ无法确定,无法从表中查出φ值。因此工程上采用试算法来进行截面选择工作,其步骤如下:

(1)先假定一个折减系数φ1(一般取θ1=0.5~0.6),由此可定出截面尺寸A 1。

(2)按初选的截面尺寸A 1计算i 、λ,查出相应的/1?。比较查出的/1?与假设的φ1,若两者比较

接近,可对所选截面进行稳定校核。

(3)若

/

1

?与φ

1

相差较大,可假设2

/

1

1

2

?

?

?

+

=

,重复(1)(2)步骤。直到求得的

/

n

?

与假设的φn值接

近为止。一般重复二、三次便可达到目的。

此外,在截面有削弱时,还应对净截面作强度校核。

43.提高压杆稳定性的措施有哪些?

答:提高压杆稳定性的中心问题,是提高杆件的临界力(或临界应力),可以从下列四方面考虑: 1.λ方面

对于一定材料制成的压杆,其临界应力与柔度λ的平方成反比,柔度越小,稳定性越好。为了减小柔度,可采取如下一些措施。

1)选择合理的截面形状

在截面积一定的情况下,要尽量增大惯性矩I。例如,采用空心截面(图4-45)或组合截面,尽量使截面材料远离中性轴。

当压杆在各个弯曲平面内的支承情况相同时,为避免在最小刚度平面内先发生失稳,应尽量使各个方向的惯性矩相同。例如采用圆形、方形截面。

若压杆的两个弯曲平面支承情况不同,则采用两个方向惯性矩不同的截面,与相应的支承情况对应。例如采用矩形、工字形截面。在具体确定截面尺寸时,抗弯刚度大的方向对应支承固结程度低的方向,抗弯刚度小的方向对应支承固结强的方向,尽可能使两个方向的柔度相等或接近,抗失稳的能力大体相同。

2)改善支承条件

因压杆两端支承越牢固,长度系数μ就越小,则柔度也小,从而临界应力就越大。故采用μ值小的支承形式可提高压杆的稳定性。

3)减小杆的长度

压杆临界力的大小与杆长平方成反比,缩小杆件长度可以大大提高临界力,即提高抵抗失稳的能力。因此压杆应尽量避免细而长。在可能时,在压杆中间增加支承,也能起到有效作用。

2.材料方面

在其它条件相同的情况下,选择高弹性模量的材料,可以提高压杆的稳定性。例如钢杆的临界力大于铜、铁、木杆的临界力。但应注意,对细长杆,临界应力与材料的强度指标无关,各种钢材的E值又大致是相等的,所以采用高强度钢材是不能提高压杆的稳定性的,反而造成浪费。对于中长杆,临界应力与材料强度有关,采用高强度钢材,提高了屈服极限ζs。和比例极限ζP,在一定程度上可以提高临界应力。

杆件的强度计算公式资料讲解

杆件的强度、刚度和稳定性计算 1.构件的承载能力,指的是什么? 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 2.什么是应力、正应力、切应力?应力的单位如何表示? 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。 应力的单位为Pa。 1 Pa=1 N/m2 工程实际中应力数值较大,常用MPa或GPa作单位 1 MPa=106Pa 1 GPa=109Pa 3.应力和内力的关系是什么? 答:内力在一点处的集度称为应力。 4.应变和变形有什么不同? 答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 5.什么是线应变?什么是横向应变?什么是泊松比? 答:(1)线应变 单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l? = ε (4-2) 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 (2)横向应变 拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a,变形后为a1,则横向变形为 a a a- = ? 1 横向应变ε/为

什么是混凝土强度标准差

标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方误差(meansquared error,均方误差就就是各数据偏离真实值得距离平方得平均数,也即误差平方与得平均数, 什么就就是混凝土强度标准差?怎么计算才好? 在工程中,想要知道混凝土抗压强度得时候,一定需要计算混凝土强度标准差,也许有些朋友并不知道什么叫做混凝土强度标准差,也许有些朋友知道混凝土强度标准差,但就就是却不知道应该怎样计算才好,因此在接下来得文章中就讲为朋友们分享一下混凝土强度标准差得概念以及计算方法就就是什么。 什么就就是混凝土强度标准差?

事实上,混凝土强度标准差得全称应该就就是混凝土抗压强度标准差,而混凝土强度得计算并不能做到完全没有误差,由于检测方法总就就是有误差得,所以检测值并不就就是其真实值。而标准差却就就是反映一组数据得离散程度最常用且最有用得一种量化形式,就就是计算结果就就是否精密得重要指标。 因此在计算混凝土强度得时候,就需要计算混凝土强度标准差,而想要计算混凝土强度标准差就需要计算公式,那么混凝土强度标准差得计算公式又就就是什么呢?大家一起来从下文中了解混凝土强度标准差得计算公式就就是什么。

混凝土强度标准差得计算公式如下: 混凝土强度标准差得计算公式:Sfcu=[(∑fcu?i2-n?mfcu2)/(n-1)]1/2 也许朋友们瞧到这个公式得时候会有疑惑,不知道这个公式所表达得意思,别急,接下来就为大家介绍公式中对应得意思,以及先后得计算顺序。 在上述公式中得2与1/2都就就是上角表,就就是用来表示平方与以及根号得,首先要对fcu?i平方求与,之后减去n与fcu乘积平均值得平方,之后再用她们得差再除去(n-1),这样计算之后得出得除数再开方;

大学物理磁感应强度作业

《大学物理》作业 磁感应强度 班级 ________________ 学号 ______________ 姓名 ____________ 成绩 ___________ 一、选择题:(注意:题目中可能有一个或几个正确答案) 1.一磁场的磁感应强度为k c j b i a B ++=(T ),则通过一半径为R ,开口向z 正方向的 半球壳表面的磁通量的大小是: (A) Wb 2a R π (B) Wb 2b R π (C) Wb 2c R π (D) Wb 2abc R π [ C ] 解:如图所示,半径为R 的半球面1S 和半径为R 的圆平面2S 组成一个封闭曲面S 。由磁场的高斯定律0d =???s B 知: c S k s k c j b i a s B s B s s s 22 2 1 d )(d d -=?++-=?-=?=Φ??? c R 2 π-= 故选C 2.边长l 为的正方形线圈,分别用图示的两种方式通以电流I (其中ab ,cd 与正方形共面),在这两种情况下,线圈在其中产生的磁感应强度大小分别为: (A) 0,021==B B (B) l I B B πμ02122,0= = (C) 0,22201== B l I B πμ (D) l I B l I B πμπμ020122,22== [ C ] 解:根据直电流产生的磁场的公式有: l I l I l I u B πμπμθθπ0 0120122) 2 222(2) sin (sin 2 44=+=-? ? = 对于第二种情况,电流I 流入b 后分流,两支路电流相等,在中心处产生的磁感应强度 大小相等,方向相反,所以:02=B 故选C 3.下列哪一幅曲线能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系? d d

轴的计算

14.3轴的强度计算 14 .3 .1 按扭转强度计算 轴不是标准零件,需要自己设计计算。在满足强度和保证轴正常工作的条件 下来设计轴。例如用于带式运输机的单级斜齿圆柱齿轮减速器的低速轴。 这种计算方法主要应用于传动轴,也可以初步估算轴的最小直径,在此基础 上进行轴的结构设计。 按扭转强度计算公式 式中,—许用扭转切应力,; —轴传递的转矩,也是轴承受的扭矩,; —轴的抗扭截面系数,; —轴传递的功率, KW; d—轴的直径, mm ; n—轴的转速, r/min 。 C—为由轴的材料和受载情况所决定的常数(见下表)。 -轴传递的转矩,也是轴承受的扭矩,单位: N.mm 按公式计算轴的直径,当轴截面上有一个键槽时,轴径应增大5%;有两个键 槽时,应增大10%。 轴常用材料的值和C值 注:当作用在轴上的弯矩比转矩小或只受转矩时,C取较小值,否则C取较 大值。 14 . 3 . 2 轴的刚度计算概念 按弯扭合成强度计算

1.作轴的受力简图 轴上零件所受的作用力,其作用点在轮毂宽度的中间点。而轴承处支承反力 作用点的位置,要根据轴承的类型和布置方式确定。 如果轴上的载荷不在同一平面内,需求出两个互相垂直平面的支承反力。 即 水平面和垂直面支承反力。 2.作弯矩图 根据受力简图分别作出水平面弯矩图和垂直面的弯矩,求出合成 弯 矩并作合成弯矩图。 3.作轴的扭矩图 4.作当量弯矩图 根据已作出合成弯矩图和扭矩图,按第三强度理论计算各剖面上的当量弯矩 ,并作当量弯矩图。 式中,—根据扭矩性质而定的校正系数,对于不变的扭矩,; 对 于脉动循环变化的扭矩,;对于对称循环变化的扭矩,。 5.轴的强度计算 求出危险截面的当量弯矩后,按强度条件计算: —轴的危险截面的抗弯截面系数,。 表 12.3 轴材料的许用弯曲应力:

磁感应强度

、教学目标 1 ?掌握磁感应强度的定义和磁通量的定义. 2 ?掌握利用磁感应强度的定义式进行计算. 3 ?掌握在匀强磁场中通过面积 S 的磁通量的计算. 4?搞清楚磁感应强度与磁场力,磁感应强度与磁通量的区别和联系. 、教学重点、难点 1 ?该节课的重点是磁感应强度和磁通量的概念. 2 ?磁感应强度的定义是有条件的,它必须是当通电直导线 L 与磁场方向垂直的情况 IL 3 ?磁通量概念的建立也是一个难点,讲解时,要引入磁感线来帮助学生理解和掌 握. 三、 教具 1 .通电导体在磁场中受力演示. 2 ?电流天平?(选用) 3 ?挂图(磁感线、磁通量用). 四、 教学过程 (一) 引入新课 提问:什么是磁现象的电本质? 应答:运动电荷(电流)在自己周围空间产生磁场,磁场对运动电荷或电流有力的 作用,磁极与 磁极、磁极与电流、电流与电流之间发生相互作用都可以看成是运动电荷 之间通过磁场而发生相互作用?这就是磁现象的电本质. 为了表征磁场的强弱和方向,我们引入一个新的物理量:磁感应强度?我们都知道 电场强度是描 述电场力的特性的,那么磁感应强度就是描述磁场力特性的物理量,因此 我们可以用类比的方法得出磁感应强度的定义来. 提问:电场强度是如何定义的? 应答:电场中某点的电场强度等于检验电荷在该点所受电场力与检 F 验电荷电量之比。其定义式是:E = -t 该点电场強度的方向是正的检验 q 电荷在该点的受力方向. (二) 教学过程设计 i .磁感应强度 通过实验,得出结论,当通电直导线在匀强磁场中与磁场方向垂直时,受到磁场对 它的力的作用?3.2磁感应强度 下, B=F .

对于同一磁场,当电流加倍时,通电导线受到的磁场力也加倍,这说明通电导线受到的磁场力与通过它的电流强度成正比?而当通电导线长度加倍时,它受到的磁场力也加倍,这说明通电导线受到的磁场力与导线长也成正比?对于磁场中某处来说,通电导线在该处受的磁场力F与通电电流强度I与导线长度L乘积的比值是一个恒量,它与电流强度和导线长度的大小均无关?在磁场中不同位置,这个比值可能各不相同,因此,这个比值反映了磁场的强弱. 提问:类比电场强度的定义,谁能根据以上实验事实用一句话来定义磁感应强度, 用B来表示,并写出它的定义式. 回答:磁场中某处的磁感应强度等于通电直导线在该处所受磁场力F与通电电流和导线长度乘积IL的比?定义式为 IL 再问:通电直导线应怎样放入磁场? 应答:通电直导线应当垂直于磁场方向. 指出前面的回答对磁感应强度的论述是不严密的?(不管学生回答的严密不严密)应强调通电直导线必须在垂直磁场方向的条件下,该定义才成立?在测量精度要求允许的条件下,在非匀强磁场中,当通电导线足够短,可以近似地看成一个点,在该点附近的磁场也可近似地看成 p 是匀强磁场,则B二二也就表示它所在磁场中某点的磁感应强度。 (1)磁感应强度的定义 在磁场中某处垂直于磁场方向的通电直导线,受到的磁场力F,跟通电电流强度和 导线长度的乘积IL的比值叫做该处的磁感应强度B? (2)磁感应强度的公式(定义式) (3)磁感应强度的单位(板书) 在国际单位制中,B的单位是特斯拉(T),由B的定义式可知: 牛(N) 安(A) * 米(m) (4)磁感应强度的方向 磁感应强度是矢量,不但有大小,而且有方向,其方向即为该处磁场方向. 顺便说明,一般的永磁体磁极附近的磁感应强度是0.5T左右,地球表面的地磁场的 磁感应强度大约为5.0 X 10-5「 课堂练习 练习1 ?匀强磁场中长2cm的通电导线垂直磁场方向,当通过导线的电流为2A时,它 受到的磁场力大小为4 X 10-3N,问:该处的磁感应强度B是多大?(让学生回答)

混凝土立方体抗压强度的标准差

混凝土立方体抗压强度的标准差 Sfcu=[(∑ fcu?i2-n?mfcu2)/(n-1)]1/2 公式表述显示不明,用语言表述下,即公式中的2和1/2都应为上角表,分别表示平方和根号(开平方)。语言表述如下: fcu.i的平方求和再减去 n 乘以fcu平均值的平方,用他们的差再除以(n-1)这样得出的除数开方;也可以是fcu.i-fcu平均值差的平方求和得出的数再除以(n-1)这样得出的除数开方。 当Sfcu<0.06fcu,k时,取Sfcu=0.06fcu,k 具体参数表述如下: fcu,k一混凝土立方体抗压强度标准值 fcu为设计强度标准值 mfcu为平均值 n为试块组数 Sfcu为n组试块的强度值标准差 fcu.i : 第i组试块的立方体抗压强度值 我想这个公式已经够清楚了,不需要用实例演示了,你自己可以试一下,还有,我觉得你可以不加括号里话,多些人回答,即便有一些回答不是你想要的也没有多大关系,不是吗?希望你对这个回答满意。补充回答:2和1/2为上角标,写错了,补充下。 补充回答:我想了想,不知道你是否是学这个专业的,还是再好好写下好,fcu,k一混凝土立方体抗压强度标准值,即C30的混凝土,这个值就是30,C40的混凝土,这个值就是40。

拿两组试块举个例子,太多了计算麻烦,如我的混凝土是C40的:1、实测2组试块是46,42,则平均值44,(46的平方+42的平方-2X44的平方)/(2-1)=8,8开平方约等于2.83,则这2组试块的强度值标准差为2.832 2、实测2组试块是46,44,则平均值45,(46的平方+44的平方-2X45的平方)/(2-1)=2,2开平方约等于1.41<0.06fcu=0.06X40=2.4,则这2组试块的强度值标准差为2.4 这次应该没有什么疑问了吧?如果是做资料,我觉得现在都是直接用资料软件,你把标准值及实测值一输入,则各种需要的值都出来了,结论也有了,不用计算这么麻烦,学习的过程中,自己用手练下还可以。

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及] [r τ值见下表: 表1 轴的材料和许用扭转切应力 空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 T τ[]T τ

根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册~17. ][1σ为脉动循环应力时许用弯曲应力(MPa)具体数值查机械设计手册 2.2.3按弯扭合成强度条件计算 由于前期轴的设计过程中,轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置均已经确定,则轴上载荷可以求得,因而可按弯扭合成强度条件对轴进行强度校核计算。 一般计算步骤如下: (1)做出轴的计算简图:即力学模型 通常把轴当做置于铰链支座上的梁,支反力的作用点与轴承的类型及布置方式有关,现在例举如下几种情况: 图1 轴承的布置方式 当L e d L 5.0,1≤/=,d e d L 5.0,1/=>但不小于(~)L ,对于调心轴承e=0.5L 在此没有列出的轴承可以查阅机械设计手册得到。通过轴的主要结构尺寸轴上零件位置及外载荷和支反力的作用位置,计算出轴上各处的载荷。通过力的分解求出各个分力,完成轴的受力分析。 ][7.1][≤1-0σσσ== W M ca

常用计算公式

常用计算公式: 1、钢板拉伸: 原始截面积=长×宽 原始标距=原始截面积的根号×L0=K S0 k为S0为原始截面积 断后标距-原始标距 断后伸长率= ×100% 原始标距 原始截面积—断后截面积 断面收缩率= ×100% 原始截面积 Z=[(A0—A1)/A0]100% 2、圆材拉伸: 2 原始截面积= 4 (= D=直径)标距算法同钢板 3、光圆钢筋和带肋钢筋的截面积以公称直径为准,标距=5×钢筋的直径。断后伸长同钢板算法。 4、屈服力=屈服强度×原始截面积 最大拉力=抗拉强度×原始截面积 抗拉强度=最大拉力÷原始截面积 屈服强度=屈服力÷原始截面积 5、钢管整体拉伸:

原始截面积=(钢管外径—壁厚)×壁厚×(=) 标距与断后伸长率算法同钢板一样。 6、抗滑移系数公式: N V=截荷KN P1=预拉力平均值之和 nf=2 预拉力(KN)预拉力之和滑移荷载Nv(KN) 第一组425 第二组345 428 第三组343 424 7、螺栓扭矩系数计算公式:K= P·d

T=施工扭矩值(机上实测) P=预拉力 d=螺栓直径 已测得K 值(扭矩系数)但不知T 值是多少可用下列公式算出:T=k*p*d T 为在机上做出实际施拧扭矩。K 为扭矩系数,P 为螺栓平均预拉力。D 为螺栓的公称直径。 8、螺栓标准偏差公式: K i =扭矩系数 K 2=扭矩系数平均值 用每一组的扭矩系数减去平均扭矩系数值再开平方,八组相加之和,再除于7。再开根号就是标准偏差。 例:随机从施工现场抽取8 套进行扭矩系数复验,经检测: 螺栓直径为22 螺栓预拉力分别为:186kN ,179kN ,192kN ,179kN ,200kN ,205kN ,195kN ,188kN ; 相应的扭矩分别为: 530N ·m ,520N ·m ,560N ·m ,550N ·m ,589N ·m ,620N ·m , 626N ·m ,559N ·m K=T/(P*D) T —旋拧扭矩 P —螺栓预拉力 D —螺栓直径(第一步先算K 值,如186*22=4092 再用530/4092=,共算出8组的K 值,再算出这8组的平均K 值,第二步用每组的K 值减去平均K 值,得出的数求出它的平方,第三步把8组平方数相加之和,除于7再开根号。得出标准差。 解:根据规范得扭矩系数: 2 1 ()1n i i K K n σ=-=-∑

磁感应强度的概念_磁感应强度的磁感线_磁感应强度公式

磁感应强度的概念_磁感应强度的磁感线_磁感应强度公式 磁感应强度的概念 磁感应强度(magnetic flux density),描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(符号为T)。磁感应强度也被称为磁通量密度或磁通密度。在物理学中磁场的强弱使用磁感应强度来表示,磁感应强度越大表示磁感应越强;磁感应强度越小,表示磁感应越弱。

磁感应强度的定义公式 磁感应强度公式B=F/(IL) 磁感应强度是由什么决定的?磁感应强度的大小并不是由F、I、L来决定的,而是由磁极产生体本身的属性。 如果是一块磁铁,那么B的大小之和这块磁铁的大小和磁性强弱有关。 如果是电磁铁,那么B与I、匝数及有无铁芯有关。 物理网很多文章都建议同学们采用类比的方法来理解各个物理量。我们用电阻R来做个对比。 R的计算公式是R=U/I;可一个导体的电阻R大小并不是由U或者I 来决定的。而是由其导体自身属性决定的,包括电阻率、长度、横截面积。同样,磁感应强度B也不是由F、I、L来决定的,而是由磁极产生体本身的属性。 如果同学们有时间,可以把静电场中电容的两个公式来对比着复习、巩固下。

B为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则(左手定则)。 描述磁感应强度的磁感线 在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。 磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S 极到N极。 磁感线都有哪些性质呢? ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 ⒉磁感线是闭合曲线;磁铁的磁感线,外部从N指向S,内部从S指向N; ⒊磁感线的疏密表示磁感应强度的强弱,磁感线上某点的切线方向表示该点的磁场方向。

杆件的强度计算公式

杆件的强度计算公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

杆件的强度、刚度和稳定性计算 1.构件的承载能力,指的是什么 答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。 (1)足够的强度。即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。 (2)足够的刚度。即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。 (3)足够的稳定性。即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。 2.什么是应力、正应力、切应力应力的单位如何表示 答:内力在一点处的集度称为应力。 垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。 应力的单位为Pa。 1Pa=1N/m2 工程实际中应力数值较大,常用MPa或GPa作单位 1MPa=106Pa 1GPa=109Pa 3.应力和内力的关系是什么 答:内力在一点处的集度称为应力。 4.应变和变形有什么不同

答:单位长度上的变形称为应变。单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。单位横向长度上的变形称横向线应变,以ε/表示横向应变。 5.什么是线应变什么是横向应变什么是泊松比 答:(1)线应变 单位长度上的变形称纵向线应变,简称线应变,以ε表示。对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l ?=ε(4-2) 拉伸时ε为正,压缩时ε为负。线应变是无量纲(无单位)的量。 (2)横向应变 拉(压)杆产生纵向变形时,横向也产生变形。设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为 横向应变ε/ 为 a a ?=/ε(4-3) 杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。 (3)横向变形系数或泊松比 试验证明,当杆件应力不超过某一限度时,横向应变ε/与线应变ε的绝对值之比为一常数。此比值称为横向变形系数或泊松比,用μ表示。 εεμ/ =(4-4) μ是无量纲的量,各种材料的μ值可由试验测定。 6.纵向应变和横向应变之间,有什么联系

轴的强度计算

轴的强度计算 一、按扭转强度初步设计阶梯轴外伸端直径 由实心圆轴扭转强度条件 τ= 33102.09550?=n d P W T ρ≤[τ] 式中,τ为轴的剪应力,MPa ;T 为扭矩,N ·mm ;ρW 为抗扭截面系数,mm 3;对圆截面,ρW =π3d /16≈0.23d ;P 为轴传递的功率,KW ;n 为轴的转速,r/min ;d 为轴的直径,mm ;[τ]为许用切应力,MPa 。 对于转轴,初始设计时考虑弯矩对轴强度的影响,可将[τ]适当降低。将上式改写为设计公式 d ≥ []3 33 32.0109550n P A n P =?τ (16.1) 式中,A 是由轴的材料和承载情况确定的常数。见表16.7;P 为轴传递的功率,KW ; n 为轴的转速,r/min ;d 为轴径,mm 。 注:1.轴上所受弯矩较小或只受转矩时,A 取较小值;否则取较大值。 2.用Q235、3SiMn 时,取较大的A 值。 3.轴上有一个键槽时,A 值增大4%~5%;有两个键槽时,A 值增大7%~10%。 可结合整体设计将由式(16.1)所得直径圆整为按优先数系制定的标准尺寸或与相配合零件(如联轴器、带轮等)的孔径相吻合,作为转轴的最小直径。 二、按弯扭组合强度计算 轴系结构拟定以后,外载荷和轴的支点位置就可确定,此时可用弯扭组合强度校核。如图16.39(a),装有齿轮的传动轴,切向力P 作用在齿轮的节圆上,通过齿轮的受力分析(图16.39(b)),可知齿轮作用于轴上的是一个通过轴线并与之轴线垂直的力P 和一个作用面垂直于轴线的力偶PR m = (图16.39(c))。力P 使轴产生弯曲变形(图16.39(d)),力偶PR m =则产生扭转变形(图16.39(e)),所以此轴是弯扭组合变形。 分别考虑力P 与力偶m 的作用,画出弯矩图(图16.39(f))和扭矩图(图16.39(g)),其危险截面上的弯矩和扭矩值分别为 l Pab M = T =PR m = 危险截面上的弯曲正应力和扭转剪应力的分布情况如图(16.40(a)),由于C 、D 两点是危险截面边缘上的点,扭转剪应力和弯曲正应力绝对值最大,故为危险点,其正应力和剪应力分别为 σ=W M τ= ρ W T

砼强度标准差公式

、开工前(具备开工条件的资料):施工许可证(建设单位提供),施工组织设计(包括报审表、审批表),开工报告(开工报审),工程地质勘查报告,施工现场质量管理检查记录(报审),质量人员从业资格证书(收集报审),特殊工种上岗证(收集报审),测量放线(报审), 2、基础施工阶段:钢筋进场取样、送样(图纸上规定的各种规格钢筋),土方开挖(土方开挖方案、技术交底,地基验槽记录、隐蔽、检验批报验),垫层(隐蔽、混凝土施工检验批、放线记录、放线技术复核),基础(钢筋原材料、检测报告报审,钢筋、模板、混凝土施工方案、技术交底,钢筋隐蔽、钢筋、模板检验批、放线记录、技术复核,混凝土隐蔽、混凝土施工检验批,标养、同条件和拆模试块),基础砖墙(方案、技术交底,提前做砂浆配合比,隐蔽、检验批,砂浆试块),模板拆除(拆模试块报告报审,隐蔽、检验批),土方回填(方案、技术交底,隐蔽、检验批,土方密实度试验)。 3、主体施工阶段:一层结构(方案、技术交底基础中已包含,钢筋原材料、检测报告报审,闪光对焊、电渣压力焊取样、送样,钢筋隐蔽、钢筋、模板检验批、模板技术复核)。 4、装饰装修阶段:地砖、吊顶材料、门窗、涂料等装饰应提前进行复试,待检测报告出来报监理审查通过后方可施工(方案、技术交底,隐蔽、检验批)。 5、屋面施工阶段:防水卷材等主要材料应提前复试,待复试报告出来报监理审查通过后方可进入屋面施工阶段(方案、技术交底,隐蔽、检验批)。 6、质保资料的收集:材料进场应要求供应商提供齐全的质保资料,钢筋进场资料(全国工业生产许可证、产品质量证明书),水泥(生产许可证,水泥合格证,3天、28天出厂检验报告,备案证,交易凭证现场材料使用验收证明单),砖(生产许可证、砖合格证,备案证明、出厂检验报告,交易凭证,现场材料使用验收证明单),黄沙(生产许可证,质量证明书,交易凭证现场材料使用验收证明单),石子(生产许可证,质量证明书,交易凭证现场材料使用验收证明单),门窗(生产许可证、质量证明书、四性试验报告,交易凭证现场材料使用验收证明单),防水材料(生产许可证,质量证明书、出厂检测报告),焊材(质量证明书),玻璃(玻璃质量证明书),饰面材料(质量证明书),材料进场后设计、规范要求须进行复试的材料应及时进行复试检测,其资料要与进场的材料相符并应与设计要求相符。 7、应做复试的材料:钢筋(拉伸、弯曲试验,代表数量:60t/批),水泥(3天、28天复试,代表数量:200t/批),砖(复试,代表数量:15万/批),黄沙(复试,600t/批),石子(复试,代表数量:600t/批),门窗(复试),防水材料(复试),饰面材料(复试) 8、回填土应做密实度试验,室内环境应做检测并出具报告。

轴的强度校核方法

第二章 轴的强度校核方法 常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3mm n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1=β其中β即空心轴的内径1d 与外径d 之比,通常取β=这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475.2112110min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm W 为危险截面抗扭截面系数(3mm )具体数值查机械设计手册][7.1][≤1-0σσσ==W M ca

强度标准差计算公式

v1.0可编辑可修改直接转的:看看对你有帮助没有。 Sfcu=[(刀feu ? i2-n ? mfcu2)/(n-1)]1/2 公式表述显示不明,用语言表述下,即公式中的2和1/2都应为上角表,分别表示平方和根号(开平方)。语言表述如下:的平方求和再减去n乘以feu平均值的平方,用他们的差再除以(n-1 )这样得出的除数开方;也可以是平均值差的平方求和得出的数再除以(n-1 )这样得出的除数 开方。当Sfcu<,k时,取Sfcu=,k 具体参数表述如下: fcu,k 一混凝土立方体抗压强度标准值 fcu为设计强度标准值 mfcu为平均值 n为试块组数 Sfcu为n组试块的强度值标准差 :第i组试块的立方体抗压强度值

在线规范网协助网站:给排水On Line 混凝土强度换算及推定 5.4.1混凝土强度换算值可采用以下三类测强曲线计算: 1统一测强曲线:由全国有代表性的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(S )应为±%,相对标准差(er)不应大于%。 2地区测强曲线:由本地区常用的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(S )应为±%,相对标准差(er )不应大于%。 3专用测强曲线:由与结构或构件混凝土相同的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(S )应为±%,相对标准差(er)不应大于%。 4平均相对误差(S )和相对标准差(er)的计算应符合本规程附录F的规定。 5各检测单位应按专用测强曲线、地区测强曲线、统一测强曲线的次序选用测强曲线。 5.4.2地区和专用测强曲线应与制定该类测强曲线条件相同的混凝土相适应,不 得超出该类测强曲线的适用范围。应经常抽取一定数量的同条件试件进行校核,当发现有显著差异时,应及时查找原因,并不得继续使用。 5.4.3符合下列条件的混凝土应采用本规程附录G进行测区混凝土强度换算: 1混凝土采用的材料、拌和用水符合国家现行的有关标准; 2不掺引气型外加剂; 3采用普通成型工艺;

(整理)13怎样计算磁感应强度.

§13 怎样计算磁感应强度 在稳恒磁场中的磁感应强度,可用毕奥-沙伐尔定律和安培环路定律来求解。 毕奥-沙伐尔定律在成块中的地位,好像静电场中的库仑定律一样,是很重要的。它是计算磁感应强度最普遍、最基本的方法。安培环路定律,是毕奥-沙伐尔定律的基础上加上载流导线无限长等条件而推导出来的。困此,用安培环路定律遇到较大的限制。但是,有一些场合,应用安培环路定律往往给我们带来不少方便。 一、用毕奥-沙伐尔定律计算 真空中有一电流元Idl ,在与它相距r 处的地方所产生的磁感应强度dB ,由毕奥-沙伐尔定律决定。 03 (1)4Idl r dB r μπ?= 式中,r 是由电流元Idl 指向求B 点的距离矢量。式(1)是矢量的矢积,故dB 垂直于dl 与r 组成的平面,而且服从右手螺旋法则。真空的磁导率7 0410/H m μπ-=?。 B 是一个可叠加的物理量,因此,对于一段(弯曲的或直的)载流导线L 所产生的B 磁感 应强度为: 03 (2)4L Idl r B r μπ?= ? 1、 基本题例 在磁场的计算中,许多习题是载流直导线和圆弧导线不同组合而成的。因此,必须熟练掌握一段载流的长直导线和一段载流的圆弧导线的磁场的计算公式。 图2-13-1所示为一段长直载流导线,它的磁感应强度的计算公式为: ()0 12cos cos 4B a μθθπ= - 或: ()0 21cos cos 4B a μββπ= - 当载流直导线“无限长”时,02I B a μπ= ;

半无限长时,04I B a μπ= 运用时,应注意a 是求B 点到载流导线的垂直距离;辨认θ与β的正负,请辨认图2-13-2中的θ,β的正负。 一段载流圆弧,半径为R ,在圆心O 点的磁感应强度为: 004I B R μθ π= 方向由右手螺旋法则决定。 当2 π θ= 时, 002I B R μ= 当θπ=时, 004I B R μ= 2、 组合题例 [例1]已知如图2-13-3所示,求P 点的磁感应强度。 [解法一]由图可见,此载流导线由两根半无限长载流导线和一个半圆弧组成。 两根半无限长的载流导线在P 点产生的磁感应强度为: 011222P I B R μπ=? 载流半圆弧在P 点产生的磁感应强度为发: 0222P I B R μ=? 故总的磁感应强度: ()01224P P P I B B B R μππ=+= + [解法二]图示载流导线也可以看成两根无限长 载流导线和一个载流圆环组成(如图2-13-3)。将所得结果除以2,即为题设答案。 两根无限长载流导线和一个载流圆环在P 点所

轴的强度校核方法

第二章 轴的强度校核方法 2.2常用的轴的强度校核计算方法 进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选取其许用应力。 对于传动轴应按扭转强度条件计算。 对于心轴应按弯曲强度条件计算。 对于转轴应按弯扭合成强度条件计算。 2.2.1按扭转强度条件计算: 这种方法是根据轴所受的扭矩来计算轴的强度,对于轴上还作用较小的弯矩时,通常采用降低许用扭转切应力的办法予以考虑。通常在做轴的结构设计时,常采用这种方法估算轴径。 实心轴的扭转强度条件为: 由上式可得轴的直径为 为扭转切应力,MPa 式中: T 为轴多受的扭矩,N ·mm T W 为轴的抗扭截面系数,3m m n 为轴的转速,r/min P 为轴传递的功率,KW d 为计算截面处轴的直径,mm 为许用扭转切应力,Mpa ,][r τ值按轴的不同材料选取,常用轴的材料及][r τ值见下表: T τn P A d 0 ≥[]T T T d n P W T ττ≤2.09550000≈3=[]T τ

空心轴扭转强度条件为: d d 1 = β其中β即空心轴的内径1d 与外径d 之比,通常取β=0.5-0.6 这样求出的直径只能作为承受扭矩作用的轴段的最小直径。例如,在设计一级圆柱齿轮减速器时,假设高速轴输入功率P1=2.475kw ,输入转速n1=960r/min ,则可根据上式进行最小直径估算,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 根据工作条件,选择45#钢,正火,硬度HB170-217,作为轴的材料,A0值查表取A0=112,则 mm n P A d 36.15960 475 .2112110 min =?== 因为高速轴最小直径处安装联轴器,并通过联轴器与电动机相连接,设有一个键槽,则: mm d d 43.16%)71(36.15%)71(min ' min =+?=+= 另外,实际中,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机轴径不能相差太大,否则难以选择合适的联轴器,取电动机轴d d 8.0'min =,查表,取mm d 38=电动机轴,则: mm d d 4.3038*8.08.0' min ===电动机轴 综合考虑,可取mm d 32'min = 通过上面的例子,可以看出,在实际运用中,需要考虑多方面实际因素选择轴的直径大小。 2.2.2按弯曲强度条件计算: 由于考虑启动、停车等影响,弯矩在轴截面上锁引起的应力可视为脉动循环变应力。 则 其中: M 为轴所受的弯矩,N ·mm ][7.1][≤1-0σσσ== W M ca

轴的强度校核例题及方法

1.2 轴类零件的分类 根据承受载荷的不同分为: 1)转轴:定义:既能承受弯矩又承受扭矩的轴 2)心轴:定义:只承受弯矩而不承受扭矩的轴 3)传送轴:定义:只承受扭矩而不承受弯矩的轴 4)根据轴的外形,可以将直轴分为光轴和阶梯轴; 5)根据轴内部状况,又可以将直轴分为实心轴和空。 1.3轴类零件的设计要求 ⑴轴的工作能力设计。 主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。 ⑵轴的结构设计。 根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。 一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。 轴是主要的支承件,常采用机械性能较好的材料。常用材料包括: 碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。 常用牌号有:30、35、40、45、50。采用优质碳素钢时应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。 45钢价格相对比较便宜,经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45-52HRC,是轴类零件的常用材料。 合金钢具有更好的机械性能和热处理性能,可以适用于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50-58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化

强度标准差计算公式

直接转的:看看对你有帮助没有。 Sfcu=[(∑ fcu?i2-n?mfcu2)/(n-1)]1/2 公式表述显示不明,用语言表述下,即公式中的2和1/2都应为上角表,分别表示平方和根号(开平方)。 语言表述如下:fcu.i的平方求和再减去n 乘以fcu平均值的平方,用他们的差再除以(n-1)这样得出的除数开方;也可以是fcu.i-fcu平均值差的平方求和得出的数再除以(n-1)这样得出的除数开方。当Sfcu<0.06fcu,k时,取Sfcu=0.06fcu,k 具体参数表述如下: fcu,k一混凝土立方体抗压强度标准值 fcu为设计强度标准值 mfcu为平均值 n为试块组数 Sfcu为n组试块的强度值标准差 fcu.i : 第i组试块的立方体抗压强度值

在线规范网https://www.wendangku.net/doc/d52778224.html, 协助网站:给排水On Line 5.4 混凝土强度换算及推定 5.4.1 混凝土强度换算值可采用以下三类测强曲线计算: 1 统一测强曲线:由全国有代表性的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±15.0%,相对标准差(er)不应大于18.0%。 2 地区测强曲线:由本地区常用的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±14.0%,相对标准差(er)不应大于17.0%。 3 专用测强曲线:由与结构或构件混凝土相同的材料、成型养护工艺配制的混凝土试件,通过试验所建立的曲线。其允许的强度平均相对误差(δ)应为±12.0%,相对标准差(er)不应大于14.0%。 4 平均相对误差(δ)和相对标准差(er)的计算应符合本规程附录F的规定。 5 各检测单位应按专用测强曲线、地区测强曲线、统一测强曲线的次序选用测强曲线。 5.4.2 地区和专用测强曲线应与制定该类测强曲线条件相同的混凝土相适应,不得超出该类测强曲线的适用范围。应经常抽取一定数量的同条件试件进行校核,当发现有显著差异时,应及时查找原因,并不得继续使用。 5.4.3 符合下列条件的混凝土应采用本规程附录G进行测区混凝土强度换算: 1 混凝土采用的材料、拌和用水符合国家现行的有关标准; 2 不掺引气型外加剂; 3 采用普通成型工艺; 4 采用符合现行的《铁路混凝土与砌体工程施工质量验收标准》(TB10424)规定的模板; 5 自然养护或蒸汽养护出池后经自然养护7d以上,且混凝土表层为干燥状态; 6 龄期为14~1000d; 7 抗压强度为10~60MPa。 5.4.4 当有下列情况之一时,测区混凝土强度值不得按本规程附录G换算,但可制定专用测强曲线或通过试验进行修正,专用测强曲线的制定方法宜符合本规程附录F的有关规定:

混凝土强度标准差值

铁路混凝土工程可按: 强度等级:低于C20 C20-C40 高于C40 构件厂σ:3.0 4.0 5.0 搅拌站σ:3.5 4.5 5.5 混凝土强度标准差宜根据同类混凝土统计资料计算确定,当无统计资料时,可按国标GB50204的规定选用: 混凝土强度等级:低于C20 C20-C35 高于C35 σ: 4.0 5.0 6.0 混凝土设计强度标准差在混凝土配合比设计规范里面就有详细的规定了: 混凝土强度标准差宜根据同类混凝土统计资料计算确定,并应符合下列规定: 1.计算时,强度试件组数不应少于25组; 2.当混凝土强度等级C20和C25级,其强度标准差计算值不于2.5MPa时,计算配制强度用的标准差应取不小于2.5MPa;当混凝土强度等级等于或大于C30级,其强度标准差计算值小于 3.0MPa时,计算配制强度用的标准差应取不小于3.0MPa。 3.当无统计资料计算混凝土强度标准差时,其值应按现行国家标准《混凝土结构工程施工及验收规范》(GB50204)的规定取用。在GB50204里面规定了,小于C25的混凝土标准差取3.0MPa,在c25和C30之间,取 4.0Mpa,对于大于c35的混凝土,取 5.0MPa。 混凝土强度标准差宜根据同类混凝土统计资料计算确定,当无统计资料时,可按国标GB50 204的规定选用,见表140。

铁路混凝土工程可按表T140选用 我看见标准差的公式是: 可是我没看明白到底代表什么意思,请高手详细解说下,谢谢!! 问题补充2011-03-18 10:01 谁能告诉我啊! 匿名回答:1 人气:11 解决时间:2011-03-22 17:36 满意答案 好评率:100% 每组试块抗压强度的平方和减去所有试块的平均值的平方乘以组数得到的结果除以(组数-1)最后开根号 Sfcu=[(∑ fcu?i2-n?mfcu2)/(n-1)]1/2 公式表述显示不明,用语言表述下,即公式中的2和1/2都应为上角表,分别表示平方和根号(开平方)。 语言表述如下:fcu.i的平方求和再减去n 乘以fcu平均值的平方,用他们的差再除以(n-1)这样得出的除数开方;也可以是fcu.i-fcu平均值差的平方求和得出的数再除以(n-1)这样得出的除数开方。当Sfcu<0.06fcu,k时,取 Sfcu=0.06fcu,k 具体参数表述如下: fcu,k一混凝土立方体抗压强度标准值 fcu为设计强度标准值 mfcu为平均值 n为试块组数 Sfcu为n组试块的强度值标准差 fcu.i : 第i组试块的立方体抗压强度值

相关文档