文档库 最新最全的文档下载
当前位置:文档库 › 高中文科数学 排列、组合、二项式定理复习

高中文科数学 排列、组合、二项式定理复习

高中文科数学 排列、组合、二项式定理复习
高中文科数学 排列、组合、二项式定理复习

第九讲、排列、组台、二项式定理

六、 统计 (一)随机抽样

1.了解随机抽样的意义。

2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。 (二)总体估计

1.了解分布的意义和作用,会列频率分布表、会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。

2.理解样本数据标准差的意义和作用,会计算数据标准差及方差。

3.能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。

4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。

5.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题。 七、 概率

(一)事件与概率

1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。

2.了解互斥事件、对立事件的意义及其运算公式。 (二)古典概型

1.理解古典概型及其概率计算公式。

2.会计算一些随机事件所含的基本事件数及事件发生的概率。

分类计数原理和分步计数原理

1分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方

法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么

完成这件事共有 12n N m m m =+++ 种不同的方法2分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,

做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有

12n N m m m =??? 种不同的方法

3两个基本原理的作用:计算做一件事完成它的所有不同的方法种数

4两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘

法原理是“分步完成”

5原理浅释 (可以看出“分”是它们共同的特征,但是,分法却大不相同)

分类计数原理(加法原理)中,“完成一件事,有n 类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事只有满足这个条件,才能直接用加法原理,否则不可以

分步计数原理(乘法原理)中,“完成一件事,需要分成n 个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m 种不同的方法,那么完成这件事的方法数就可以直接用乘法原理

排列与组合的基本问题

1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....

2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示

3.排列数公式:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤) 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘0!1=.

5.排列数的另一个计算公式:m n A =

!()!

n n m -

组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n

个不同元素中取出m 个元素的一个组合7.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...

.用符号m

n C 表示. 8.组合数公式:(1)(2)(1)

!

m

m

n n

m m

A n n n n m C A

m ---+=

=

或)!

(!!m n m n C m n

-=

,,(n m N m n ≤∈*

组合数的性质1:m n n m n C C -=.规定:10=n C ;组合数的性质2:m n C 1+=m n C +1

-m n C

分组(堆)问题的六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分;

插空法解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是__3600____

捆绑法相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”

元素进行排列,然后再局部排列例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同

坐法是__240____种

排除法从总体中排除不符合条件的方法数,这是一种间接解题的方法

排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了

问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍例如:从集合{0,

1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有___30___条

隔板法:n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价

于n 个相同小球串成一串从间隙里选m-1个结点剪成m 段(插入m -1块隔板),有1

1

--m n C 种方法

错位法:编号为1至n 的n 个小球放入编号为1到 n 的n 个盒子里,每个盒子放一个小球要

求小球与盒子的编号都不同,这种排列称为错位排列特别当n=2,3,4,5时的错位数各为

1,2,9,44

2个、3个、4个元素的错位排列容易计算关于5个元素的错位排列的计算,可以用剔

除法转化为2个、3个、4个元素的错位排列的问题:

①5个元素的全排列为:5

5120A =;

②剔除恰好有5对球盒同号1种、恰好有3对球盒同号(2个错位的)3

51C ? 种、恰好

有2对球盒同号(3个错位的)252C ? 种、恰好有1对球盒同号(4个错位的)1

59C ? 种

∴ 120-1-351C ?-252C ?-1

59C ?=44

用此法可以逐步计算:6个、7个、8个、……元素的错位排列问题

容斥法:n 个元素排成一列,求某两个元素各自不排在某两个确定位置的排法种数,宜用容斥法

二项式定理

1.二项式定理及其特例:

(1)01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*

+=+++++∈ ,

(2)1(1)1n r r n n x C x C x x +=+++++

2.二项展开式的通项公式:r

r n r n r b a C T -+=1)210(n r ,,, =

3.常数项、有理项和系数最大的项:

求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制; 求有理项时要注意到指数及项数的整数性

4 二项式系数表(杨辉三角)

()n

a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都

是1,除1以外的每一个数都等于它肩上两个数的和

5.二项式系数的性质:

()n

a b +展开式的二项式系数是0

n C ,1

n C ,2

n C ,…,n

n C .r

n C 可以看成以r 为自变量的

函数()f r ,定义域是{0,1,2,,}n (1)对称性.

与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=). 直线2

n r =

是图象的对称轴

(2)增减性与最大值:

当n 是偶数时,中间一项2n

n C 取得最大值;当n 是奇数时,中间两项1

2n n C -,1

2n n C +取得最大值

(3)各二项式系数和:∵1(1)1n r r n

n n x C x C x x +=+++++ ,令1x =,则

012

2n r

n

n n n n n C C C C C =+++

++

+

随机事件事件的概率 事件的定义:

随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件

2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率

m n

总是

接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A .

3概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的

概率;

4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为

0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件

6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能

性都相等,那么每个基本事件的概率都是

1n

,这种事件叫等可能性事件

7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A =

8随机事件的概率、等可能事件的概率计算

首先、对于每一个随机实验来说,可能出现的实验结果是有限的;其次、所有不同的实一定要在等可能的前提下计算基本事件的个数只有在每一种可能

出现的概率都相同的前提下,计算出的基本事件的个数才是正确的,才能用等可能事件的概率计算公式P (A )=m/n 来进行计算

9.等可能性事件的概率公式及一般求解方法 求解等可能性事件A 的概率一般遵循如

下步骤:(1)先确定一次试验是什么,此时一次试验的可能性结果有多少,即求出A (2)再

确定所研究的事件A 是什么,事件A 包括结果有多少,即求出m (3)应用等可能性事件概率

公式P =

n

m 计算 确定m 、n 的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分

利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏

互斥事件有一个发生的概率

1 互斥事件的概念:不可能同时发生的个事件叫做互斥事件A 、B 互斥,即事件A 、B 不可

能同时发生,这时P(A ?B)=0)P(A+B)=P (A )+ P(B)

一般地:如果事件

12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥

2.对立事件的概念:事件A和事件B 必有一个发生的互斥事件 A 、B 对立,即事件A 、B

不可能同时发生,但A 、B 中必然有一个发生这时P(A ?B)=0, P(A+B)=P (A )+ P(B)=1 一

般地,()

()A P A p -=1

3 对于互斥事件要抓住如下的特征进行理解:第一,互斥事件研究的是两个事件之间的

关系;第二,所研究的两个事件是在一次试验中涉及的;第三,两个事件互斥是从试验的结果不能同时出现来确定的 从集合角度来看,A 、B 两个事件互斥,则表示A 、B 这两个事

件所含结果组成的集合的交集是空集

对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件,集合A 的对立事件记作A ,从集合的角度来看,事件A 所含结果的集合正是全集U 中由事件A 所含结果组成集合的补集,即A ∪A =U ,A ∩A =?对立事件一定是互斥事件,但

互斥事件不一定是对立事件

4事件的和的意义:事件A 、B 的和记作A +B ,表示事件A 、B 至少有一个发生 当A 、B 为互

斥事件时,事件A +B 是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的, 因此当A 和B 互斥时,事件A +B 的概率满足加法公式:

P (A +B )=P (A )+P (B )(A 、B 互斥),且有P (A +A )=P (A )+P (A )=1

当计算事件A 的概率P (A )比较困难时,有时计算它的对立事件A 的概率则要容易些,为此有P (A )=1-P (A )

5 要弄清A ·B ,B A ?的区别

A ·

B 表示事件A 与B 同时发生,因此它们的对立事件A 与B 同时不发生,也等价于

A 与

B 至少有一个发生的对立事件即B A +,因此有A ·B ≠B A ?,但A ·B =B A +

6.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么

12()n P A A A +++ =12()()()n P A P A P A +++

7互斥事件有一个发生的概率

求解这类问题的数学思想方法是:在给定的命题背景下,先判断事件之间是否互斥,并理解“和事件”的意义,计算出每个简单事件的概率,然后再利用互斥事件的概率计算公式进行加法运算特别要注意的是,若事件A 与B 不是互斥事件而是相互独立事件,那么在计

算P (A+B )的值时绝对不可以使用P (A+B )=P (A )+P (B )这个公式,只能从对立事件的角度出发,运用P (A+B )=1-P (A B ?)进行计算

相互独立事件同时发生的概率

1.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立

2互斥事件与相互独立事件是有区别的:

两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生

3.相互独立事件同时发生的概率:()()()P A B P A P B ?=?

事件

12,,,n A A A 相互独立, 1212()()()()n n P A A A P A P A P A ???=???

4.独立重复试验的定义:在同样条件下进行的各次之间相互独立的一种试验

5 关于相互独立事件也要抓住以下特征加以理解:第一,相互独立也是研究两个事件的

关系;第二,所研究的两个事件是在两次试验中得到的;第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响”来确定的

6.独立重复试验的概率公式:如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事恰好发生K 次的概率k n k k n n P P C k P --=)1()(表示事件A 在n 次独立重复试验

中恰好发生了.....k .次.

的概率 令k=0 得 在n 次独立重复试验中,事件A 没有发生的概率为........P n (0)=C n 0p 0(1-p)n =(1-p)n

令k=n 得 在n 次独立重复试验中,事件A 全部发生的概率为........

P n (n)=C n n p n (1-p)0 =p n 7相互独立事件同时发生的概率

在同一随机实验中,两事件互斥是指两个不可能同时发生的事件;两事件相互独立是指其中的一个事件发生与否对另一个事件的发生没有影响对这两个概念的区分能力足以体现

分析问题和解决问题的能力,这正是高考考查的主要目的特别要注意:若事件A 与B 不是相互独立事件而是互斥事件,那么在计算P (AB )的值时绝对不可以使用P (A ·B )=P (A )P (B )这个公式,只能从对立事件的角度出发,运用P (A ·B )=1-P (A B +)进行计算

8 n 次独立重复实验恰好有k 次发生的概率

要求掌握n 次独立重复实验恰好有k 次发生的概率计算公式,对这个公式,不能死记硬背,要真正理解它所表示的含义,特别要理解其中的k

n C 的意义此公式是概率的加法公式的

应用,也为处理离散型随机变量的概率分布问题做了很好的铺垫一般高考不单独考这个知

识点,经常是和互斥事件有一个发生的概率或者相互独立事件同时发生的概率综合起来考查 离散型随机变量的期望与方差

1平均数的计算方法:如果有n 个数据x 1,x 2,…,x n ,那么x =

n

1(x 1+x 2+…+x n )叫做

这n 个数据的平均数,x 读作“x 拔”

2方差的计算方法:对于一组数据x 1,x 2,…,x n ,s 2

=

n

1[(x 1-x )2+(x 2-x )2

+…+

(x n -x )2]叫做这组数据的方差,而s 叫做标准差

抽样方法与总体分布的估计

1.简单随机抽样:设一个总体的个体数为N .如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样

⑴用简单随机抽样从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为

N

1;在整个抽样过程中各个个体被抽到的概率为

N

n ;

⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等,是不放回抽样. ⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础. 2.抽签法:先将总体中的所有个体(共有N 个)编号(号码可从1到N ),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n 次,就得到一个容量为n 的样本

适用范围:总体的个体数不多时

优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.

3.随机数表法: 随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码

4.分层抽样: 当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,所分成的部分叫做层

5.常用的抽样方法及它们之间的联系和区别:

6.不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,

称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.

随机抽样、系统抽样、分层抽样都是不放回8.总体:在数理统计中,通常把被研究的对象的全体叫做总体.

9.频率分布:用样本估计总体,是研究统计问题的基本思想方法,样本中所有数据(或数据组)的频数和样本容量的比,就是该数据的频率.所有数据(或数据组)的频率的分布变化规律叫做样本的频率分布.可以用样本频率表、样本频率分布条形图或频率分布直方图来表示.

10.总体分布:从总体中抽取一个个体,就是一次随机试验,从总体中抽取一个容量为n 的样本,就是进行了n 次试验,试验连同所出现的结果叫随机事件,所有这些事件的概率分布规律称为总体分布.

11.总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

可求出总体在区间(a ,b )内取值的概率等于该区间上 总体密度曲线与x 轴、直线x =a 、x =b 所围成曲边梯形 的面积。

一、选择题

1.若从集合P 到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q 到集合P 可作的不同的映射共有( ) A .32个

B .27个

C .81个

D .64个

2.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两 个节目插入原节目单中,则不同的插法总数为( ) A .42

B .36

C .30

D .12

3.全班48名学生坐成6排,每排8人,排法总数为P ,排成前后两排,每排24人,排法 总数为Q,则有( ) A .P>Q

B .P=Q

C .P

D .不能确定

4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有( )种

A .8

B .12

C .16

D .20

5.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配 方案共有( )

A .4

448412C C C

B .4

4484123C C C

C .3

34448412A C C C

D .3

3

4

44

84

12A C C C

6.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼 的外墙,现有编号为1~6的六种不同花色的装饰石材可选择,其中1号石材有微量的放射性, 不可用于办公室内,则不同的装饰效果有( )种 A .350

B .300

C .65

D .50

7.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有( )种 重新站位的方法 A .1680

B .256

C .360

D .280

8.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有( )种不同的坐法

A .7200

B .3600

C .2400

D .1200 9.在(

3

11x

x +

)n 的展开式中,所有奇数项二项式系数之和等于1024,则中间项 的二项

式系数是 ( ) A. 462 B. 330 C.682 D.792 10.在(1+a x )7

的展开式中,x 3

项的系数是x 2

项系数与x 5

项系数的等比中项,则a 的值为( ) A.

5

10 B.

3

5 C.

9

25 D.

3

25

二、填空题

11.某公园现有A 、B 、C 三只小船,A 船可乘3人,B 船可乘2人,C 船可乘1人,今有 三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方 可乘船,他们分乘这些船只的方法有_____________种。

12.“渐减数”是指每个数字比其左边数字小的正整数(如98765),若把所有的五位渐减数 按从小到大的顺序排列,则第20个数为____________。

13.体育老师把9个相同的足球放入编号为1、2、3的三个箱子里,要求每个箱子放球

的个数不少于其编号,则不同的放法有_____________种。

14.若2005

200522102005)21(x a x a x a a x ++++=- (R x ∈),

则)()()()(20050302010a a a a a a a a ++++++++ = (用数字作答)。 15.在2005

4

3

)1()1()1(x x x ++++++ 的展开式中,3

x 的系数为______________。

三.解答题

16.用0,1,2,3,4,5这六个数字 (1) 可组成多少个不同的自然数? (2) 可组成多少个无重复数字的五位数? (3) 组成多少个无重复数字的五位奇数?

(4) 可组成多少个无重复数字的能被5整除的五位数? (5) 可组成多少个无重复数字的且大于31250的五位数? (6) 可组成多少个无重复数字的能被3整除的五位数?

17某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了五种不同的荤菜,若要保证每位顾客有200种以上不同选择,则餐厅至少还需准备不同的素菜品种?(要求写出必要的解答过程)

18.已知7

722107)21(x a x a x a a x ++++=- ,求(1)710a a a +++ 的值

(2)6420a a a a +++及7531a a a a +++的值;(3)各项二项式系数和。

19.证明:(1)3)

11(2<+

≤n

n ,其中*

N n ∈;

(2)证明:对任意非负整数n ,12633--n n

可被676整除。

20.(本题满分14分)已知n m ,是正整数,n

m

x x x f )1()

1()(+++=的展开式

中x 的系数为7, (1)试求)(x f 中的2x 的系数的最小值 (2)对于使)(x f 的2x 的系数为最小的n m ,,求出此时3x 的系数 (3)利用上述结果,求)003.0(f 的近似值(精确到0.01)

21.规定是正整数,其中m R x m m x x x C m

x ,,!

)

1()1(∈+--=

且的一种推广,是正整数,且

这是组合数),(10n m m n C C m

n x ≤=

(1) 求5

15-C 的值,

(2)组合数的两个性质:m n n m n C C -=;m

n m n m n C C C 11+-=+是否都能推广到

),(*

N m R x C m x ∈∈的情形?若能推广,则写出推广的形式并给予证明,或不能则说明理由

(3) 已知组合数m n C 是正整数,证明:当m Z x ,∈是正整数时,Z C m

x ∈

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0 C 1n =) 知识内容 排列组合问题的常见模型 1

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

高二数学知识点:排列与组合

高二数学知识点:排列与组合 排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C-------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法."排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n 个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符 号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2019-07-0813:30 公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

高中数学排列组合难题十一种方法

高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = C 14A 34C 13 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

排列组合二项式定理知识点

排列组合项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以.有.重.复.元.素.的排列. 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以 从m个不同元素中,每次取出n个元素可重复排列数m- m?…m = m n..例

3! 1 . 3! 如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: m n 种) 二、排列. 1.(1)对排列定义的理解. 定义:从n 个不同的元素中任取 m (贰n )个元素,按照一定顺序 排成一列, 叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺 序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (mcn)个元素排成一列,称为从n 个不同元素中取 出 m 个元素的一个排列.从n 个不同元素中取出m 个元素的一个排列数,用 符号表 示. ⑷排列数公式: 注意:n n! (n 1)! n!规定 0! = 1 m m m m 1 m m 1 m m 1 On, A n 1 A n A m C n A n mA n A n nA n 1 /规^定 C n C n 1 2.含有可重元素的排列问题. 对含有相同元素求排列个数的方法是:设重集 S 有k 个不同元素a 1, a 2,……a n 其中限重复数为n 1、n ..... n k ,且n = n 计尊+ .. n k ,则S 的排列 例如:已知数字3、2、2,求其排列个数n 喈3又例如:数字5、5、5、 求其排列个数?其排列个数 个数等于n n! n !n 2!...n k

(最新经营)排列组合二项式定理与概率及统计

主讲人:黄冈中学高级教师汤彩仙 一、复习策略 排列与组合是高中数学中从内容到方法均比较独特的一个组成部分,是进一步学习概率论的基础知识,该部分内容,不论其思想方法和解题均有特殊性,概念性强,抽象性强,思维方法新颖,解题过程极易犯“重复”或“遗漏”的错误,且且结果数目较大,无法一一检验,因此给考生带来一定困难.解决问题的关键是加深对概念的理解,掌握知识的内于联系和区别,科学周全的思考、分析问题. 二项式定理是进一步学习概率论和数理统计的基础知识,把握二项展开式及其通项公式的相互联系和应用是重点. 概率则是概率论入门,目前的概率知识只是为进一步学习概率和统计打好基础,做好铺垫.学习中要注意基本概念的理解,要注意与其他数学知识的联系,要通过一些典型问题的分析,总结运用知识解决问题的思维规律. 纵观近几年高考,排列、组合、二项式定理几乎每年必考,考题多以选择题、填空题出现,题小而灵活,涉及知识点均于两三个左右,综合运用排列组合知识,分类计数和分步计数原理;二项式定理及二项式系数的性质计算或论证一些较简单而有趣的小题也于高考题中常见,概率及概率统计的内容,从近几年新课程卷高考来看,每年均有一道解答题,占12分左右. 排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)

以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.(4)某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;(5)某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”; 于求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 二、典例剖析 题型一:排列组合应用题 解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件. 例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计 重点知识回顾 1. 排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关, 分类计数原理与分类有关 ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合, ⑶排列与组合的主要公式 _ r — r+1 项是 T r+1 =C n a n r b r . ⑵二项展开式的通项公式 二项展开式的第r+1项T r+1=c n a n —r b r (r=0,1,…叫)做二项展开式的通项公式。 ⑶二项式系数的性质 ① 在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即 c n = c n r (r=0,1,2,…,n ). 项和第n 3项)的二项式系数相等,并且最大,其值为 2 A n = n! =n(n — 1)(n — 2) ....... 2 ? 1. ②组合数公式: c m n! n(n 1) (n m 1) (m < n) m!( n m)! m (m 1) 2 1 ③组合数性质: ①c m ㈡ m (m < n) ② c 0 c ; c n 2 c ; 2n ③ Cn Cn c 4 C n c 1 c 3 C n C n 2n 1 2.二项式定理 ⑴二项式定理 (a +b)n =C 0a n +c n a n — 1 r b+ …+C n a n r b r +… + c n b n ,其中各项系数就是组合数c n ,展开式共有n+1项,第 问题?区别排列问题与组合问题要看是否与顺序有关, 与顺序有关的属于排列问题, 与顺序无关的属于组合问题 求共有多少种方法的 ①排列数公式: A m n! (n m)! n(n 1) (n m 1) (m

排列组合与二项式定理及概率应用综合

第一讲 排列组合概念及简单应用 排列和排列数公式 A m n =n (n -1)(n -2)…(n -m +1)=n ! (n -m )!(m ,n ∈N *,并且m ≤n ) A n n =n !=n ×(n -1)×(n -2)×…×3×2×1. 规定:0!=1. 组合与组合数公式 1.组合数公式 C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(m ,n ∈N *,并且 m ≤n ) 2.组合数的性质 (1)C m n =C n -m n (2)C m n +1=C m n +C m - 1n 常规题型 一、投信问题 1、个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同. (1)从两个口袋里各取一封信,有多少种不同的取法? (2)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法? 2、五位旅客到一个城市出差,这个城市有6家旅馆,有多少种住宿方法? 3、12名旅客在一辆火车上,共有六个车站,有多少种下车方案? 4、3个同学在一座只有两个楼梯的楼上下楼,有几种下楼方案? 二、染色问题 1、如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数. 2. 如图所示,用五种不同的颜色分别给A ,B ,C ,D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种. 3.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第 1类办法中有m1种不同的方法,在第 2 类办法中有m2种不同的方法,?,在第n 类办法中有m n种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第 1步有m1种不同的方法,做第 2步有m2种不同的方法,做第n步有m n种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素 . 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解: 由于末位和首位有特殊要求 , 应该优先安排 , 以免不合要求的元素占了这两个位置 . 先排末位共有C13 然后排首位共有C14 最后排其它位置共有A43 由分步计数原理得C41C13A43 288 练习题 :7 种不同的花种在排成一列的花盆里 , 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 . 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。由分步计数原理可得共有A55A22A22480种不同的排法 练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为20

高中数学排列组合与二项式定理知识点总结

排列组合与二项式定理知识点 1.计数原理知识点 ①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n! Cnm = n!/(n-m)!m! Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应注意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避免“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: ①分类讨论思想;②转化思想;③对称思想. 4.二项式定理知识点: ①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn 特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn ②主要性质和主要结论:对称性Cnm=Cnn-m 最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项) 所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1 ③通项为第r+1项:Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。 6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

排列组合 二项式定理知识点

排列组合二项定理考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. 排列组合二项定理知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有 ..重复 ..的排列. ..元素 从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例

如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解: n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于! !...!! 21k n n n n n = . 例如:已知数字3、2、2,求其排列个数3! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1! 3!3==n .

高中数学:排列与组合练习

高中数学:排列与组合练习 1.(昆明质检)互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法(D) A.A55种B.A22种 C.A24A22种D.C12C12A22A22种 解析:红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有C12C12A22A22种摆放方法. 2.(广州测试)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有(B) A.36种B.24种 C.22种D.20种 解析:根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法,选B. 3.(广东珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有(C) A.480种B.360种 C.240种D.120种 解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C25=10种分法;②将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种.故选C. 4.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为(C) A.16 B.18

高中数学排列组合专题

排列组合 一.选择题(共5小题) 1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每天1人值班,每人值班2天,如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有() A.36种B.42种C.50种D.72种 2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有() A.8种 B.10种C.12种D.32种 3.某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是() A.72 B.120 C.144 D.168 4.现将甲乙丙丁4个不同的小球放入A、B、C三个盒子中,要求每个盒子至少放1个小球,且小球甲不能放在A盒中,则不同的放法有() A.12种B.24种C.36种D.72种 5.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有() A.300种B.240种C.144种D.96种 二.填空题(共3小题) 6.某排有10个座位,若4人就坐,每人左右两边都有空位,则不同的坐法有种. 7.四个不同的小球放入编号为1,2,3的三个盒子中,则恰有一个空盒的放法共有种(用数字作答). 8.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的

插法共有种. 三.解答题(共8小题) 9.一批零件有9个合格品,3个不合格品,组装机器时,从中任取一个零件,若取出不合格品不再放回,求在取得合格品前已取出的不合格品数的分布列10.已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. 11.设f(x)=(x2+x﹣1)9(2x+1)6,试求f(x)的展开式中: (1)所有项的系数和; (2)所有偶次项的系数和及所有奇次项的系数和. 12.求(x2+﹣2)5的展开式中的常数项. 13.求值C n5﹣n+C n+19﹣n. 14.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的种数.(1)选5名同学排成一行; (2)全体站成一排,其中甲只能在中间或两端; (3)全体站成一排,其中甲、乙必须在两端; (4)全体站成一排,其中甲不在最左端,乙不在最右端; (5)全体站成一排,男、女各站在一起; (6)全体站成一排,男生必须排在一起; (7)全体站成一排,男生不能排在一起; (8)全体站成一排,男、女生各不相邻; (9)全体站成一排,甲、乙中间必须有2人; (10)全体站成一排,甲必须在乙的右边; (11)全体站成一排,甲、乙、丙三人自左向右顺序不变; (12)排成前后两排,前排3人,后排4人. 15.用1、2、3、4、5、6共6个数字,按要求组成无重复数字的自然数(用排列数表示).

排列组合与二项式定理知识点

高中数学第十章-排列组合二项定理 考试内容: 分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求: (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题. §10. 排列组合二项定理 知识要点 一、两个原理. 1. 乘法原理、加法原理. 2. 可.以有..重复..元素.. 的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ?对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ?相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ?排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的 一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ?排列数公式: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--= 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 11 --=m n m n nA A 规定10 ==n n n C C 2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识 1.排列及计算公式 从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示. pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1. 2.组合及计算公式 从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 cn,m 表示. cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m; 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/n1!*n2!*...*nk!. k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m. 排列Pnmn为下标,m为上标 Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n 组合Cnmn为下标,m为上标 Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

(完整版)排列组合二项式定理知识总结,推荐文档

n n +1n n n 排列组合、二项式定理总结复习 1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情) 分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的 方法 n 个不同元素中取出 m 个元素的一个组合 组合数 从 n 个不同元素中,任取 m (m ≤n )个元素的所有组合个数 m n m = n ! n m !(n - m )! 性质 C m = C n -m C m = C m + C m -1 排列组合题型总结 一. 直接法 1 .特殊元素法 例 1 用 1,2,3,4,5,6 这 6 个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 C C

(1)数字 1 不排在个位和千位 (2)数字 1 不在个位,数字 6 不在千位。 分析:(1)个位和千位有 5 个数字可供选择A2 ,其余 2 位有四个可供选择A2 ,由乘法原理: 5 4 A2 A2 =240 5 4 2.特殊位置法 (2)当 1 在千位时余下三位有A3 =60,1 不在千位时,千位有A1 种选法,个位有A1 种,余下 5 4 4 的有A2 ,共有A1 A1 A2 =192 所以总共有 192+60=252 4 4 4 4 二间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法A4 - 2 A3 +A2 =252 6 5 4 Eg 有五张卡片,它的正反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数? 分析::任取三张卡片可以组成不同的三位数C 3 ? 23 ?A3 个,其中 0 在 5 3 百位的有C 2 ? 22 ?A2 个,这是不合题意的。故共可组成不同的三位数 4 2 C 3 ? 23 ?A3 - C 2 ? 22 ?A2 =432 5 3 4 2 Eg 三个女生和五个男生排成一排 (1)女生必须全排在一起有多少种排法(捆绑法) (2)女生必须全分开(插空法须排的元素必须相邻) (3)两端不能排女生 (4)两端不能全排女生 (5)如果三个女生占前排,五个男生站后排,有多少种不同的排法

高中数学排列组合难题十一种方法

~ 高考数学排列组合难题解决方法 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2 步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 … 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 两个位置 . 先排末位共有1 3C 然后排首位共有1 4C / 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 443

、 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不 种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一 个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A 种不同的排法 练习题1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个 解:把1,5,2,4当作一个小集团与3排队共有22A 种排法, 再排小集团内部共有2222A A 种排法,由分步计数原理共有222 222A A A 种排法. : 2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那 么共有陈列方式的种数为254 254A A A 3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255 255A A A 种 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种 ( 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插 入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法, 由分步计数原理,节目的不同顺序共有5456A A 种 小集团排列问题中,先整体后局部,再结合其它策略进行处理。

高中数学-排列组合二项式定理知识点

排列组合二项式定理知识点 2、排列、组合

3、二项式定理 内容典型题 定义①二项式定理: (a+b)n=C 0n a n+C 1n a n-1b1+…+C r n a n-r b r+…+C n n b n =∑ = n r r n C a n-r b r(n∈N+) ②二项式展开式第r+1项通项公式: T r-1 =C r n a n-r b r 其中C r n(r=0,1,2,…,n)叫做二项式系数. 8.二项式8)1 (- x的展开式中的第5项是( ) A. 70x4 B. 70x2 C. 56x3 D. -562 3 x 9.二项式(x-2)12展开式中第3项的系数是( ) A.264 B.-264 C.66 D.-1760 10.(x-2)8 的展开式中, x6的系数是( ) A. 56 B. -56 C. 28 D. 224 11.(x2+)5展开式中的10x是( ) A.第2项 B.第3项 C.第4项 D.第5项 12.二项式x-1 x 6 的展开式中常数项是( ) A. 1 B. 6 C. 15 D. 20 13.设(3-x)n=n n x a x a x a a+???+ + +2 2 1 ,已知 n a a a a+???+ + + 2 1 =64,则n=. 14.设二项式(3x+5)10= 1 8 8 9 9 10 10 a x a x a x a x a+ +???+ + +,则 1 8 9 10 a a a a a+ -???- + -=. 15.二项式2x-1 x 6 的展开式中二项式系数最大的项是. 性质①在二项展开式中,与首末两端“等距离”的两项的二项式系数相等. ②如果二项式的幂指数是偶数,则中间一项的二项系数最大;如果二项式的幂指数是奇数,则中间两项的二项式系数相等并且最大. ③二项式系数的和为n2,即 n C+1 n C+…+r n C+…+n n C=n2 ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即 n C+2 n C+…=1 n C+3 n C+…=1 2-n

相关文档
相关文档 最新文档