文档库 最新最全的文档下载
当前位置:文档库 › 碘仿反应介绍

碘仿反应介绍

碘仿反应介绍
碘仿反应介绍

有机化学中关于碘仿反应的叙述为:把含有CH3CO-结构的醛、酮在碱性溶液中与卤素作用生成三卤甲烷的反应,称卤仿反应;当卤素是碘时,产生的碘仿在水中溶解度小而沉淀出黄色结晶,称为碘仿反应[1]。碘仿为难溶于水的黄色固体,具有特殊臭味,容易嗅出,作为鉴定比氯仿和溴仿好并且反应非常灵敏,所以在有机分析上用碘仿反应测定新化合物的结构和鉴定未知物的重要手法。也可用碘和氢氧化钠溶液来鉴别乙醛或甲基酮。反应式[2]:

还有乙醇和含结构的仲醇也可发生类似的反应,现象极为明显,

易观察。因此,人们常用碘仿反应来鉴别上述各类化合物,以便与其它物质区分开来。

2. 碘仿反应的反应机理

碘仿反应的反应历程及反应机理[3]:

生成的一卤代酮的α-质子酸性更强,更易被碱夺走,所以会继续反应生成二卤代化合物,且其反应速度比酮生成一卤代化合物的速度还要快,直至生成三卤代物。

三碘甲基酮在碱作用下发生α-断裂,生成碘仿。该过程首先是OH—对羰基进行加成,羰基碳原子由sp2杂化转化为sp3杂化,然后发生α-断裂,生成碘仿。

从碘仿反应的反应历程和反应机理可以看出,随着酮的碳原子数的增加,水溶性降低,生成烯醇负离子的反应活性降低,所以发生碘仿反应的程度逐渐下降;再者,在三碘甲基酮在碱作用下发生α-断裂过程中,羰基碳原子要由sp2杂化转化为sp3杂化,空间位阻影响碳原子构型转变,空间位阻增大,导致-OH对羰基加成难以进行,所以苯乙酮能明显地观察到碘仿生成,而2,6-二甲基苯乙酮看不到碘仿生成。

3.1. 应用范围

邢广恩[3]通过实验验证了发生碘仿反应物质的结构特点,并且在实验中发现,影响碘仿反应发生的2个关键性因素为:一是羰基α-H的反应活性:二是空间位阻的影响。因此不是所有具有CH3CO-结构的物质都能发生碘仿反应,发生碘仿反应的有机物结构类型归纳如下:

3.1.1. 具有CH3CO-结构的物质不一定能发生碘仿反应。醛类只有乙醛能发生碘仿反应,酮类中丙酮、低级脂肪酮、苯乙酮都能明显地观察到碘仿生成;随着碳原子数的增加,碘仿反应逐渐减弱,高级脂肪甲基酮及2,6-二甲基苯乙酮看不到碘仿生成。

3.1.2. 伯醇只有乙醇能发生碘仿反应,低级脂肪仲醇能发生碘仿反应,叔醇不能发生碘仿反应。这是因为碘仿试剂I2/NaOH在反应中生成的NaIO是一个强氧化剂,把伯醇氧化到醛、仲醇氧化到酮、叔醇不能被氧化。因此具有CH3CHOH-结构的低级脂肪醇也能发生碘仿反应。

3.1.3. 虽然乙酸及其衍生物具有CH3CO-结构,却都不能发生碘仿反应。因为乙酸及其衍生物的官能团(-COOH、-COO-、-COOCO-、-CONH2)中的-CO-与和它相连的O、N形成了p-π共轭,减弱了羰基的吸电子作用,使羰基α-H的活性降低,发生卤代反应困难,比如乙酸发生α-H卤代,需在磷做催化剂的条件下才能发生,所以乙酸及其衍生物虽然具有CH3CO-结构却都不能发生碘仿反应。

3.2. 反应条件

事实上,在进行实验时,往往遇到不析出黄色碘仿沉淀或者难于观察到碘仿沉淀的“异常”现象。因此反应条件的控制十分重要。曲萍等[2]从试样纯度、试剂用量和反应条件等方面讨论了对琪仿反应的影响。

用工业纯的乙醛和化学纯的乙醛各l mL,分别滴加同量的I2-NaOH试剂,振荡数分钟后,发现化学纯乙醛先有黄色沉淀析出。同理,用甲基酮等试样做同样的试验,结果相同。上述事实说明,样品的纯度乃是本实验的关键。

用同体积的某种化学纯试样(如乙醛),滴加不同数量的碘溶液,并加人同量的5% Na0H溶液,使其充分反应,结果发现碘溶液用量太少时,不出现黄色沉淀;而碘溶液用量太多时,整个溶液呈紫色,难于观察黄色沉淀析出。这是因为碘溶液本身呈明显的紫色,如果碘溶液超过乙醛反应所需的量,则过剩的碘溶液就呈紫色,造成乙醛与I2-NaOH溶液反应不出现黄色沉淀的“异常”现象。因此,本实验中碘溶液的用量不宜太少,但也不宜太多,一般应与试样同量即可,否则,将导致实验失败。

碱度过量时,生成的碘仿被过量的碱所分解, 而碱度太小时,碘的紫色退不去,难于观察沉淀析出。所以,实验中碱量切勿加多,也不能加少,而应控制在碘的紫色刚好退去,否则,难于得到正确的结果。

乙醇与乙醛的结构不同,故发生反应时的速度和条件也就不同。乙醇之所以能发生碘仿反应是因为乙醇能被I2-NaOH溶液(也是一种氧化剂)所氧化,首先生成乙醛,然后进行碘仿反应。反应中加热的目的是促使醇的反应加快完成,得到乙醛或甲基酮,进而发生碘仿反应。但应注意:加热的水浴温度不可过高,否则,氧化产物不是醛酮类,而是梭酸类,也将使实验出现“异常”现象。

3.3. 应用实例

张炳荣等[4]发现苏氛酸能够发生碘仿反应,生成乳黄色碘仿混浊液,此可作汤成品苏氛酸的一个定性指标;将此混浊液适当稀释后测定OD 570值,苏氛

酸浓度在4~8 mg/ml 范围内与OD 570值成线性关系, 可用于成品苏氛酸的定量分析。

材料和方法:

一、试剂:

1.碘液:称取20克碘化钾,溶于80 ml蒸馏水中,加10 克碘,边加热边搅动,使碘溶解。

2.20% NaOH溶液:称取20克NaOH,用蒸馏水稀释到1000 ml.

3.各种氨基酸溶液:分别称取各种氨基酸1.0克,各用蒸馏水稀释到,100 ml.

二、器材

721型可见分光光度计,1cm那比色皿。

三、操作方法

在15×150 mm试管中,依次加入试液1.0 ml、碘液0.5 ml、20% NaOH溶液

0.5 ml.静置片刻后碘色消失, 表明反应己经结束。

四、结果

检查了25 种氨基酸与次碘酸钠的反应情况, 结果有五种氨基酸发生反应。其中, 唯有苏氨酸生成碘仿沉淀, 肤氨酸、半胧氨酸和苯丙氨酸生成与碘仿不同的沉淀, 色氨酸刚生成棕色溶。

取20 支试管,定量加入各试剂, 反应完毕后摇匀, 立即测定OD 570值。结果表明,L-苏氛酸浓度在4~8 mg/ml 范围内与OD 570值成线性关系。

参考文献

[1]中华人民共和国教育部制订.全日制义务教育化学课程标准(实验稿).北京:北京师范大学出版,2001

[2]曲萍,任跃红.碘仿反应分析[J].山西化工,1997,2:59.

[3]邢广恩.碘仿反应的条件探究[J].化学教育,2004,3:54.

[4]张炳荣,周群,檀耀辉. 碘仿反应法分析成品苏氨酸[J].发酵科技通讯,1985,14(3,4):142.

烷基化反应器介绍 (2)

烷基化反应器装置 江苏开锐德机械有限公司 2015年12月18日

目录 第一部分公司简介 (3) 第二部分烷基化反应器装置简图 (4) 第三部分技术文件 (6) 1.技术参数表 2.产品主要技术特点描述 3.烷基化反应器装置说明 4.传动系统介绍 第四部分产品质量控制 (10) 1.主要制造、验收标准 2.制造工艺 第五部分安装、售后服务 (14) 1.设备安装调试施工方案 2.售后服务 第六部分主要业绩 (15)

第一部分公司简介 江苏开锐德机械有限公司是一家以石油化工设备和环保设备的生产、化工技术服务为主的高科技、新能源、技术密集型企业。公司位于江苏省扬州市邗江区扬州环保科技产业园内。 公司创立于2007年初,2014年6月11日改组注册为江苏开锐德机械有限公司,目前,公司已经取得A1(高压容器)、A2(第三类低、中压容器)级压力容器制造许可证,通过了ISO9001质量管理体系经、ISO14001环境管理体系认证。 公司主要从事化工机械、石油装备、环保水处理等行业的研发制造、销售。同时公司与设计院(武汉炼化工程设计有限责任公司、中石油华东设计院、胜利油田炼化工业设计院、上海华西设计院、中国环球工程公司辽宁分公司等)、研究院所(石科院、抚顺石油化工研究院、大连化学物理研究所等)、高校(石油大学、东南大学、东华大学等)建立了良好合作关系。公司将致力于为客户提供技术领先、节能低耗的优质产品和服务,致力于与客户共同发展。 “管理创造价值,服务提升优势,品质至上,服务至优”是公司的发展理念;“团结、创新、务实、奋进”是公司矢志不渝的追求。公司将积极贯彻《中国制造2025》行动纲领,坚持落实创新驱动、质量为先、绿色发展、结构优化、人才为本的基本方针,致力于为客户提供优质产品和服务,致力于与客户共同发展。

微通道反应器系统技术要求

微通道反应器系统技术要求 一、技术要求 1、★整体要求:合成反应系统包含可相互独立的反应物通道,独立的反应物通道不小于6个。 2、★反应器支架可灵活配置反应模块的数量(不少于4个),含不少于8个入料与收集接口,4个换热流体接口。 3、★反应器可通过两个恒温循环器与密封隔热板分隔实现两个温区,两个温区各自的控制区域可灵活设置。 4、★反应模块为三层结构,上层为底板,中间层为混合或反应通道,下层为换热通道。模块均采用碳化硅材质,成型工艺采用扩散焊接技术,整体成型,保证气密性和耐高压性能,为了避免金属溶出性污染,模块中间不得安装金属连接件。 5、★反应器包含多组碳化硅模块,包含混合模块及反应模块,可执行A+B→P或A+B→P’+C→P,混合模块也可用作猝灭模块,用于反应停止或降温。 6、★反应通道结构设计能够在强化传质的同时减少返混,保证物料在反应器内停留时间的一致性,要求提供内部结构图。 7、热传导率:≥100W/mK(温度200℃范围内)。 8、耐腐蚀性:反应器的触液材质能够耐反应器操作温度下的硫酸、氢氟酸、氢溴酸、强碱等物质。 9、年损失率:≤0.1mm/年(120℃1:1 HF/HNO3条件下测试)。 10、工艺侧工作温度范围:-20-150℃,换热测温度范围:-20-150℃。 11、工艺侧压力范围:0-25bar,测试压力75bar,提供压力检测证书;换热侧压力范围0-5bar。 12、通量:0.2-20mL/min。 13、★反应器内体积:0.95-13.5ml,单板的最小持液量不大于1ml,单板的最大持液量不大于4.8ml。 14、★反应通道尺寸不大于1.4×1.4mm,预热通道尺寸不大于1×1mm。 15、停留时间:2.7sec-60min。 16、反应器配件要求:进、出料管路及背压系统均采用抗腐蚀、耐压材质,保证气液反应、液液反应的进行。 二、配置要求 1、主反应器(含阳极氧化铝支架) 2、A+B型碳化硅预热混合模块 3、P’+C型碳化硅预热混合模块 4、碳化硅反应模块 5、背压系统(16bar) 三、技术支持及售后服务 1、技术支持: 生产厂家技术工程师进行仪器的安装调试和免费培训3名以上操作人员,培训时间根据用户实际情况来定,内容包括仪器的基本原理、结构、基本操作、维护知识及实验的应用与开发。前期使用供应方派专业技术人员陪用户技术人员共同操作仪器,直到用户使用人员可独立进行操作为止。供应商应提供仪器应用的详细应用资料,用户能够在此基础上开展新的实验研究。 2、售后服务:

反应堆控制复习提纲

第一章核反应堆的物理基础 自动控制: 传递函数: ρ的物理含义: 反应堆: 周期: 短周期事故: 稳态运行方案: 剩余反应性: 后备反应性: “卡棒”准则: 基本原理:为什么说对反应堆中子通量密度的控制就可实现对反应堆功率的控制基本原理:说明缓发中子在反应堆控制中的作用 基本原理:试述两种运行控制模式的异同 基本原理:简述反应性控制手段

第二章线性离散控制系统的分析方法线性控制系统: 数学模型类型: 采样: 采样定理: Z传递函数: 基本运算:Z变换求解差分方程 基本运算:时域函数的Z变换

第三章线性控制系统的状态空间分析方法 状态空间模型: 状态变量: 状态转移矩阵: 基本运算:系统的状态空间模型与传递函数中间的相互转换基本运算:系统时域函数的Z变换 基本运算:判断线性系统的能控和能观测性

第四章核反应堆动力学模型 零功率核反应堆: 常源近似: 瞬跳近似: 反应性方程: 瞬发临界: 缓发临界: 数值解法: 基本原理:阐述点堆动态方程应用条件 基本运算:由反应堆基本参数写出状态空间表达式和传递函数

第五章核反应堆控制系统的稳定性分析 奈奎斯特判据: 控制系统的基本性能: 李雅普诺夫第二法: 基本运算:通过系统的根轨迹图和奈奎斯特判断系统的稳定性和开环增益的取值范围基本运算:劳斯判据和朱利判据判定系统稳定性中的应用

第六章压水堆核电厂控制 核反应堆自稳自调特性: 常轴向偏移控制: 控制棒的微分价值和积分价值: 虚假水位: 基本原理: 说明限制功率分布的准则 阐述功率分布控制的必要性 试述功率补偿棒组和R棒组的控制功能和特点说明反应堆功率和汽轮机负荷的关系 说明功率失配通道的作用 阐述蒸汽发生器的液位控制的原理和特点

化学:2.1有机化学反应类型 教案

化学:2.1有机化学反应类型教案

————————————————————————————————作者:————————————————————————————————日期:

有机化学反应类型教学案 课标研读: 1、根据有机化合物组成和结构的特点,认识加成、取代和消去反应; 2、学习有机化学研究的基本方法。 考纲解读: 1、了解加成、取代和消去反应; 2、运用科学的方法,初步了解化学变化规律。 教材分析: 有机化学反应的数目繁多,但其主要类型有加成反应、取代反应、消去反应等几种。认识这些有机化学反应的主要类型,将有助于学生深入学习研究有机化合物的性质和有机化学反应。本节课的知识是建立在《化学2(必修)》和本模块教材第一章第3节以烃为载体的具体反应事实,以及本模块教材第一章第2节有关有机化合物的结构讨论的基础上的。本节的理论知识和思想方法为后面三节有关烃的衍生物的性质的学习提供了很好的理论和方法平台。本节教材在全书中处于非常重要的地位,可谓本模块教材的学习枢纽。 教学重点、难点:对主要有机化学反应类型的特点的认识;根据有机化合物结构特点分析它能与何种试剂发生何种类型的反应生成何种产物。 学情分析: 通过对《化学2(必修)》第三章及本模块第一章的学习,已经对取代反应和加成反应有了初步的了解,对各类有机化合物的基本结构和各种官能团有了初步的认识。这些都为本节课的学习奠定了基础。 教学策略: 1、结合已经学习过的有机反应,根据有机化合物组成和结构的特点,认识加成、取代和消去反应,初步形成根据有机化合物结构特点分析它能与何种试剂发生何种类型的反应生成何种产物的思路,能够判断给定化学方程式的反应的类型,也能书写给定反应物和反应类型的反应的化学方程式。 2、分别从加(脱)氧、脱(加)氢和碳原子氧化数变化的角度来认识氧化反应(还原反应),并能够根据氧化数(给定)预测有机化合物能否发生氧化反应或还原反应。 3、从不同的视角来分析有机化学反应,了解研究有机化合物的化学性质的一般程序。教学计划: 第一课时:有机化学反应的主要类型 第二课时:有机化学中的氧化反应和还原反应 第三课时:典型题目训练,落实知识 导学提纲: 第一课时 课堂引入: 写出下列化学方程式,并注明化学反应类型。 乙烯与氯化氢反 应:; 丙烯通入溴的四氯化碳溶 液:; 乙炔通入溴的四氯化碳溶液: ;

化学反应器自动控制系统设计

目录 摘要.............................................................................................................................III 1 关于化学反应 (1) 2 关于化学反应器 (2) 2.1 反应器的类型 (2) 2.2 反应器的性能指标 (2) 2.3 反应器的控制要求 (2) 3 反应器的控制方案 (4) 3.1 反应器常用的控制方式 (4) 3.2 温度被控变量的选择 (5) 3.3 控制系统的选择 (6) 4 反应器串级系统的控制原理 (9) 4.1 系统方框图 (9) 4.2 系统原理分析 (9) 5 反应器的部分实现 (11) 5.1 原料的比值控制 (11) 5.2 仪器仪表的选择 (12) 6 设计总结与展望 (13) 参考文献 (14)

化学反应器自动控制系统设计 1 关于化学反应 化学反应的本质是物质的原子、离子重新组合,使一种或者几种物质变成另一种或几种物质。化学反应过程具备以下特点: 1) 化学反应遵循物质守恒和能量守恒定律。因此,反应前后物料平衡,总热量也平衡; 2) 反应严格按反应方程式所示的摩尔比例进行; 3) 化学反应过程中,除发生化学变化外,还发生相应的物理等变化,其中比较重要的有热量和体积的变化; 4) 许多反应应需在一定的温度、压力和催化剂存在等条件下才能进行。 此外,反应器的控制方案决定于化学反应的基本规律: 1.化学反应速度 化学反应速度定义为:单位时间单位容积内某一部分A 生成或反应掉的摩尔数,即 t A A Vd dn r 1± = (1-1) 若容积V 为恒值,则有 dt dC dt V dn r A A A ±=± =/ (1-2) 式中 r A ——组分A 的反应速度,mol/m 3·h ; n A ——组分A 的摩尔数,mol ; C A ——组分A 的摩尔浓度,mol/m 3; V ——反应容积,m 3。 2.影响化学反应速度的因素 实验和理论表明,反应物浓度(包括气体浓度,溶液浓度等)对化学反应速度有关键作用。温度对化学反应速度影响较为复杂,最普遍的是反应速度与温度成正比。而对于气相反应或有气相存在的反应,增大压力(压强)会加速反应的进行。化学反应还受催化剂,反应深度等因素的影响,这些都是要在设计反应器是需要考虑的。

反应堆原理

核反应堆是核电站的心脏,它的工作原理是这样的: 原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。 还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。 热堆的概念:中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。链式反应就是在堆芯中进行的。反应堆必须用冷却剂把裂变能带出堆芯。冷却剂也是吸收中子很少的物质。热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。核电站的内部它通常由一回路系统和二回路系统组成。反应堆是核电站的核心。反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。 轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。轻水堆又分为压水堆和沸水堆。压水堆核电站压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷却剂保持在120~160个大气压。在高压情况下,冷却剂的温度即使300℃多也不会汽化。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,使水沸腾产生蒸汽;冷却剂流经蒸汽发生器后,再由主泵送入反应堆,这样来回循环,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。这就是二回路循环系统。压水堆由压力容器和堆芯两部分组成。压力容器是一个密 封的、又厚又重的、高达数十米的圆筒形大钢壳,所用的钢材耐高温高压、耐腐蚀,用来推

反应堆材料(题库)

1反应堆分类:按中子能量分按形势分按燃料分:按冷却剂慢化剂分:按用途分: 2压水堆的组成:3一回路系统:二回路系统内有 4压水堆堆堆芯设计要求:5压水堆本体结构: 6.压水堆堆芯结构: 7燃料管理分区布置及富集度:1区:;2区;3区 可燃毒物组件的结构和作用: 8反应堆压力容器的作用9压力容器选材原则: 10反应堆压力容器压力容器本体结构:反应堆容器顶盖结构: 12压力容器失效形成延性断裂:脆性断裂:13堆内结构的定义: 14堆内构件的主要功能:15下部支撑结构的组成: 16热屏蔽的原因方法改进:17上部支撑结构的作用和组成作用: 18核燃料组件结构:19燃料元件棒组成:燃料芯块结构特点: 20燃料芯块的氢脆效应原因:21核燃料组件“骨架”结构: 22控制棒组件:23星型架: 24控制棒组件的材料:黑棒(吸收剂棒):灰棒(不锈钢棒):黑棒束:灰棒束: 24.1堆芯相关组件包括:每一种组件都包括: 25中子源组件主要作用:初级中子源组件特点:次级中子源组件特点: 26阻力塞组件作用:27控制棒驱动机构组成: 28控制棒驱动机构采用三线圈电磁步进式,其优点:弹棒事故: 29控制棒驱动机构运行说明:提升:下降: 30沸水堆结构特点(与压水堆相比):31沸水堆反应堆壳体内装有组件: 32沸水堆控制棒的结构特点:35 CANDU与 PWR堆芯设计差别: 33高温气冷堆的涂敷颗粒:BISO颗粒:TRISO颗粒: 36反应堆内辐照来源:37γ射线与物质作用原理: 38中子辐照损伤原理: 热中子与固体物质相互作用:快中子与固体物质相互作用: 39什么是核燃料:核燃料的基本要求:常用的是固体燃料,包括:金属型燃料:陶瓷型燃料:40慢化剂设计要求:常用类型:41冷却剂的功用,性能要求:常用的液态冷却剂有 42结构材料分类: 43比较几种包壳材料特点和应用领域: (铝镁及其合金)(锆合金)(不锈钢) 44控制材料的要求:常用的控制材料是 1

反应堆材料辐照损伤概述

反应堆材料辐照损伤概述 【摘要】随着能源问题日益严峻,发展核电成为人类缓解能源紧缺问题的重要手段之一。当今核电站反应堆的技术已经比较成熟,但仍存在很多难以解决的技术问题。反应堆材料的辐照损伤问题直接关系到反应堆的安全性和经济性。本文对反应堆燃料芯块、包壳、压力容器的辐照损伤机理进行了概述,并提出一些减小辐照效应的措施。 【关键字】辐照损伤燃料芯块包壳压力容器材料 一、引言 随着能源问题日益严峻,发展核电成为人类缓解能源紧缺问题的重要手段之一。当今核电站反应堆的技术已经比较成熟,但仍存在很多难以解决的技术问题。其中,反应堆材料的辐照损伤问题尤为重要。材料的辐照损伤问题与反应堆的安全性和经济性有密切的关系。甚至直接关系到未来反应堆能否安全稳定运行。 关于反应堆的材料辐照损伤问题,主要包括三个方面:燃料芯块的辐照损伤,包壳的辐照损伤,压力容器的辐照损伤。深入认识和了解这三方面的问题,并讨论有关缓解措施具有极大地研究价值。 二、水冷堆燃料芯块的辐照损伤 1.燃料芯块的结构与辐照损伤 水冷堆燃料芯块为实心圆柱体,由低富集度UO2粉末经混合、压制、烧结、磨削等工序制成。为了减小轴向膨胀和PCI(芯块-包壳相互作用),芯块两端做成浅碟形并倒角。芯块制造工艺必须稳定,以保证成品芯块的化学成分、密度、尺寸、热稳定性及显微组织等满足要求。 燃料芯块中的铀在辐照过程中会发生肿胀,造成尺寸的不稳定性和导热性能的下降。随着燃耗的增加,铀的力学性能和物理性能将发生变化,铀将变得更硬、更脆,热导率减小,燃料包壳的腐蚀作用也在加剧。对燃料芯块辐照损伤的认识和研究,一方面有助于了解在役燃料元件的运行状态和使用寿命,及时地发现并解决问题;另一方面根据辐照特性,可以采取适当的措施增强燃料元件的性能,进一步提高核电的经济效益。 2.辐照条件下燃料芯块微观结构的演化 燃料芯块在辐照过程中,辐射与物质相互作用的方式可以分为原子过程和电子过程两大类。原子过程主要产生位移效应,位移效应的主要产物是间隙-空位对。而电子过程主要产生电离效应,其主要产物是电子-离子对。 燃料芯块在辐照过程中,将产生能量很高的裂变碎片,造成严重的辐照损伤,并伴有大量的原子重新分布,尤其是裂变产物中的氙和氪,产额高,又不溶于固体,在辐照缺陷的协同作用下形成气泡,造成肿胀。另外,固体裂变产物具有很强侵蚀作用,将使芯块发生应力腐蚀而开裂。 3.燃料芯块辐照损伤机理和宏观性能变化 (1)辐照肿胀 辐照会引起体膨胀,称辐照肿胀。燃料芯块中所使用的重要金属铀,其单晶体会显示出特殊的辐照生长现象。在辐照过程中,铀的晶体线度发生异常变化。引起燃料辐照肿胀的根本原因是裂变产物的积累。发生肿胀一方面是由于铀原子的固体裂变产物以金属、氧化物、盐类等形态与燃料相形成固溶体或作为夹杂物存在于燃料相中,裂变产物的总体积超过了裂变前裂变原子所占的体积(一般在2-3%),另一方面是由于在金属中形成了大量的裂变气泡

大学有机化学总结习题及答案-最全69767

有机化学总结 一.有机化合物的命名 1. 能够用系统命名法命名各种类型化合物: 包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C ≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。 2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。 立体结构的表示方法: 1 )伞形式:COOH OH 3 2)锯架式:CH 3 OH H H OH C 2H 5 3) 纽曼投影式: 4)菲舍尔投影式:COOH 3 OH H 5)构象(conformation) (1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。 (2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。 (3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e 取代的椅 式构象。多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。 立体结构的标记方法 1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型,在相反侧,为E 构型。 CH 3C H C 2H 5 CH 3 C C H 2H 5 Cl (Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯 2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。 CH 3 C C H CH 3H CH 3C H H CH 3顺-2-丁烯 反-2-丁烯3 3 3顺-1,4-二甲基环己烷反-1,4-二甲基环己烷 3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。然后将最不优先的基团放在远离观察者,再以次观察其它三个基

《核反应堆物理分析》名词解释及重要概念整理

第一章—核反应堆的核物理基础 直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。 中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。 非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。 弹性散射:分为共振弹性散射和势散射。 111001 100[]A A A Z Z Z A A Z Z X n X X n X n X n +*+→→++→+ 微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。 宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率大小的一种度量。也是一个中子穿行单位距离与核发生相互作用的概率大小的一种度量。 平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。 核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。 中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。 多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。 瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。 第二章—中子慢化和慢化能谱 慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。 扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。 平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。 慢化密度:在r 处每秒每单位体积内慢化到能量E 以下的中子数。 分界能或缝合能:通常把某个分界能量E c 以下的中子称为热中子,E c 称为分界能或缝合能。 第三章—中子扩散理论 中子角密度:在r 处单位体积内和能量为E 的单位能量间隔内,运动方向为Ω的单位立体角内的中子数目。 慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。 徙动长度:快中子从源点产生到变为热中子而被吸收时所穿行的直线距离为r M 。 第四章—均匀反应堆的临界理论 反射层的作用: 1. 减少芯部中子泄漏,从而使得芯部的临界尺寸要比无反射层时的小,节省一部分燃料;

反应器介绍(操作方式、操作条件)5页

反应器介绍 简介 用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。在高径比较大时,可用多层搅拌桨叶。在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。 反应器的应用始于古代,制造陶器的窑炉就是一种原始的反应器。近代工业中的反应器形式多样,例如:冶金工业中的高炉和转炉;生物工程中的发酵罐以及各种燃烧器,都是不同形式的反应器。 类型 常用反应器的类型(见表)有:①管式反应器。由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。②釜式反应器。由长径比较小的圆筒形容器构成,常装有机械搅拌或气流搅拌装置,可用于液相单相反应过程和液液相、气液相、气液固相等多相反应过程。用于气液相反应过程的称为鼓泡搅拌釜(见鼓泡反应器);用于气液固相反应过程的称为搅拌釜式浆态反应器。③有固体颗粒床层的反应器。气体或(和)液体通过固定的或运动的固体颗粒床层以实现多相反应过程,包括固定床反应器、流化床反应器、移动床反应器、涓流床反应器等。④塔式反应器。用于实现气液相或液液相反应过程的塔式设备,包括填充塔、板式塔、鼓泡塔等(见彩图)。⑤喷射反应器。利用喷射器进行混合,实现气相或液相单相反应过程和气液相、液液相等多相反应过程的设备。⑥其他多种非典型反应器。如回转窑、曝气池等。

操作方式 反应器按操作方式可分为: ①间歇釜式反应器,或称间歇釜。 操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。 间歇操作反应器系将原料按一定配比一次加入反应器,待反应达到一定要求后,一次卸出物料。连续操作反应器系连续加入原料,连续排出反应产物。当操作达到定态时,反应器内任何位置上物料的组成、温度等状态参数不随时间而变化。半连续操作反应器也称为半间歇操作反应器,介于上述两者之间,通常是将一种反应物一次加入,然后连续加入另一种反应物。反应达到一定要求后,停止操作并卸出物料。 间歇反应器的优点是设备简单,同一设备可用于生产多种产品,尤其适合于医药、染料等工业部门小批量、多品种的生产。另外,间歇反应器中不存在物料的返混,对大多数反应有利。缺点是需要装卸料、清洗等辅助工序,产品质量不易稳定。 ②连续釜式反应器,或称连续釜,可避免间歇釜的缺点,但搅拌作用会造成釜内流体的返混。在搅拌剧烈、液体 粘度较低或平均停留时间较长的场合,釜内物料流型可视作全混流,反应釜相应地称作全混釜。在要求转化率高或有串联副反应的场合,釜式反应器中的返混现象是不利因素。此时可采用多釜串联反应器,以减

反应堆结构与材料重点

1反应堆分类:按中子能量分:快中子堆中能中子堆慢中子堆按形势分:非均匀堆均匀堆按燃料分:钍堆浓缩铀堆天然铀堆按冷却剂慢化剂分:熔盐堆有机堆沸水堆(轻水堆)压水堆重水堆石墨气冷堆石墨冷水堆按用途分:研究堆生产堆动力堆生产动力堆 2压水堆的组成:压水堆主要由核反应堆,一回路系统,二回路系统,其他辅助系统组成 3 PWR堆堆芯设计要求:堆芯功率分布应尽量均匀,以便使堆芯有最大的功率输出;尽量减小堆芯内不必要的中子吸收材料,以提高中子经济性;有最佳的冷却剂流量分配和最小的流量阻力;有较长的堆芯寿命,以适当减少换料操作次数;堆芯结构紧凑,换料操作简单便。 4 1,2回路厂房中设备系统一回路厂房也就是反应堆安全壳,为一个立式圆柱状半球型顶盖或球型建筑物内径约30-40米,高约为60-70米,内有反应堆,主循环泵,稳压器,汽发生器和相应的管道阀门以及其他辅助设备组成的一回路系统。二回路厂房与普通火电厂的汽轮机发电机组厂房相似,内有汽轮机发电机,凝汽器,凝结水泵,低压回水加热器,高压回水加热器,除氧器,给水泵,汽水分离再热器,主蒸汽管道有关的辅助设备组成的二 5 压水堆本体结构:堆芯,压力容器,堆内构件,堆芯组件和控制棒驱动机构组成 6 PWR堆芯结构:核燃料组件,控制棒组件,固体可燃毒物,固体中子源和阻力塞组件等。 7 可燃毒物组件的结构和作用:只用于第一燃料循环的全新堆芯,用于控制堆芯的初始反应性,功能是降低冷却剂水中的硼浓度,保持慢化剂负温度系数,可燃毒物棒为装在304 型不锈钢包壳管内的一根硼玻璃管(B2O3+SiO2)硼玻璃管在内径全长还用薄壁304型不锈钢管状内衬支撑,包壳管两端堵塞并施密封焊,内外包壳之间留有足够气隙空间,以容纳放出的氦气,限制其内压小于反应堆运行压力,将可燃毒物棒固定在压紧组件上就构成可燃毒物组件 8 压力容器原材原则:材料具备高度的完整性;具有适当的强度足够的韧性;导热性能好;便于加工制造,成本低廉;具有低的辐照敏感性 9 压力容器本体结构:上法兰,密封台肩,一节接管段,二节堆芯包容环段,一节过渡段,一只半球形下封头组成组成。 10 反应堆容器顶盖结构:由顶盖法兰和顶盖本体焊接而成,顶盖本体为板材热锻成型,上面焊有3只吊耳,一根排气管,一块金属支撑板,控制棒驱动机构管座,热电偶管座 11 压力容器失效形成:延性断裂:机械应力超过材料的屈服应力,承载段就开始塑性变形而后断裂;;;脆性断裂:压力容器加工过程会产生微裂纹和材质不均匀性,承载后裂纹端部应力增大并可能导致裂纹扩展,在适当条件下,裂纹会无限扩展形成断裂 12 堆内结构的定义结构功能:堆内构件是指装在反应堆容器内,除了以下结构之外的所有其他构件:燃料组件,棒束控制组件,及其传动轴,可燃毒物组件,中子源组件,阻力塞组件和堆内测量仪表。由下部支撑结构(包括热中子屏蔽),堆芯上部支撑结构(包括控制棒束导向管)和压紧弹簧组成。;;;;;;;;;;;;主要功能:为冷却剂提供流道;为压内容器提供屏蔽,使其免受或少受堆芯中子辐射影响;为燃料组件提供支撑和压紧;固定监督用的辐照样品;为棒束控制棒组件和传动轴以及上下堆内测量装置提供堆内向导;平衡机械载荷和水力载荷;确保堆容器顶盖内的冷却水循环,以便顶盖保持一定温度 13 下部支撑结构的组成:堆芯吊篮组件(含堆芯支撑板);热中子屏蔽;流量分配孔板;堆芯下栅格板;堆芯围板组件;堆芯二次支撑和测量通道。 14 热屏蔽的原因方法改进:在辐照最大区域加强中子辐照防护,热屏蔽由4块不锈钢板组成不连续的圆筒形,在反应堆中心铀的4个象限位置上(0° 90° 180° 270°)用螺钉连接在堆芯吊篮外壁上,热屏还支撑辐照样品监督管。 15上部支撑结构的作用和组成作用:将堆芯组件定位、压紧、防止因冷却剂流动的水力作用使堆芯组件上移;组成控制棒驱动线的重要构件,保证控制棒对中,起导向作用,使控制棒

高级中学化学有机收集五有机反应类型

有机专题五——有机反应类型 1.取代反应 (1)定义:有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应。 (2)能发生取代反应的物质:烷烃、芳香烃、醇、酚、酯、羧酸、卤代烃。 (3)典型反应 2.加成反应

(1)定义:有机物分子里不饱和的碳原子跟其他原子或原子团直接结合生成别的物质。 (2)能发生加成反应的物质:烯烃、炔烃、苯及同系物、芳香烃、醛、酮、单糖、不饱和高级脂肪酸的甘油脂及不饱和烃的衍生物等。 (3)典型反应 3.加聚反应 (1)定义:通过加成聚合反应形成高分子化合物。 (2)特征: ①是含C=C双键或叁键物质的性质。 ②生成物只有高分子化合物,因此其组成与单体相同。

(3)能发生加聚反应的物质:烯、二烯、含C=C的其他类物质。 (4)典型反应 4.缩聚反应* (1)定义:通过缩合反应生成高分子化合物,同时还生成小分子(如H2O、NH3等)的反应。 (2)特征:有小分子生成,因此高分子化合物的组成与单体不同。 (3)能发生缩聚反应的物质 ①苯酚与甲醛 ②二元醇与二元酸 ③羟基羧酸 ④氨基酸 ⑤葡萄糖 (4)典型反应

5.加聚反应与缩聚反应的区别 (1)加聚反应与缩聚反应,虽是合成高分子化合物的两大反应,但区别很大。 (2)加聚反应是由不饱和的单体聚合成高分子的反应,其产物只有—种高分子化合物。 (3)参加缩聚反应的单体一般含有两种或两种以上能相互作用的官能团(两个或两个以上易断裂的共价键)的化合物,产物中除一种高分子化合物外,还生成有小分子。如H2O、HCl、NH3等。产物的组成与参加反应的任何一种单体均不相同。 (4)从反应机理上看,加聚反应是不饱和分子中的双键或叁键发生的,实质还是加成反应。所以,双键、叁键是发生加聚反应的内因。缩聚反应是通过单体中的官能团相互作用经缩合生成小分子,同时又聚合成大分子的双线反应。发生缩聚反应的内因是相互能作用的官能团(或较活动的原子)。 (5)发生加聚反应的单体不一定是一种物质,也可以是两种或两种以上。如丁苯橡胶就是由单体1,3-丁二烯和苯乙烯加聚而成,缩聚反应的单体不一定就是两种,也有一种的,如单糖缩聚成多糖、氨基酸缩聚成多肽,也可以是两种以上的。

单池式反应器系统(OTR)

Info-Bulletin No. 005 CN 单池式反应器系统(OTR) 由拜尔杰斯特国际有限责任公司 (Biogest International GmbH) 为污水的生化处理提出的杰出理念 单池式反应(OTR),又名顺序批处理反应(SBR),代表的是一种改进的活性污泥工艺。就象其它的活性污泥工艺一样,单池式反应的原理是利用混合于污水中的细菌对污水中的BOD、COD 以及营养物的消耗来达到处理污染的目的。 单池式反应系统的处理范围很大,从生活污水到工业废水,从每天少量到每天上万吨。 由拜尔杰斯特公司开发的单池式反应系统的独特性在于它本身既是调节池,又是曝气池和澄清池。这一系列的程序都在同一个池子里进行,所以这个池子被称为“反应器”。由于沉淀在进水和曝气完全结束后进行,所以它可以在完全无干扰的情况下达到最佳效果,那怕是非常小的颗粒也不例外。也就是说拜尔杰斯特公司的SBR系统不允许在曝气、沉淀和滗水阶段有污水进入反应池。所以可知,这种工艺方法的处理效果非常好。在单池式反应系统的处理厂中,可以联结一个、两个或多个 这样的单池式反应器。每个反应器都作为一个独立的系统由电气控制柜控制。 每个反应器都保持它自已的处理状态,每个反应器中都进行系列的处理过程。 由于拜尔杰斯特公司的SBR是真正的批处理模式,所以每个循环都能达到最优的处理结果。只有大约20%~30%的污水会停留在反应器中,它们与含有适当生物量的污泥混合在一起,无时不刻都存在于反应器中。 BELüFTEN / RüHREN M M 在每个OTR池中,控制出水质量的关键在于进水量和污泥生物量的比例。因为在每个循环过程中只有少量的污泥被损耗,所以生物量(活性污泥量)可以被保持。

核反应堆控制复习要点

【一回路流程】反应堆冷却剂在主泵的驱动下流入反应堆,冷却并吸收反应堆芯的热量后从反应堆容器流出,进入蒸汽发生器一次侧,将热量传递给二次侧后流出,再由主泵循环驱动流入反应堆。 【二回路流程】一回路冷却剂携带的热量,在蒸汽发生器中传递给二回路的水,使二回路水在一定压力下加热,生成饱和蒸汽,去驱动汽轮机,带动与汽轮机同轴的发电机发电。作功后的乏汽在冷凝器中被海水或河水冷凝为水,经低压加热、除氧,再由给水泵驱动经高压加热后,循环补充到蒸汽发生器中。 【三回路流程】以海水或河水为介质的三回路把乏蒸汽冷凝为水,同时带走电站的弃热。 【核电厂构成】:①核岛(压水堆本体,一回路系统):蒸汽发生器、稳压器、主泵、反应堆芯②常规岛:汽轮发电机组,二回路系统 【蒸汽发生器的作用】①把一回路冷却剂从反应堆堆芯带出的热量经蒸汽发生器管壁传给二回路水,使之产生蒸汽带动汽轮机做功。②一回路水流经堆芯具有放射性,蒸汽发生器承担了防止二回路水被污染的第二道生物防护屏障。 【运行控制模式】基本负荷运行模式A:汽轮机负荷跟随核反应堆功率的运行模式(机跟堆)。由于没有直接从电力系统到核反应堆功率控制的反馈回路,所以功率控制系统简单,作用是完成核反应堆的启动停闭,维持核反应堆功率在某一给定水平以及抑制功率的波动。适合带基本负荷运行的机组,功率调节性能较差,但受到的热应力变化较小,利于电厂安全和机组寿命。负荷跟踪运行模式G:核电厂的功率跟随电网需求而变化(堆跟机)。具有从电力系统向核反应堆的自动反馈回路,控制系统复杂,作用是可以对负荷变化作出响应,以适应电网变化的需求,使机组具有灵活的功率调节性能使核电厂参与负荷跟踪和电网调峰运行。【主要控制系统】核反应堆冷却剂平均温度控制系统(R棒组)、反应堆功率控制系统(G1、G2、N1和 N2)、硼浓度、稳压器压力和液位、蒸汽发生器液位、给水流量、凝汽器蒸汽排放、大气蒸汽排放、汽轮机调节、发电机电压控制。 【控制系统设计要求】(1)满足要求前提下尽量简单可靠(2)尽量减少运行参数瞬态变化量,并使其接近给定值,增加输出功率(3)在各种条件下,系统仍有一定的稳定裕度,不大的超调量和合理的调整时间(4)负荷低于15%FP时,可手动控制,高于15%FP时投入自动控制(5)允许负荷有±10%FP的阶跃变化,但阶跃变化±10%FP时,负荷不得超过100%(6)允许负荷以5%FP/min的速率连续变化(7)甩负荷50%-80%不引起大气蒸汽排放阀开启、停堆或主蒸汽安全阀开启(8)紧急停堆,汽轮机脱扣不引起主蒸汽安全阀开启(9)接到停堆信号后,能在约1.5s时间内快速落下控制棒【自稳特性】指反应堆出现内、外反应性扰动时,核反应堆能够维持稳定状态的特性。 【自调特性】指核电厂负荷变化时,反应堆靠自身内部温度反馈功能使其功率达到与负荷一致的水平,产生新的热平衡。 【功率分布】(1)径向功率分布:可以通过燃料的不同浓度分区布置、可燃毒物棒和控制棒的径向对称布置、最佳控制棒分组和提插棒程序设计措施来展平,在运行中变化不大,并可以准确的预测(2)轴向功率分布:在运行中是变化的,慢化剂温度效应、可燃毒物反应、多普勒效应和功率水平效应、裂变产物效应控制棒组件移动和燃耗都会对轴向功率分布产生影响,是主要研究对象。 【控制棒】R、N黑体棒(反应性价值高)功率调节控制;G灰棒组(反应性价值低),功率分布控制。在模式G中,由负荷确定的功率设定值变化引起的堆芯反应性变化首先是通过功率补偿棒组G1,G2,N1和N2来调节反应性的,它所引起的轴向和径向功率分布扰动比黑体棒组小。功率补偿棒组在堆芯的位置是功率的函数,功率升高控制棒位置也提高。用核反应堆冷却剂温度的R棒组来实现反应性精确调整。在功率快速变化中,R棒组可以辅助功率补偿棒组控制,因为其反应性效果受到最大棒速限制。 【功率控制系统】(功率粗调)(1)主要功能:根据负荷需求控制功率补偿棒组的棒位,也称为功率补偿帮组控制系统。(2)最终目标:使功率补偿棒组的位置与功率水平相对应,对应关系就是有效标定曲线关系。(3)功率补偿棒控制系统是机组负荷的前馈(开环)控制 【平均温度控制系统】(功率细调)(1)主要功能:通过调节冷却剂平均温度实现反应堆功率与负荷精确匹配,也称R棒组控制系统。(2)冷却剂平均温度是机组负荷的反馈(闭环)控制。 【棒速程序控制单元】是一个非线性曲线,可以分为5个区域。(1)死区:为了避免Tav微笑的变化而引起控制棒频繁动作而造成严重的机械疲劳。(2)滞磁回环:为了清除控制棒驱动机构接通脱开时产生的振动。(3)最小棒速区:限制棒速(4)线性帮速区:棒速随温度偏差信号线性变化(5)最大棒速区:限制棒速 【硼浓度系统】作用:(1)减少了控制棒数量(2)改善了轴向功率分布(3)可增大核反应堆后备反应性,使堆寿期延长,燃耗增加(4)简化堆芯结构 【化学与容积控制系统功能】(1)容积控制:向反应堆堆芯补充水,在冷态时提供将反应堆冷却剂系统加压的高压水源,在热态时,保持稳压器中的液位。(2)化学控制:通过过滤除盐加入氢氧化钾以减少核反应堆冷却剂中腐蚀产物及裂变产物的浓度。(3)反应性控制:通过调整核反应堆冷却剂中的硼浓度以补偿燃

反应器设计说明

乙酸乙酯反应器的设计 : 班级:化学工程与工艺二班学号:3009207057

目录 第一章背景介绍 (3) 1 乙酸乙酯的理化性质 (3) 2 乙酸乙酯的用途 (3) 第二章乙酸乙酯的发展 (4) 1 乙酸乙酯的实验室制法 (4) 2 工业合成乙酸乙酯的工艺 (5) 第三章设计的方法与步骤 (6) 1 物料核算 (8) 1-1 流量计算 (8) 1-2 反应体积及时间的计算........................................................................。(9) 2 热量核算 (10) 2-1 能量衡算 (10) 2-2 换热设计 (13) 第四章设计心得 (14) 第五章文献检索 (15)

一、背景介绍 1、乙酸乙酯的理化性质 乙酸乙酯ethyl acetate 简写EA 乙酸乙酯又称醋酸乙酯。纯净的乙酸乙酯是无色透明具有刺激性气味的液体,是一种用途广泛的精细化工产品,具有优异的溶解性、快干性,用途广泛,是一种非常重要的有机化工原料和极好的工业溶剂,被广泛用于醋酸纤维、乙基纤维、氯化橡胶、乙烯树脂、乙酸纤维树酯、合成橡胶、涂料及油漆等的生产过程中。其主要用途有:作为工业溶剂,用于涂料、粘合剂、乙基纤维素、人造革、油毡着色剂、人造纤维等产品中;作为粘合剂,用于印刷油墨、人造珍珠的生产;作为提取剂,用于医药、有机酸等产品的生产;作为香料原料,用于菠萝、香蕉、草莓等水果香精和威士忌、奶油等香料的主要原料。我们所说的酒很好喝,就是因为酒中含有乙酸乙酯。乙酸乙酯具有果香味。因为酒中含有少量乙酸,和乙醇进行反应生成乙酸乙酯。因为这是个可逆反应,所以要具有长时间,才会积累导致酒香气的乙酸乙酯。 危险特性:易燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。与氧化剂接触会猛烈反应。在火场中,受热的容器有爆炸危险。其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃。燃烧(分解)产物:一氧化碳、二氧化碳。现场应急监测方法:气体检测管法实验室监测方法:无泵型采样气相色谱法(WS/T155-1999,作业场所空气)应急处理处置方法:一、泄漏应急处理迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄漏:用活性炭或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器,回收或运至废物处理场所处置。 2、乙酸乙酯的用途 其主要用途有:作为工业溶剂,用于涂料、粘合剂、乙基纤维素、人造革、油毡着色剂、人造纤维等产品中;作为粘合剂,用于印刷油墨、人造珍珠的生产;作为提取剂,用于医药、有机酸等产品的生产;作为香料原料,用于菠萝、香蕉、草莓等水果香精和威士忌、奶油等香料的主要原料。用作溶剂,及用于染料和一些医药中间体的合成。是食用香精中用量较大的合成香料之一,大量用于调配香蕉、梨、桃、菠萝、葡萄等香型食用香精。是硝酸纤维素、乙基纤维素、乙酸纤维素和氯丁橡胶的快干溶剂,也是工业上使用的低毒性溶剂。还可用作纺织工业的清洗剂和天然香料的萃取剂,也是制药工业和有机合成的重要原料。

相关文档