文档库 最新最全的文档下载
当前位置:文档库 › SoC低功耗设计及其技术实现

SoC低功耗设计及其技术实现

SoC低功耗设计及其技术实现
SoC低功耗设计及其技术实现

SOC设计方法与实现

关于对 《SoC设计方法与实现》的一点认识 '

| 目录 摘要 (3) 一 SoC概述 (3) 二SoC设计现状 (4) 1 芯核的设计流程 (7) 2 软硬件协同设计的流程 (8) 3 Soc的系统级设计流程 (8) 三 SoC发展的现状 (10) ( 1 SoC在中国发展的现状 (10) 2 国外SOC的发展现状 (11) 四SOC的未来发展趋势 (12) ;

\ 摘要 通过将近四周的学习,我已经对SoC有了一些基本的认识。在任课教师的指导下,我完成了此篇论文。本文主要从什么是SoC ,SoC 有什么用途,SoC的设计,SOC发展的现状和未来趋势这五个方面来简单论述的,在论述的过程中查阅了一部分文献资料,并且兼顾含有了集成电路的相关知识。 关键词 SoC 用途发展趋势 一 SoC概述 \ 随着集成电路1技术进入新的阶段,市场开始转向追求体积更小、成本更低、功耗更少的产品,因此出现了将多个甚至整个系统集成在一个芯片2上的产品––系统芯片(system on a chip,SoC)。系统芯片将原来由多个芯片完成的功能,集中到单个芯片中完成。更具体地说,它在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,或者说在单一硅芯片上集成了数字电路、模拟电路、信号采集、 1 1952年5月,英国皇家研究所的达默就在美国工程师协会举办的座谈会第一次提到了集成电路的设想。他说:“可以想象,随着晶体管和半导体工业的发展,电子设备可以在一块固体块上实现,而不需要外部的连接线。这块电路将有绝缘层、导体和具有整流放大作用的半导体等材料组成”,这就是最早的集成电路的概念。 2通常所说的“芯片”是指集成电路,它是微电子产业的主要产品。

集成电路的功耗优化和低功耗设计技术

集成电路的功耗优化和低功耗设计技术 摘要:现阶段各行业的发展离不开对能源的消耗,随着目前节能技术要求的不 断提升,降低功耗成为行业发展的重要工作之一。本文围绕集成电路的功耗优化 以及低功耗设计技术展开分析,针对现阶段常见的低功耗设计方式以及技术进行 探究,为集成电路功耗优化提供理论指导。 关键词:集成电路;功耗优化;低功耗 目前现代节能技术要求不断提升,针对设备的功耗控制成为当前发展的主要问题之一。 针对数字系统的功耗而言,决定了系统的使用性能能否得到提升。一般情况下,数字电路设 计方面,功耗的降低一直都是优先考虑的问题,并且通过对整个结构进行分段处理,同时进 行优化,最后总结出较为科学的设计方案,采用多种方式降低功耗,能够很大程度上提升设 备的使用性能。下面围绕数字电路的功耗优化以及低功耗设计展开分析。 一、设计与优化技术 集成电路的功耗优化和低功耗设计是相对系统的内容,一定要在设计的每个环节当中使 用科学且合理的技术手段,权衡并且综合考虑多方面的设计策略,才能够有效降低功耗并且 确保集成电路系统性能。因为集成电路系统的规模相对较大且具有一定的特殊性,想要完全 依靠人工或者手动的方式来达到这些目的并不现实且缺少可行性,一定要开发与之对应的电 路综合技术。 1 工艺级功耗优化 将工艺级功耗应用到设计当中,通常情况下采取以下两种方式进行功耗的降低: 首先,根据比例调整技术。进行低功耗设计过程中,为了能够实现功耗的有效降低会利 用工艺技术进行改善。在设计过程中,使用较为先进的工艺技术,能够让设备的电压消耗有 效缩减。现阶段电子技术水平不断提升,系统的集成度也随之提高,目前采用的零件的规格 也逐渐缩小,零件的电容也实现了良好的控制,进而能够很大程度上降低功耗。借助比例技术,除了能够将可见晶体管的比例进行调整,而且也能够缩小互连线的比例[1]。目前在晶体 管的比例缩小方面,能够依靠缩小零件的部分重要参数,进而在保持性能不被影响的情况下,通过较小的沟道长度,确保其他的参数不受影响的栅压缩方式,进而将零件的体积进行缩减,同时也缩短了延长的用时,使功耗能够有效降低。针对互连线缩小的方式主要将互连线的整 个结构进行调整,工作人员在进行尺寸缩减的过程中,会面临多方面的难题,比如系统噪音 无法控制,或者降低了电路使用的可靠性等等。 其次,采用封装技术进行降低。采用封装技术,能够让芯片与外部环境进行有效的隔离,进而避免了外部环境给电气设备造成一定的破坏与影响,在封装阶段,芯片的功耗会受到较 大的影响,因此需要使用更加有效的封装手段,才能够提升芯片的散热性,进而有效降低功 耗[2]。在多芯片的情况下,因为芯片与其他芯片之间的接口位置会产生大量的功耗,因此针 对多芯片采取封装技术,首先降低I/0接口的所有功能,接着解决电路延迟的问题,才能够 实现对集成电路的优化。 2 电路功耗优化 一般情况下,对电路级的功耗会选择动态的逻辑设计。在集成电路当中,往往会包含多 种电路逻辑结构,比如动态、静态等等,逻辑结构从本质上而言具有一定的差异性,这种差 异性也使得逻辑结构有着不同作用的功能。动态逻辑结构有着较为典型的特性[3]。静态的逻 辑结构当中所有的输入都会对接单独的MOS,因此逻辑结构功耗更大,动态的逻辑结构当中 电路通常具备N、M两个沟道,动态电路会利用时钟信号采取有效的控制,进而能够实现预

SOC的软硬件协同设计方法和技术

SOC的软硬件协同设计方法和技术 摘要: 随着嵌入式系统与微电子技术的飞速发展,硬件的集成度越来越高,这使得将CPU、存储器和I/O设备集成到一个硅片上成为可能,SOC应运而生,并以其集成度高、可靠性好、产品问世周期短等特点逐步成为当前嵌入式系统设计技术的主流。传统的嵌入式系统设计开发方法无法满足Soc设计的特殊要求,这给系统设计人员带来了巨大的挑战和机遇,因此针对Soc的设计方法学己经成为当前研究的热点课题。 论文首先分析了嵌入式系统设计的发展趋势,论述了传统设计开发方法和工具的局限性,针对Soc设计技术的特点探究了Soc软硬件协同设计方法的流程,并讨论了目前软硬件协同设计的现状。 关键词: 软硬件协同设计,可重用设计,SOC 背景: 计算机从1946年诞生以来,经历了一个快速发展的过程,现在的计算机没有变成科幻片电影中那样贪婪、庞大的怪物,而是变得小巧玲珑、无处不在,它们藏身在任何地方,又消失在所有地方,功能强大,却又无影无踪,这就是嵌入式系统。嵌入式系统是以应用为中心、计算机技术为基础、软件硬件可剪裁、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。嵌入式系统是将先进的计算机技术、微电子技术和现代电子系统技术与各个行业的具体应用相结合的产物,这一点决定了它必然是一个技术密集、高度分散、不断创新的知识集成系统。嵌入式系纫‘泛应用于国民经济和国防建设的各个领域,发展非常迅速,调查数据表明,嵌入式系统的增长为每年18%,大约是整个信息技术产业平均增长的两倍[1],目前世界上大约有2亿台通用计算机,而嵌入式处理器大约60亿个,嵌入式系统产业是二十一世纪信息产业的重要增长点。 随着集成电路制造工艺的飞速发展,嵌入式系统硬件的集成度越来越高,这使得将嵌入式微处理器、存储器、I/O设备等硬件组成部件集成到单个芯片上成为可能,片上系统SoC (System on Chip)应运而生[2]。SOC极大地缩小了系统体积;减少了板级系统SoB(System on Board)中芯片与芯片之间的互连延迟,从而提高了系统的性能; 强调设计重用思想,提高了设计效率,缩短了设计周期,减少了产品的上市时间。因此SOC以其集成度高、体积小、功耗少、可靠性好、产品问世周期短等优点得到了越来越广泛地应用,并且正在逐渐成为当前嵌入式系统设计的主流技术[3]。但Soc设计不同于传统嵌入式系统的开发,如何快速、有效地开发和设计Soc产品是当前嵌入式设计开发方法学的一个十分重要的研究领

嵌入式系统的低功耗设计

第27卷第6期增刊 2006年6月 仪 器 仪 表 学 报 Chinese Journal of Scientific Instrument Vol.27No.6 J une.2006  嵌入式系统的低功耗设计 3 杨天池 金 梁 王天鹏 (解放军信息工程大学 郑州 450002) 摘 要 嵌入式系统的电源管理是系统设计中关键部分,合理的电源管理方案可以减少系统的功耗并提高整体性能。本文提出了一种层次化的电源管理结构,分别为硬件层、驱动层、操作系统层、电源管理层和应用层。本文同时引入了动态的电源管理方法来解决电源功耗的动态管理问题。通过在实际的系统中的测试表明,该电源管理机制的有效性。关键词 嵌入式系统 低功耗设计 动态电源管理 PXA255 Low pow er design in embedded system Yang Tianchi Jin Liang Wang Tianpeng (Universit y of I nf ormation Engineering ,Zhengz hou 450002,China ) Abstract Proper power management mechanism is important when designing embedded system.It is helpful to reduce power consumption and improve performance.This low power model adopt s five 2layer architecture ,which are hardware platform ,driver layer ,operating system ,power manage mechanism and application program.Dynamic power management (DPM )technology is also introduced to solve the problem of power consumption.The experiment on embedded system demonstrates t hat this power management mechanism is feasible.K ey w ords embedded system low power design dynamic power management PXA255  3基金项目:河南人才创新基金(0421000100) 1 引 言 随着嵌入式系统的发展以及应用面的不断扩展,功耗控制是系统设计中必不可少的组成部分。如何最大限度的降低系统功耗、减少不必要的能源损失、延长电池使用时间已经成为嵌入式系统特别是便携式系统设计中研究的热点问题。系统的低功耗设计,并非是某一方面、某一角度的解决方案,而应当从系统级的设计考虑功耗的节省,是一个硬件设计与软件控制相互结合的协调过程。 2 低功耗电路模型 低功耗设计对于无线设备、PDA 等便携式设备的实际应用具有重要的意义。低功耗元件的发展和系统设计的进步使得通用计算技术可以用到表、无线电话、 PDA 和桌面计算机中。在这些系统中的电源管理技 术传统上集中在休眠模式和设备能源管理这2个方面上[1]。但是,这样的电源管理缺乏直观性和灵活性,而且功耗的降低,并非单独软件、硬件单方面可以解决的[2],因此设计并建立如图1所示的系统低功耗设计模型。整个模型由硬件平台,驱动层,操作系统层,电源管理机制层和应用程序五个部分组成。 2.1 硬件平台 几乎所有系统功耗都集中于硬件平台,因此降低硬件平台的功耗是实现低功耗的基本所在。公式(1)为系统功耗的表达式: P ∞CV 2 f (1) 式中:C 是负载电容,V 是器件电压,f 是工作频率[3]。系统功耗同负载电容、器件电压平方以及工作频率成正比。因此,硬件平台设计多选用低电压,电压、频率可调器件,以及采用SOC 设计来进一步降低功耗[4,5]。另外,模式可控器件在空闲状态消耗的能量为运行状

基于IEEE1801(UPF)标准的低功耗设计实现流程

https://www.wendangku.net/doc/d53772084.html,/inform ation/snug/2009/low-power-impleme ntation-flow-based-ieee1801-upf 基于IEEE1801(UPF)标准的低功耗设计实现流程 Low-power Implementation Flow Based IEEE1801 (UPF) 郭军, 廖水清, 张剑景 华为通信技术有限公司 jguo@https://www.wendangku.net/doc/d53772084.html, liaoshuiqing@https://www.wendangku.net/doc/d53772084.html, zhangjianjing@https://www.wendangku.net/doc/d53772084.html, Abstract Power consumption is becoming an increasingly important aspect of ASIC design. There are several different approaches that can be used to reduce power. However, it is important to use these low-power technology more effectively in IC design implementation and verification flow. In our latest low-power chip, we completed full implementation and verification flow from RTL to GDSII successfully and effectively by adopting IEEE1801 Unified Power Format (UPF). This paper will focus on UPF application in design implementation with Synopsys low power solution. It will highlight that how to describe our low-power intent using UPF and how to complete the design flow. This paper first illustrates current low-power methodology and UPF?s concept. Then, it discussed UPF application in detail. Finally, it gives our conclusion. Key words: IEEE1801, UPF, Low-Power, Shut-Down, Power Gating, Isolation, IC-Compiler 摘要

ARM低功耗设计_全面OK

嵌入式系统中的低功耗设计 2008-12-31 18:19:55 作者:电子之都来源:电子之都浏览次数:59 网友评论 0 条 经过近几年的快速发展,嵌入式系统(Embedded system)已经成为电子信息产业中最具增长力的一个分支。随着手机、PDA、GPS、机顶盒等新兴产品的大量应用,嵌入式系统的市场正在以每年30%的速度递增(IDC预测),嵌入式系统的设计也成为软硬件工程师越来越关心的话题。 在嵌入式系统的设计中,低功耗设计(Low-Power Design)是许多设计人员必须面对的问题,其原因在于嵌入式系统被广泛应用于便携式和移动性较强的产品中去,而这些产品不是一直都有充足的电源供应,往往是靠电池来供电,所以设计人员从每一个细节来考虑降低功率消耗,从而尽可能地延长电池使用时间。事实上,从全局来考虑低功耗设计已经成为了一个越来越迫切的问题。 那么,我们应该从哪些方面来考虑低功耗设计呢?笔者认为应从以下几方面综合考虑: 1.处理器的选择 2.接口驱动电路设计 3.动态电源管理 4.电源供给电路的选择 下面我们分别进行讨论: 一、处理器的选择 我们对一个嵌入式系统的选型往往是从其CPU和操作系统(OS)开始的,一旦这两者选定,整个大的系统框架便选定了。我们在选择一个CPU的时候,一般更注意其性能的优劣(比如时钟频率等)及所提供的接口和功能的多少,往往忽视其功耗特性。但是因为CPU 是嵌入式系统功率消耗的主要来源---对于手持设备来讲,它几乎占据了除显示屏以外的整

个系统功耗的一半以上(视系统具体情况而定),所以选择合适的CPU对于最后的系统功耗大小有举足轻重的影响。 一般的情况下,我们是在CPU的性能(Performance)和功耗(Power Consumption)方面进行比较和选择。通常可以采用每执行1M次指令所消耗的能量来进行衡量,即Watt/M IPS。但是,这仅仅是一个参考指标,实际上各个CPU的体系结构相差很大,衡量性能的方式也不尽相同,所以,我们还应该进一步分析一些细节。 我们把CPU的功率消耗分为两大部分:内核消耗功率PCORE和外部接口控制器消耗功率PI/O,总的功率等于两者之和,即P=PCORE+PI/O。对于PCORE,关键在于其供电电压和时钟频率的高低;对于PI/O来讲,除了留意各个专门I/O控制器的功耗外,还必须关注地址和数据总线宽度。下面对两者分别进行讨论: 1、CPU供电电压和时钟频率 我们知道,在数字集成电路设计中,CMOS电路的静态功耗很低,与其动态功耗相比基本可以忽略不计,故暂不考虑。其动态功耗计算公式为: Pd=CTV2f 式中,Pd---CMOS芯片的动态功耗 CT----CMOS芯片的负载电容 V----CMOS芯片的工作电压 f-----CMOS芯片的工作频率 由上式可知,CMOS电路中的功率消耗是与电路的开关频率呈线性关系,与供电电压呈二次平方关系。对于一颗CPU来讲,Vcore电压越高,时钟频率越快,则功率消耗越大。所以,在能够满足功能正常的前提下,尽可能选择低电压工作的CPU能够在总体功耗方面得到

基于MSP430的极低功耗系统设计

基于MSP430的极低功耗系统设计 摘要:MSP430是TI公司出品的一款强大的16位单片机,其显著特点是具有极低的功耗。本文对构造以MSP430为基础极低功耗系统作为有益的探讨,对于设计各种便携式设备都具有较高的参考价值。 对于一个数字系统而言,其功耗大致满足以下公式:P=CV2f,其中C为系统的负载电容,V为电源电压,f为系统工作频率。由此可见,功耗与电源电压的平方成正比,因此电源电压对系统的功耗影响最大,其次是工作频率,再就是负载电容。负载电容对设计人员而言,一般是不可控的,因此设计一个低功耗系统,应该考虑到不影响系统性能前提下,尽可能地降低电源的电压和使用低频率的时钟。下面对TI公司新出MSP430来具体探讨这个问题。 MSP430具有工业级16位RISC,其I/O和CPU可以运行在不的时钟下。CPU功耗可以通过开关状态寄存器的控制位来控制:正常运行时电流160μA,备用时为0.1μA,功耗低,为设计低功耗系统提供了有利的条件。 图1是我们设计的以MSP430为CPU的“精密温度测试仪”(下面简称测试仪)。该产品使用电池供电,体积小巧,携带方便。 在使用时应该尽可能地选择最低的电源电压。对于MSP430而言,可用的最低电压是很低的,最低可达1.8V。我们使用TI公司推荐使用的3V。通常的电源只提供5V电压,因此,需要将5V电压由一个3V的稳压管降压后给CPU供电,也可以直接锂电池供电。3V不是标准的TTL电平,因此,在使用时需要用接口电路使CPU的非TTL标准电平能与TTL标准电平的器件连接。这些接口电路应该也是低功耗的,否则会造成一方面使用低电压降低了功耗,另一个方面使用额外的接口电路又增加了系统的功耗。或者直接使用支持3V电压的外围芯片。图1 (2)时钟频率 从低功耗的角度看,需要较低的频率,但是在实时应用中为了快速响应外部事件

常用低功耗设计

随着半导体工艺的飞速发展和芯片工作频率的提高,芯片的功耗迅速增加,而功耗增加又将导致芯片发热量的增大和可靠性的下降。因此,功耗已经成为深亚微米集成电路设计中的一个非常重要的考虑因素。为了使产品更具有竞争力,工业界对芯片设计的要求已从单纯的追求高性能、小面积,转换为对性能、面积、功耗的综合要求。微处理器作为数字系统的核心部件,其低功耗设计对降低整个系统的功耗具有非常重要的意义。 本文首先介绍了微处理器的功耗来源,重点介绍了常用的低功耗设计技术,并对今后低功耗微处理器设计的研究方向进行了展望。 1 微处理器的功耗来源 研究微处理器的低功耗设计技术,首先必须了解其功耗来源。高层次仿真得出的结论如图1所示。 从图1中可以看出,时钟单元(Clock)功耗最高,因为时钟单元有时钟发生器、时钟驱动、时钟树和钟控单元的时钟负载;数据通路(Datapath)是仅次于时钟单元的部分,其功耗主要来自运算单元、总线和寄存器堆。除了上述两部分,还有存储单元(Mem ory),控制部分和输入/输出 (Control,I/O)。存储单元的功耗与容量相关。 如图2所示,C MOS电路功耗主要由3部分组成:电路电容充放电引起的动态功耗,结反偏时漏电流引起的功耗和短路电流引起的功耗。其中,动态功耗是最主要的,占了总功耗的90%以上,表达式如下: 式中:f为时钟频率,C1为节点电容,α为节点的翻转概率,Vdd为工作电压。

2 常用的低功耗设计技术 低功耗设计足一个复杂的综合性课题。就流程而言,包括功耗建模、评估以及优化等;就设计抽象层次而言,包括自系统级至版图级的所有抽象层次。同时,功耗优化与系统速度和面积等指标的优化密切相关,需要折中考虑。下面讨论常用的低功耗设计技术。 2.1 动态电压调节 由式(1)可知,动态功耗与工作电压的平方成正比,功耗将随着工作电压的降低以二次方的速度降低,因此降低工作电压是降低功耗的有力措施。但是,仅仅降低工作电压会导致传播延迟加大,执行时间变长。然而,系统负载是随时间变化的,因此并不需要微处理器所有时刻都保持高性能。动态电压调节DVS (Dynarnic Voltage Scaling)技术降低功耗的主要思路是根据芯片工作状态改变功耗管理模式,从而在保证性能的基础上降低功耗。在不同模式下,工作电压可以进行调整。为了精确地控制DVS,需要采用电压调度模块来实时改变工作电压,电压调度模块通过分析当前和过去状态下系统工作情况的不同来预测电路的工作负荷。 2.2 门控时钟和可变频率时钟 如图1所示,在微处理器中,很大一部分功耗来自时钟。时钟是惟一在所有时间都充放电的信号,而且很多情况下引起不必要的门的翻转,因此降低时钟的开关活动性将对降低整个系统的功耗产牛很大的影响。门控时钟包括门控逻辑模块时钟和门控寄存器时钟。门控逻辑模块时钟对时钟网络进行划分,如果在当前的时钟周期内,系统没有用到某些逻辑模块,则暂时切断这些模块的时钟信号,从而明显地降低开关功耗。图3为采用“与”门实现的时钟控制电路。门控寄存器时钟的原理是当寄存器保持数据时,关闭寄存器时钟,以降低功耗。然而,门控时钟易引起毛刺,必须对信号的时序加以严格限制,并对其进行仔细的时序验证。 另一种常用的时钟技术就是可变频率时钟。根据系统性能要求,配置适当的时钟频率,避免不必要的功耗。门控时钟实际上是可变频率时钟的一种极限情况(即只有零和最高频率两种值),因此,可变频率时钟比门控时钟技术更加有效,但需要系统内嵌时钟产生模块PLL,增加了设计复杂度。去年Intel公司推出的采用先进动态功耗控制技术的Montecito处理器,就利用了变频时钟系统。该芯片内嵌一个高精度数字电流表,利用封装上的微小电压降计算总电流;通过内嵌的一个32位微处理器来调整主频,达到64级动态功耗调整的目的,大大降低了功耗。

基于ARM的SoC设计入门.

基于ARM的SoC设计入门 2005-12-27 来源:电子工程专辑阅读次数: 1033 作者:蒋燕波 我们跳过所有对ARM介绍性的描述,直接进入工程师们最关心的问题。 要设计一个基于ARM的SoC,我们首先要了解一个基于ARM的SoC的结构。图1是一个典型的SoC的结构:

图1 从图1我们可以了解这个的SoC的基本构成: ARM core:ARM966E

?AMBA 总线:AHB+APB ?外设IP(Peripheral IPs):VIC(Vector Interrupt Controller), DMA, UART, RTC, SSP, WDT ?Memory blocks:SRAM, FLASH ?模拟IP:ADC, PLL 如果公司已经决定要开始进行一个基于ARM的SoC的设计,我们将会面临一系列与这些基本构成相关的问题,在下面的篇幅中,我们尝试讨论这些问题。 1. 我们应该选择那种内核? 的确,ARM为我们提供了非常多的选择,从下面的表-1中我们可以看到各种不同ARM内核的不同特点:

表1 ARM已经给出了基本的参考意见:

?如果您在开发嵌入式实时系统,例如汽车控制、工业控制或网络应用,则应该选择Embedded core。 ?如果您在开发以应用程序为主并要使用操作系统,例如Linux, Palm OS, Symbian OS 或Windows CE等等,则应选择Application core。 ?如果您在开发象Smart card,SIM卡或者POS机一样的需要安全保密的系统,则需要选择Secure Core。 举个例子,假如今天我们需要设计的是一个VoIP电话使用的SoC,由于这个应用不需要使用到操作系统,所以我们可以考虑使用没有MMU的内核。另外由于网络协议盏对实时性的要求较高,所以我们可以考虑ARM9系列的内核。又由于VoIP有语音编解码方面的需求,所以需要有DSP功能扩展的内核,所以ARM946E-S或ARM966E-S应该是比较合适的选择。 当然,在实际工作中的问题要比这个例子要复杂的多,比如在上一个例子中,我们也可以选择ARM7TDMI内核加一个DSP的解决方案,由ARM来完成系统控制以及网络协议盏的处理,由单独的DSP来完成语音编解码的功能。我们需要对比不同方案的面积,功耗和性能等方面的优缺点。同时我们还要考虑Cache size,TCM size,实际的内核工作频率等等相关问题,所以我们需要的一个能构快速建模的工具来帮助我们决定这些问题。现在的EDA工具为我们提供了这样的可能,例如Synopsys?的CCSS(CoCentric System Studio)以及Axys?公司的Maxsim?等工具都可以帮助我们实现快速建模,并在硬件还没有实现以前就可以提供一个软件的仿真平台,让我们在这个平台上进行软硬联仿,评估我们设想的硬件是否满足需求。 2.我们应该选择那种总线结构? 在提供内核给我们的同时,ARM也提供了多种的总线结构。例如ASB,AHB,AHB lite,AXI等等,在定义使用何种总线的同时,我们还要评估到底怎样的总线频率才能满足我们的需求,而同时不会消耗过多的功耗和片上面积。这就是我们平时常说的Architecture Exploration的问题。 和上一个问题一样,这样的问题也需要我们使用快速建模的工具来帮我们作决定。通常,这些工具能为我们提供抽象级别很高的TLM(Transaction Level Models)模型来帮助我们建模,常用的IP在这些工具提供的库中都可以找到,例如各种ARM core,AHB/APB BFM(Bus Function Model),DMAC以及各种外设IP。这些工具和TLM模型提供了比RTL仿真快100~10000倍的软硬联仿性能,并提供系统的分析功能,如果系统架构不能满足需要,那么瓶颈在系统的什么地方,是否是内核速度不够?总线频率太低?Cache太小?还是中断响应开销太多?是否需要添加DMA?等等,诸如此类的问题,我们多可以在工具的帮助下解决。

单片机MSP430的极低功耗系统设计

单片机MSP430的极低功耗系统设计

ASIC低功耗设计

三、低功耗技术 1. 功耗分析 (1)由于电容的充放电引起的动态功耗 V DD C l i VDD v out 图(20)充放电转换图 如图(20)所示:PMOS 管向电容L C 充电时,电容的电压从0上升到DD V ,而这些能量来 自于电源。一部分能量消耗在PMOS 管上,而剩余的则保存在电容里。从高电压向低转换的过程中,电容放电,电容中储存的能量消耗在NMOS 管上。 我们来推导一下:考虑从低电压转换到高电压的情况,NMOS 和PMOS 不同时导通。在转换过程中电源提供的能量为C E ,而是转换后储存在电容里的能量。 ???====∞∞VDD DD L out DD L out L DD VDD VDD V C dv V C dt dt dv C V dt t i E 0 002)( ???====∞∞VDD DD L out out L out out L out VDD C V C dv v C dt v dt dv C dt v t i E 02002 )( 这两个等式说明电源提供的能量只有一半储存在电容里。另一半被PMOS 管消耗掉了。 为了计算总体能量消耗,我们不得不考虑器件的翻转。如果门每秒钟翻转10?→? f 次,那么 102 ?→?=f V C P DD L dyn 10?→?f 表示能量消耗的翻转频率。 随着数字电路集成度的提高,能量问题将成为人们关注的焦点。从以上分析看出,dyn P 跟电源电压的平方成正比,因此降低供电电压对降低功耗有非常显著的意义。 但是,降低供电电压对电路性能有一定的影响,这时我们可以考虑减小有效电容和减少翻转率。电容主要是由于晶体管的门和扩散电容引起的,因此降低由于电容的充放电引起的动态功耗方法之一是将晶体管设计得尽可能小,这种方法同样对提高电路的性能有很大的帮助。

微处理器的低功耗芯片设计技术

微处理器的低功耗芯片设计技术 [日期:2008-1-7] 来源:单片机及嵌入式系统应用作者:同济大学周俊林正浩 [字体:大中小] 摘要随着半导体工艺的飞速发展和芯片工作频率的提高,功耗已经成为深亚微米集成电路设计中的一个重要考虑因素。本文介绍了低功耗微处理器的研究现状,讨论了几种常用的微处理器低功耗设计技术。最后,对夸后低功耗微处理器设计的研究方向进行了展望。 关键词微处理器功耗低功耗芯片设计 随着半导体工艺的飞速发展和芯片工作频率的提高,芯片的功耗迅速增加,而功耗增加又将导致芯片发热量的增大和可靠性的下降。因此,功耗已经成为深亚微米集成电路设计中的一个重要考虑因素。为了使产品更具竞争力,工业界对芯片设计的要求已从单纯追求高性能、小面积转为对性能、面积、功耗的综合要求。而微处理器作为数字系统的核心部件,其低功耗设计对降低整个系统的功耗具有重要的意义。 2000年年初,Transmeta公司推出了Crusoe处理器,以其独特的低功耗设计技术和非凡的超低功耗表现,在业界引起巨大轰动,引发了低功耗处理器设计的激烈竞争。 在2006年的英特尔开发者论坛大会(Intel DeveloperForum)上,英特尔展示了多款基于下一代技术的微处理器。其中,Metom主要用于笔记本电脑,最大功耗仅有5W,而将于2 006年底上市的超低电压版Merom的功耗则只有0.5W;Conroe主要面向台式机,其最大功耗为65W,远远低于现有Pentium 4处理器的95W;服务器处理器Woodcrest的最大功耗为80W,而现有的Xeon处理器的功耗为110W。 本文首先介绍了微处理器的功耗来源,重点介绍了常用的低功耗设计技术,并对今后低功耗微处理器设计的研究方向进行了展望。 1 微处理器的功耗来源 研究微处理器的低功耗设计技术,首先必须了解它的功耗来源。高层次仿真得出的结论如图1所示。

SOC设计方法

SOC设计方法 时间:2011-01-13 19:02:31 来源:作者: 本文通过对集成电路IC技术发展现状的讨论和历史回顾,特别是通过对电子整机设计技术发展趋势的探讨,引入系统芯片(System on Chip,简称SOC)的定义,主要特点及其设计方法学等基本概念,并着重探讨面向SOC的新一代集成电路设计方法学的主要研究内容和发展趋势。 关键词:SOC 软硬件协同设计超深亚微米高层次综合IP核设计再利用引言 人类进入21世界面临的一个重要课题就是如何面对国民经济和社会发展信息化的挑战。以网络通信、软件和微电子为主要标志的信息产业的飞速发展既为我们提供了一个前所未有的发展机遇,也营造了一个难得的市场与产业环境。 集成电路作为电子工业乃至整个信息产业的基础得益于这一难得的机遇,呈现出快速发展的态势。以软硬件协同设计(Software/Hardware Co-Design)、具有知识产权的内核(IP核)复用和超深亚微米(Very Deep Sub-M集成电路ron,简称VDSM)技术为支撑的SOC是国际超大规模集成电路(VLSI)的发展趋势和新世纪集成电路的主流。 与此同时,集成电路设计技术的进步滞后于集成电路制造技术的进步已成为制约未来集成电路工业进一步健康发展的关键。传统的、基于标准单元库的设计方法已被证明不能胜任SOC的设计;现行的面向逻辑的集成电路设计方法在深亚微米集成电路设计中遇到了难以逾越的障碍;芯片设计涉及的领域不再局限于传统的半导体而且必须与整机系统结合;集成电路设计工程师们从来没有像今天这样迫切地需要汲取新知识,特别是有关整机系统的知识。所以尽快开展面向SOC的新一代集成电路设计方法学研究对于推动集成电路的发展是至关重要的。 回顾20世纪后半叶集成电路工业的历史,不难看出著名的MOORE(摩尔)定律一直在准确地描述着集成电路技术的发展。专家们普遍认为,在新的世纪中,这一著名定律仍将长期有效。尽管MOORE定律揭示的集成电路工艺技术的进步规律是那样的诱人,且其发展速度之高在现代社会是少有的,但是今天正在蓬勃发展的网络技术的进步相比(见图1)还是相形见绌,远远不能满足信息产业发展的要求。

超低功耗系统设计

超低功耗系统设计 学院: 学号: 姓名:

基于MSP430单片机的开关稳压电源设计 MSP430系列单片机是美国TI公司生产的新一代16位单片机,是一种超低功耗的混合信号处理器(MixedSignal Processor),它具有低电压、超低功耗、强大的处理能力、系统工作稳定、丰富的片内外设、方便开发等优点,具有很高的性价比,在工程控制等领域有着极其广泛的应用范围。开关Boost稳压电源利用开关器件控制、无源磁性元件及电容元件的能量存储特性,从输入电压源获取分离的能量,暂时把能量以磁场的形式存储在电感器中,或以电场的形式存储在电容器中,然后将能量转换到负载。对DC—DC主回路采用Boost升压斩波电路。 2 系统结构和总设计方案 本开关稳压电源是以MSP430F449为主控制器件,它是TI公司生产的16位超低功耗特性的功能强大的单片机,其低功耗的优点有利于系统效率高的要求,且其ADCl2是高精度的12位A/D转换模块,有高速、通用的特点。这里使用MSP430完成电压反馈的PI调节;PWM波产生,基准电压设定;电压电流显示;过电流保护等。 系统框图如图1所示。 3 硬件电路设计 3.1 DC/DC转换电路设计 系统主硬件电路由电源部分、整流滤波电路、DC/DC转换电路、驱动电

路、MSP430单片机等部分组成。交流输入电压经整流滤波电路后经过DC/DC变换器,采用Boost升压斩波电路DC/DC变换,如图2所示: 根据升压斩波电路的工作原理一个周期内电感L积蓄的能量与释放的能量相等,即: 式(1)中I1为输出电流,电感储能的大小通过的电流与电感值有关。在实际电路中电感的参数则与选取开关频率与输入/输出电压要求,根据实际电路的要求选用合适的电感值,且要注意其内阻不应过大,以免其损耗过大减小效率采样电路。对于电容的计算,在指定纹波电压限制下,它的大小的选取主要依据式(2): 式(2)中:C为电容的值;D1为占空比;TS为MOSFET的开关周期;I0为负载电流;V’为输出电压纹波。 3.2 采样电路 采样电路为电压采集与电流采集电路,采样电路如图3所示。其中P6.O,P6.1为MSP430芯片的采样通道,P6.O为电压采集,P6.1为电流采集。 电压采集因为采样信号要输入单片机MSP430内部,其内部采样基准电压选为2.5 V,因此要将输入的采样电压限制在2.5 V之下,考虑安全裕量则将输入电压限制在2 V以下,当输入电压为36 V时,采样电压为:12/ (12+200)×36=2.04 V,符合要求。 电流采集采用康铜丝进行采集。首先考虑效率问题,康铜丝不能选择过大,同时MSP430基准电压为2.5 V,且所需康铜丝需自制。考虑以上方面在康铜丝阻值选取上约为O.1Ω。 3.3 PWM驱动电路的设计 电力MOSFET驱动功率小,采用三极管驱动即可满足要求,驱动电路如图

基于IEEE1801(UPF)的低功耗设计流程

基于IEEE1801(UPF)标准的低功耗设计实现流程 摘要 目前除了时序和面积,功耗已经成为集成电路设计中日益关注的因素。当前有很多种降低功耗的方法,为了在设计实现流程中更加有效的利用各种低功耗的设计方法,我们在最近一款芯片的设计实现以及验证流程中,使用了基于IEEE1801标准Unified Power Format(UPF)的完整技术,成功的完成了从RTL到GDSII 的全部过程,并且芯片制造回来成功的完成了测试。本文就其中的设计实现部分进行了详细探讨,重点介绍如何用UPF把我们的低功耗意图描述出来以及如何用Synopsys工具实现整个流程,希望给大家以启发。本文先介绍目前常用的低功耗设计的一些方法特别是用power-gating的方法来控制静态功耗以及UPF 的实现方法,然后阐述UPF在我们设计流程中的应用,并在介绍中引入了一些我们的设计经验,最后给出我们的结论。 关键字:IEEE1801, UPF,低功耗, 电源关断,Power-Gating, Isolation, IC-Compiler 1. 简介 1.1 深亚微米设计面临的挑战 随着工艺特征尺寸的缩小以及复杂度的提高,IC设计面临了很多挑战:速度越来越高,面积不断增大,噪声现象更加严重等。其中,功耗问题尤为突出,工艺进入130nm以下节点后,单位面积上的功耗密度急剧上升,已经达到封装、散热、以及底层设备所能支持的极限。随着工艺进一步达到90nm以下,漏电流呈指数级增加(如图1所示),在某些65nm设计中,漏电流已经和动态电流一样大,曾经可以忽略的静态功耗成为功耗的主要部分。功耗已成为继传统二维要素(速度、面积)之后的第三维要素。

FPGA低功耗设计技术

FPGA低功耗设计
北京理工大学雷达技术研究所
陈禾

本节内容
数字电路的功耗 低功耗设计技术 低功耗FPGA设计

CMOS电路的功耗来源
在数字CMOS电路中,功耗是 由三部分构成的: PTotal= Pdynamic + Pshort + Pleakage
VDD
PMOS Id out
其中Pdynamic是电路翻转时 in 产生的动态功耗,Pshort是 P管和N管同时导通时产生 的短路功耗,Pleakage是由 扩散区和衬底之间的反向 偏置漏电流引起的静态功 耗。
NMOS
Ishort
Ileakage
CL
VSS

CMOS电路的功耗来源
静态功耗
CMOS在静态时,P、N管只有一个导通。 由于没有Vdd到GND的直流通路,所以 CMOS静态功耗应当等于零。但在实际当 中,由于扩散区和衬底形成的PN结上存 在反向漏电流,产生电路的静态功耗。 静态功耗为:
Ps = × ∑ (反向电流 I )(电流电压
i n
Vdd)
其中:n为器件个数。

CMOS电路的功耗来源
动态功耗
CMOS电路在“0”和“1”的跳变过程中, 会形成一条从VDD通过P管网络和负载 电容到地的电流Id对负载电容进行充 电,产生动态功耗Pdynamic: Pdynamic=KCLVDD2f 其中K是在单位时间内的平均上跳次 数,f是时钟频率。

相关文档