文档库 最新最全的文档下载
当前位置:文档库 › 脱硫岗位工艺相关知识资料

脱硫岗位工艺相关知识资料

脱硫岗位工艺相关知识资料
脱硫岗位工艺相关知识资料

烟气脱硫岗位学习资料

1 概述

目前,各国投入实用的成熟的烟气脱硫(FGD)技术不下几十种,主要分为湿法、干法、半干法等几大类,其中湿式钙法(石灰石-石膏)是目前世界上技术最成熟、实用业绩最多、运行状态最稳定的脱硫工艺,应用此类工艺的机组容量约占电站脱硫装机总容量的85%以上,应用的单机容量超过1000MW。湿式工艺的缺点是需要充分考虑防腐问题,设备一次性投资较大、运行费用较高,对占地和供水要求大,宜用于大中型电厂或含硫量高的小型电厂;干法、半干法的优点是投资小和占地少,但效率一般低于湿法,对小型电厂和或含硫量较低的中型电厂较为适合。

拥有湿式钙法脱硫技术的公司较多,其反应原理相同,主要工艺区别集中在吸收塔结构的不同上,例如填料塔(现已不使用)、液柱塔、鼓泡塔和喷淋塔,其中喷淋塔应用的最为广泛,不同的公司其喷淋塔内部结构也有区别,形成各自的技术的特点,如塔内设置金属托盘、浆池采用扰动泵搅拌等。各种类型的吸收塔各有特点,均有较多成功的业绩,喷淋塔采用喷嘴雾化,烟气与吸收剂雾滴对流接触,既可保证充分吸收,又无塔内结垢堵塞之忧,故最为常见。

1.1 脱硫系统的基本技术及概念

目前,世界上燃煤电厂脱硫工艺方法很多,这些方法的应用主要取决于锅炉容量和调峰要求、燃烧设备的类型、燃料的种类和含硫量的多少、脱硫率、脱硫剂的供应条件及电厂的地理位置、副产品的利用等因素。

按脱硫工艺在生产中所处的部位不同可分为:燃烧前脱硫(如:原煤洗选脱硫)、炉内燃烧脱硫(如:循环流化床锅炉和炉内喷钙)、燃烧后脱硫即烟气脱硫(如:海水脱硫、石灰石—石膏湿法、电子束脱硫等),其中燃烧后的烟气脱硫是目前世界上控制SO

污染所用的主要手段。

2

表1 烟气脱硫法分类

上述脱硫工艺中,有的技术较为成熟,已达到工业应用的水平,有的尚处于

试验研究阶段,现将目前较为广泛的几种脱硫工艺原理、特点及其应用状况介绍如下:

1.1.1 石灰石—石膏湿法脱硫工艺

石灰石—石膏湿法脱硫工艺采用价廉物美的石灰石作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆剂,也可以将石灰石直接湿磨成石灰石浆液制成吸收浆剂。在吸收塔内,吸收浆剂与烟气接触混合,烟气中的SO

2

与浆剂中的碳酸钙以及鼓入的氧化空气进行化学反应,最终反应主要副产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,排入烟囱(有的装置加装GGH换热器加热升温),脱硫石膏浆经脱水装置脱水后回收。由于吸收剂浆液的大量循环利用,脱硫吸收剂的利用率很高。

该工艺适用于任何含硫量的煤种的烟气脱硫,脱硫效率可达到95%以上。石灰

石—石膏湿法脱硫工艺脱硫过程的主要化学反应为:在脱硫吸收塔内烟气中的SO

2

首先被浆液中的水吸收与浆液中的CaCO

3反应生成CaSO

3

,CaSO

3

被鼓入的空气中的

O 2氧化生成CaSO

4

,CaSO

4

在吸收塔浆池中结晶生成石膏CaSO

4

.2H

2

O。

石灰石—石膏湿法脱硫已成为世界商业FGD的主导。奥地利AE&E公司、德

国的鲁奇能源环保公司、Steimuller公司、日本的三菱重工、川崎公司、美国的B&W公司等多家公司开发研究这种工艺,应用脱硫工艺的机组占电站脱硫装机总容量的85%以上,应用的最大单机容量已超过1000MW。

按脱硫副产品---石膏的处置方式划分,一般分抛弃和回收利用两种方法,脱硫石膏处置方式的选择取决于市场对脱硫石膏的需求、脱硫石膏的质量以及是否有足够的堆放场地等因素。抛弃方式,如采用弃置灰场或回填矿坑,以美国为主要代表,抛弃量占据86%;另一种是综合利用方式,德国和日本采用较多,主要用作水泥缓凝剂和建筑材料等,石膏的利用率达90%以上。

目前,石灰石—石膏湿法脱硫工艺在朝向吸收系统大型化、简化设备(如将除尘、脱硫和氧化均置于塔内进行,)节省投资,高效节能的方向发展,例如强化氧化装置,使氧化利用率从15~20%提高到40~50%,在FGD工艺中引入计算机模拟流场分布等,可以根据不同的负荷控制吸收循环浆液等参数,达到最佳的脱硫效果。

1.1.2 喷雾干燥法脱硫工艺

喷雾干燥法脱硫工艺是以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳经由泵打入塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸

收剂与烟气混合接触,与烟气中的SO

2发生化学反应最终生成CaSO

3.·

1/2H

2

O和

CaSO

4·2H

2

O混合物烟气中的SO

2

被脱除,与此同时,吸收剂带入的水分迅速被蒸发

而干燥,烟气温度随之降低。脱硫反应产物及未被利用的吸收剂以干燥的颗粒形式随烟气带出吸收塔,进入除尘器被收集下来,脱硫后的烟气经除尘排放大气。为了提高脱硫吸收剂的利用率,一般将部分脱硫灰加入制浆系统进行再循环利用。

喷雾干燥法脱硫工艺有两种不同的雾化形式可选择:一是旋转喷雾轮雾化,另一种是气液两相流雾化。喷雾干燥法脱硫工艺脱硫的化学反应原理为:

SO

2 + H

2

O → H

2

SO

3

Ca(OH)

2+ H

2

SO

3

→ CaSO

3

+ H

2

O

CaSO

3 (液)→CaSO

3

(固)

(部分)CaSO

3 (液)+ 1/2 O

2

→CaSO

4

CaSO

4 (液)→CaSO

4

(固)

喷雾干燥法脱硫工艺具有技术比较成熟、工艺流程较为简单、系统可靠性高

等特点,脱硫效率可达到85%以上。该工艺在美国及西欧一些国家应用较为广泛,其应用的最大单机容量为520MW,机组燃煤含硫量为1.5%,在欧洲主要应用在小型电厂焚烧垃圾装置,脱硫灰渣可用作制砖、筑路,大多为抛弃至灰场或回填旧矿坑。

1984年,我国在四川内江白马电厂建成了第一套喷雾半干法烟气脱硫小型试验装置,处理烟气量为3400Nm3/h,机组燃煤含硫量为3.5%,试验结果表明,对于高硫烟煤在钙硫比为1.2~1.6时,脱硫效率可达到70~80%。1986年国家环保局将旋转喷雾半干法烟气脱硫技术列入国家“七五”环保重点科技攻关项目,1990年1月,在白马电厂建成了一套中型试验装置,处理处理烟气量为70000Nm3/h,进口SO

2

浓度为3000ppm,经连续运转考核,当钙硫比为1.4时,脱硫效率可达到80%以上。

1.1.3 炉内喷钙加尾部增活化器脱硫工艺(LIFAC)

炉内喷钙加尾部增活化器脱硫工艺是在炉内喷钙脱硫工艺的基础上在锅炉尾部增设了增湿段,以提高脱硫效率。该工艺多以石灰石粉为吸收剂,石灰石粉由气力喷入炉膛850~1150℃温度区,石灰石受热分解为氧化钙和二氧化碳,氧化

钙和烟气中的SO

2

反应生成亚硫酸钙。由于反应在气固两相之间进行,受到传质过程的影响,反应速度较慢,吸收剂利用率较低,在尾部增湿活化反应器内,增湿

水以雾状喷入,与未反应的氧化钙接触生成氢氧化钙,而与烟气中的SO

2

反应,当钙硫比控制在2.5及以上,系统脱硫率可达到65~80%。由于增湿水的加入烟气温度下降,一般控制出口烟气温度高于露点温度10~15℃,增湿水由于烟温加热被迅速蒸发,未反应的吸收剂,反应产物呈干燥态随烟气排出,被除尘器收集下来。

脱硫过程的主要化学为:

第一阶段炉内脱硫:

CaCO

3→CaO+ CO

2

S + O

2 →SO

2

SO

2 + CaO → CaSO

3

第二阶段增湿活化脱硫:

CaO + H

2O → Ca(OH)

2

SO

2 + H

2

O → H

2

SO

3

Ca(OH)

2 + H

2

SO

3

→CaSO

3

+ 2H

2

O

该工艺在芬兰、美国、加拿大、法国等国家得到应用,采用这一脱硫技术的最大单机容量已达300MW,我国已在南京下关电厂、浙江钱清电厂采用了芬兰富腾(Fortum)公司的这种脱硫技术。

1.1.4 循环流化床锅炉脱硫工艺(CFB)

循环流化床锅炉是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃烧煤和石灰石自锅炉燃烧室下部送入,一次风从布风板下送入,二次风从燃烧室中部送入,石灰石受热分解为氧化钙和二氧化碳气流使燃料、石灰石颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO

2

与石灰接触发生化学反应被脱除。为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧室参与循环利用,钙硫比在2左右时,脱硫率可达90%以上,由于燃烧温度控制在850℃左右,循环流化床锅炉还可有效的控制氮氧化物的生成。

循环流化床锅炉脱硫过程主要化学反应如下,反应后的产物为硫酸铝与灰的混合物:

CaCO

3 → CaO+ CO

2

SO

2 + CaO + 1/2O

2

→ CaSO

3

近几年,循环流化床锅炉脱硫工艺在国内外发展较快,已投运的单台循环流

化床锅炉蒸发量440t/h,已在河北石家庄热电厂投运,国内引进300MW级循环流化床示范工程正在四川建设中。

1.1.5海水脱硫工艺

海水脱硫工艺是利用海水的碱度达到脱除烟气中SO

2

的目的的一种脱硫方法。

在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的烟气,烟气中的SO

2

被海水吸收除去,净化后的烟气经除雾器除雾、经烟气加热器(如有)加热后排放,海水吸

收SO

2与海水中的Mg(OH)

2

反应生成MgSO

3

,再经曝气池曝气处理,MgSO

3

被氧化成

MgSO

4

后排入大海。

海水脱硫的主要原理为:

第一步:海水吸收和反应(塔内)

SO

2 + H

2

O → H

2

SO

3

Mg(OH)

2 + H

2

SO

3

→ MgSO

3

+ 2H

2

O

第二步:曝气(曝气池)

MgSO

3+ 1/2O

2

→MgSO

4

从海水脱硫的原理可以看出,海水脱硫工艺十分简单,但是,海水脱硫工艺首先使用于海边、用海水作冷却水、海水的扩散条件好、燃用低硫煤的电厂,由于受地理条件的限制,海水脱硫工艺在电厂烟气脱硫中的所占比例较小,目前,世界上许多国家如印度、西班牙等相继安装了海水脱硫装置,在我国深圳西部电厂安装的一台300MW机组的海水脱硫装置,作为试验示范项目现已投入运行。1.1.6 电子束照射烟气脱硫工艺

电子束照射烟气脱硫(简称EBA)技术是一种物理与化学相结合的新技术,此

工艺是利用电子加速器产生的等离子体氧化烟气中的90%的SO

2和80%NO

x

,并加入

NH

3反应,生成(NH

4

2

SO

4

和NH

4

NO

3

,来实现烟气脱硫脱硝的目的,同时生成的副

产品可以作肥料。

其工艺流程是从锅炉引风机出口引出烟气,进入冷却塔降温、去尘后,进入反应器脱硫。在反应器中,喷入软化水吸收反应产生的热量,同时喷入氨气。在反应器中,反应物被电子加速产生的高能电子速辐照,发生脱硫脱硝反应,反应器出口烟气温度约为60℃,随后经电除尘器将脱硫副产品与烟气分离,脱硫后烟气经脱硫增压风机送入烟囱排放。

电子束干法脱硫工艺原理如下:

A.在辐射场中,被加速的电子与分子/离子发生非弹性碰撞,

或者分子/离子间的碰撞,生成活性集团氧化性物质:

O

2,H

2

O +e → OH, H, H

2

O, O-1 e

B.活性集团与气态污染物发生反应:

对于NO

x NO + O → NO

2

NO

2 + OH → HNO

3

对于SO

2 SO

2

+ OH → HSO

3

SO

2 + O → SO

3

HSO

3 + OH → H

2

SO

4

C.与加入的氨气反应生成溶胶微粒,荷电被捕集

HNO

3 + NH

3

→NH

4

NO

3

H

2SO

4

+ 2NH

3

→(NH

4

2

SO

4

事实上,除了上述一些反应过程外,还存在亚硫酸铵或硫酸氢铵等气溶微粒的形成,以及这些微粒在辐射场中进一步氧化成硫酸铵的反应过程。

1995年,在四川成都热电厂建造了每小时处理300000Nm3烟气量的电子束干法脱硫工业试验示范装置,1997年5月建成,全套装置投运后通过国家鉴定;2001年在杭州协联热电有限公司建成一套电子束脱硫装置,处理烟气量为305400Nm3。

1.1.7 氨法脱硫工艺

氨法脱硫原理是利用氨水吸收烟气中的SO

2

,生成的硫酸铵可用来制作化肥。

具体原理如下:

SO

2 + 2NH

3

·H

2

O →(NH

4

2

SO

3

+ H

2

O

SO

2 + (NH

4

)

2

SO

3

+ H

2

O → 2NH

4

HSO

3

NH

4HSO

3

+ NH

3

·H

2

O →(NH

4

2

SO

3

+ H

2

O

2NH

4HSO

3

+ O

2

+ 2NH

3

·H

2

O → 2(NH

4

2

SO

4

+ H

2

O

HCl + NH

3·H

2

O → NH

4

Cl + H

2

O

使用NH

3吸收烟气中的SO

2

始于70年代的美国,但是由于在吸收过程中,氨蒸

气泄露到烟气中,产生细小的(NH

4)

2

SO

3

、(NH

4

2

SO

3

和NH

4

Cl微粒,形成可视的、

难以除去的烟雾,目前美国、德国已初步解决了这一问题,生产的化肥也能满足化肥规范的标准,该工艺技术受到吸收剂来源和脱硫副产品(液态硫酸铵)处理的限制,需要在附近有大型氨合成工厂和化肥厂结合在一起。

2 岗位范围及任务

2.1岗位范围

从烧结机主抽风机出口烟道原烟气挡板门开始到烧结烟气脱硫塔顶烟囱,界内烟气系统、SO

2

吸收系统、石灰石浆液制备及输送系统、工艺水系统、石膏脱水系统、事故浆液排空系统、压缩空气系统、废水处理系统、在线监控系统等烟气脱硫全部设施的操作、维护、巡检等工作。

2.2岗位任务

2.2.1保障脱硫后烟气各项排放浓度达到设计指标。 2.2.2确保脱硫系统安全稳定、高效低耗运行。 2.2.3获得品质合格的石膏副产物。 2.2.4脱硫废水合格排放。

3 石灰石-石膏法脱硫反应原理

烟气中SO 2的去除在吸收塔内进行,吸收塔内发生的主要化学反应过程如下: (1) SO 2的吸收:

含有SO 2的烟气与喷嘴喷出的石灰石浆液在吸收塔内接触, SO 2大部分被石灰石浆液吸收,反应如下:

-

+-

-

++?→←+?→←?→←+23

33323222)()()(SO H HSO HSO H l SO H l SO H O H g SO

(2) 石灰石的溶解:

加入石灰石,一方面可以消耗溶液中的氢离子,另一方面提供了生成石膏所需的钙离子,石灰石的消溶反应如下:

)

()()

()(2223

23333g CO O H SO Ca HSO H l CaCO l CaCO s CaCO +++?→?++?→?-

+-

+

(3) 氧化反应:

工艺上采用向反应区鼓入空气以提高浆液中氧浓度的方法,使可溶性亚硫酸盐和亚硫酸氢盐几乎完全氧化成硫酸盐,来提高石膏的质量。

+-

---

+?→?+?→?+H SO O HSO SO O SO 24

2324

2232/12/1

(4) 石膏的结晶:

形成硫酸盐之后,吸收SO2的反应进入最后阶段,即生成石膏CaSO 4·2H 2O 结晶,并从溶液中析出。

)(2224224

2s O H CaSO O H SO Ca ??→?++-

-

此外,还发生以下副反应:

)(2/12/1232232s O H CaSO O H SO Ca ??→?++-

-

石膏中CaSO 3·1/2H 2O 的含量大小与氧化是否充分有关,氧化越充分,其含

量越低,石膏纯度越高。

上述反应中第一步是较关键的一步,即S0

2被浆液中的水吸收。根据S0

2

的化

学特性,S0

2

在水中能发生电离反应,易于被水吸收,只要有足够的水,就能将烟

气中绝大部分S0

2

吸收下来。

但随着浆液中HSO

3-和SO

3

2-离子数量的增加,浆液的吸收能力不断下降,直

至完全消失。因此要保证系统良好的吸收效率,不光要有充分的浆液量和充分的气液接触面积,还要保证浆液的不断的更新。上述反应中第二和三步其实是更深

一步的反应过程,目的就是在于不断地去掉浆液中的HSO

3-和SO

3

2-离子,以保持浆

液有充分的吸收能力,以推动第一步反应的持续进行。

4 分系统工艺描述及主要设备

4.1 石灰石浆液制备及输送系统

4.1.1 工艺描述

本工程脱硫剂采用5~20mm的石灰石块,由卡车卸入卸料斗,再经振动给料机送至斗式提升机,然后进入石灰石料仓,再经皮带称重给料机送至湿式球磨机内,同时向球磨机添加适量的工艺水或滤液,石灰石经过湿式球磨机内钢球的强力研磨和出口滤网过滤后,浆液自流至石灰石浆液循环箱,然后再由石灰石浆液循环泵送至石灰石浆液旋流器进行分离。旋流器底流进入湿式球磨机入口进行重磨,而旋流器溢流部分为合格的石灰石浆液,通过浆液分配器自流入石灰石浆液箱或进行再循环。

4.1.2 主要设备

石灰石制浆及输送系统主要包括卸料斗、斗式提升机、石灰石料仓,皮带秤给料机、湿式球磨机、石灰石浆液旋流器、石灰石浆液箱、石灰石浆液输送泵等设备。

(1)卸料斗

卸料斗起石灰石卸料过程中临时存储的作用。石灰石块由自卸卡车送入钢制卸料斗,料斗上部有钢蓖,防止大粒径的石灰石进入。卸料斗呈方锥形,下部出口装有拉杆阀门,控制下料的速度,

(2)斗式提升机

斗提机系采用板式套筒滚子链为牵引构件,料斗固定在链板上并连续布置,

采用流入式喂料,物料流入料斗内靠板链提升到顶端,在物料重力作用下自行卸料。

(3)石灰石料仓

石灰石料仓底部成锥形。料仓的顶部设有密封的人孔。料仓顶部设有布袋除尘器,布袋鼓吹气体为压缩空气,料仓上配有用来测量物料高度的料位计,同时也用于远程指示。

(4)皮带秤给料机

电子皮带秤称重桥架安装于输送机架上,当物料经过时,计量托辊检测到皮带机上的物料重量通过杠杆作用于称重传感器,产生一个正比于皮带载荷的电压信号。在皮带秤上有一个称重传感器装在称重桥架上,工作时,将检测到皮带上的物料重量送入称重仪表,同时由测速传感器测得皮带输送机的速度信号也送入称重仪表,仪表将速度信号与称重信号进行积分处理,得到瞬时流量及累计量,并分别显示出来。

给料机包括皮带调节的螺旋拉紧装置,导向轮和皮带清扫装置等。皮带秤给料机配有就地称重控制箱,具有瞬时流量指示、累计流量指示功能。

(5)湿式球磨机

石灰石湿式球磨机系采用中心传动的球磨机,利用旋转的滚筒带动筒内钢球运动,通过钢球对石灰石块的撞击、挤压、研磨,实现石灰石块的破碎并且磨制成细小粉末。球磨机筒内衬有阶梯衬板,内装一定数量直径30—60mm 的钢球(其中中球50%、大、小球各25%)和被磨物料及适量的水。电动机经过变速箱带动圆筒产生旋转运动,研磨体在离心力的作用下,贴在筒体内壁与筒体一起旋转上升,当研磨体被带到一定高度时,由于受到重力作用而被抛出,并以一定的速度下落,通过钢球对石灰石块的撞击以及钢球之间、钢球与衬板之间的研压,把石灰石磨碎,和水搅拌、混合成浆液。

(6)石灰石浆液旋流器

水力旋流器作为一种常见的分离分级设备,其工作原理是离心沉降。当石灰石浆液以一定压力沿切线方向进入旋流器内,浆液遇到器壁后被迫作回转运动,而固体颗粒则依原有的直线运动的惯性继续向前运动。粗颗粒惯性力大,能够克服水力阻力靠近器壁,而细小颗粒惯性力较小,未及靠近器壁即随浆液作回转运

行。在后续给料的推动下,浆液继续向下和回转运动,固体颗粒相应产生惯性离心力,于是粗颗粒继续向周边浓集,而细小颗粒则停留在中心区域,这样就产生了粗细颗粒由器壁向中心的分层排列。随着浆液从旋流器的柱体部分流向椎体部分,流动断面越来越小,在外层浆液收缩压迫之下,内层浆液不得不改变方向,转而向上流动。于是在旋流器内形成了两组旋流器:外层向下的旋转流和内层向上的旋转流。即大部分粗颗粒经旋流器底流口排出,回到球磨机重新研磨,而大部分细颗粒由溢流管排出,制得的合格石灰石浆液进入浆液箱。

石灰石浆液旋流器是一个带有圆柱部分的锥形容器。锥体上部内圆锥部分叫液腔。圆锥体外侧有一进液管,以切线方向和液腔连通。容器的顶部是溢流口,底部是底流口(也叫排料口)。

(7)石灰石浆液箱

石灰石浆液箱用于贮存球磨机制得的30%浓度的合格石灰石浆液。为防止浆液沉淀,石灰石浆液箱设搅拌器一台。

(8)石灰石浆液输送泵

石灰石浆液输送泵为离心泵,将浆液箱内合格的石灰石浆液输送至吸收塔,每套装置各设2台石灰石浆液给料泵,一运一备。

4.2 烟气系统

4.2.1 工艺描述

180℃以下的原烟气自烧结引风机出来,通过原烟气挡板门经离心增压风机增压后进入吸收塔,原烟气在吸收塔内与浆液逆流接触而被冷却、饱和,其中的SO

2被吸收。经过喷淋洗涤和除去雾滴的净烟气由吸收塔顶烟囱排出。

烟气也可通过旁路挡板门经旁路烟道直接排至烟囱。

4.2.2 主要设备

烟气系统主要设备包括:增压风机、烟气挡板、挡板门密封系统等。

(1)增压风机

增压风机用于烟气提压,以克服FGD系统烟气所受阻力。

增压风机采用双吸单出离心风机。离心风机工作原理:依靠机壳内高速旋转的叶轮,使离心式风机内气体受到叶片的作用而产生离心力,将外部气体吸入旋

转叶轮的中心处,在离开叶轮叶片时,气体流速增大,使气体在流动中把动能转换为静压能,从而使气体增压。

(2)烟气挡板

每套FGD系统均设有原烟气和旁路两块烟气挡板门。烟气挡板门为单轴双百叶结构,执行机构采用电动机驱动,旁路挡板门具有快开功能。

(3)挡板密封系统

所有挡板都配有密封空气系统,挡板处于关闭位置时,联动打开密封空气阀门,密封空气进入挡板门叶片间,在挡板内形成正压以阻断挡板两侧烟气流通。挡板开启时,会联动关闭密封空气阀。

挡板密封空气系统包括2台密封空气风机和一台电加热器。密封空气压力维持比烟气最高压力高500pa。为防止烟气挡板门变形及结露腐蚀,密封空气需经电加热器加热,温度控制至70℃以上。

4.3 吸收塔系统

4.3.1 工艺描述

由引风机来的热烟气经增压风机增压后,进入吸收塔喷淋进行脱硫。在吸收塔内,烟气与石灰石浆液逆流接触,被冷却到绝热饱和温度,烟气中的SO2和SO3与浆液中的石灰石反应,形成亚硫酸钙和硫酸钙,烟气中的HCl、HF也与浆液中的石灰石反应而被吸收。脱硫后的饱和烟气温度约50℃,经吸收塔顶部除雾器除去夹带的雾滴后排入塔顶烟囱。氧化空气风机将空气鼓入吸收塔浆池,将亚硫酸钙氧化成硫酸钙,过饱和的硫酸钙溶液结晶生成石膏(CaSO4·2H2O)。产生的石膏浆液通过石膏浆液排出泵抽出送至石膏水力旋流器进行一级脱水,浓缩后的石膏浆液进入真空皮带脱水机进行二级脱水,得到合格的石膏产物。

4.3.2 主要设备

(1)吸收塔

吸收塔为圆柱形空塔,塔的下部为浆液池,设三个侧进式搅拌器。氧化空气由三根矛式喷射管送至浆池的下部,每根矛状管的出口靠近搅拌器位置。烟气进口上方的吸收塔中上部区域为喷淋区,喷淋区设三个喷淋层,喷淋层上方为除雾器,共二级。

常用脱硫技术

常用脱硫技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

(一)湿法脱硫技术 1)、石灰石-石膏湿法 采用石灰石或石灰作为脱硫吸收剂。吸收塔内吸收浆液与烟气接触混合,烟气中二氧化硫与吸收浆液中碳酸钙以及鼓入的氧化空气发生反应,最终反应产物为石膏。脱硫后的烟气经除雾器排入烟囱。脱硫石膏浆经脱水装置脱水后回收。吸收浆液可循环利用。工艺流程 湿法脱硫工艺系统主要有:烟气系统、吸收氧化系统、浆液制备系统、石膏脱水系统、排放系统组成。工艺流程如下: 烟气经降温后进入吸收塔,吸收塔内烟气向上流动且被向下流动的循环浆液与逆流方式洗涤,循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可是气体和液体得以充分接触,以便脱除SO2、SO3、HCL和HF,最终被空气氧化为石膏 (CaSO4.2H2O)。

经过净化处理的烟气经除雾器去除清洁烟气中携带的浆液后进入烟囱排向大气。同时按特定程序不时用工艺水对除雾器进行冲洗(两个目的:一、防止除雾器堵塞,二、作为补充水稳定吸收塔液位)。 石灰石与二氧化硫反应生成的石膏通过石膏浆液泵排出,进入石膏脱水系统。 脱硫过程反应 SO2 + H2O → H2SO3吸收 CaCO3 + H2SO3→ CaSO3 + CO2 + H2O 中和 CaSO3 + 1/2 O2→ CaSO4氧化 CaSO3 + 1/2 H2O → CaSO3?1/2H2O 结晶 CaSO4 + 2H2O → CaSO4?2H2O 结晶 CaSO3 + H2SO3→Ca(HSO3)2 pH 控制 烟气中的HCL、HF和CaCO3反应生成CaCl2和CaF2,吸收塔中pH 值大小通过石灰石浆液进行调节与控制,pH值在5.5~6.2 脱硫效率控制的主要方法 1、控制吸收塔浆液的pH值(新石灰石浆液的投加) 2、增加烟气在吸收塔内部的停留时间 3、控制石膏晶体 技术特点 1、技术成熟,设备运行可靠性高; 2、适用于任何含硫量的烟气脱硫; 3、设备布置紧凑减少场地需求; 4、吸收剂资源丰富,价廉易得; 5、脱硫副产物便于综合利用,经济效益显著。

腐植酸复混肥的生产工艺与技术及工艺流程图

腐植酸复混肥的生产工艺与技术 随着腐植酸机理研究的不断深化, 我国腐植酸肥料的研制开发及其在农业上的应用有了新的进展。现从腐植酸复混肥的性能、作用、机理、生产工艺特点及农田效果等方面进行探讨与分析, 以推动腐植酸复混肥料在农业上的迅速推广应用。 1 腐植酸的性能 腐植酸是一种化学结构相当复杂的胶体无定型高分子有机化合物, 它是由几个相似的结构单元所形成的大分子复合体, 每个单元又以芳香族聚合物为核, 在核的外面带有羧基、酚羟基、羰基、甲氧基等活性基团。这些活性基团使腐植酸具有酸性、亲水性、较强的离子交换能力和吸附能力, 能与 K+、Na+、Ca2+、 M g2+、Fe3+、Al3+和 NH4 +形成腐植酸盐, 并能与某些金属离子生成络合物或螯合物。腐植酸由很多极小的球形微粒积聚而成, 表面大, 其阳离子交换量比矿质胶体大 10~20 倍。 腐植酸可与碱成盐, 其 1 价盐如 NH4+、Na+、K+盐为水溶性, 2 价盐如 Ca2+、Mg 2+盐和 3 价盐如 Fe3+、Al3+盐均不溶于水。 腐植酸具有胶体性质, 在水溶液中呈现出疏松的结构, 加入电解质后会破坏腐植酸胶体溶液的稳定性, 使其凝聚成絮状沉淀。腐植酸的热稳定性差, 在高温下很容易脱羧基、酚羟基而发生裂解, 以致失去原有的活性。 腐植酸具有良好的生理活性, 其分子中所含的多酚基结构参与

了植物体的氧化还原过程, 有活化生物体多种酶的活性, 促进细胞分裂, 加速作物生长点分化及增强根系发育, 刺激作物生长的作用。它还能抑制土壤中脲酶和硝化菌的活性, 增强作物对养分的吸收, 提高化肥利用率。 腐植酸存在于泥炭、褐煤和风化煤中, 其总含量一般为 30% ~50% 。目前统称的腐植酸由胡敏酸( 黑腐酸和棕腐酸) 和富里酸组成, 富里酸又称黄腐酸, 含量少。由于原生植物、地质年代所经历的变化和环境不同, 其腐植酸含量、成分、结构有很大差异, 直接影响到腐植酸产品的质量和应用效果。一般来讲, 活性基团的含量越高, 调剂肥料中养分释放和供给能力越强。 腐植酸在农业上的应用, 则表现出具有 5 大作用, 即: 改良土壤; 增强化肥效能; 刺激作物生长; 改善作物品质; 增强作物抗逆能力。 我国蕴藏着上千亿吨的腐植酸资源, 为发展腐植酸复混肥提供了可靠的物质基础。 2 腐植酸对氮肥分解的抑制机理 2·1腐植酸的脲酶抑制和硝化抑制机理 多元复混肥, 其氮源多采用尿素为原料。 ( 1) 酰胺水解作用 尿素进入土壤后, 在土壤脲酶作用下, 很快发生水解而生成氨。水解后的氨, 一方面与土壤中的水发生水合反应而形成 NH4 + , 使其存在于土壤中供作物吸收利用; 另一方面可进入大气而损失。其化学

动力波烟气脱硫工艺(湿法)

动力波烟气脱硫工艺(湿法) 现有的湿法烟气脱硫工艺均为外置塔体式,即在锅炉后部的烟道上加装脱硫塔,经过碱液在塔体内部对烟气的的喷淋、洗涤达到脱除烟气中二氧化硫的目的。一般塔体高度约8m以上,甚至更高(此高度为保证烟气在塔内的停留时间)。 其缺点: 1、浪费材料:由于锅炉烟气温度过高,加上二氧化硫具有强烈的腐蚀作用,所以在塔体的结构、强度方面要求都比较高,一般外塔体用碳钢或用麻石砌筑用以增加强度,内衬防腐材料用以防腐。 2、一次性投资高:单独设立塔体,要延长烟道,一次性投资费用高。 3、运行不可靠:传统的湿法脱硫工艺,采用的是塔体内喷淋工艺,即通过高压水泵将碱液输送到塔体内,通过喷嘴的雾化,使液滴与烟气中的二氧化硫接触达到脱硫的目的,为保证脱硫效果、保证碱液与二氧化硫气体的充分接触,就需要碱液的雾化程度很高,这样对喷嘴的要求就高,喷嘴使用寿命短。喷嘴一旦损坏,维修不方便。 4、运行液气比大,脱硫效率低:由于采用喷淋吸收,为保证烟气和碱液的充分接触,必须大量的碱液,液气比通常为1.5—2,脱硫效率最高达80%。 5、系统阻力大,运行费用高:由于单独设立塔体,增加、改动

烟道,增加脱水器,造成系统阻力增大,影响锅炉出力,同时高效雾化也需要高压泵的运行功率增大,所以运行费用就增大。 6、管路结垢严重,影响系统运行:由于脱硫液采用石灰水,所以在运行过程中会产生硫酸钙附着在管路和喷嘴内部,导致管路堵塞,影响系统运行。 动力波烟气湿法脱硫塔 动力波脱硫塔是通过设计适当的洗涤器喉管,来控制烟气在管内的速度,使烟气与碱液在喉管内形成一个泡沫区,在泡沫区内气液充分接触,强烈的湍动使混合强化并使接触面更新,从而获得极高的反应效率。动力波洗涤器不需要碱液的雾化程度过高,而靠洗涤器内部形成的湍流达到气、液的充分接触,这样就减少了喷嘴的堵塞了影响脱硫效果,同时也减少碱液泵的运行功率。烟气在动力波洗涤器喉管内流速设计为25—30米/秒。动力波洗涤塔长度为6---8m,其中湍动区长度为2.5m。 动力波脱硫塔根据现场需要,可水平安装,也可竖直安装,作为烟道的一部分,直径仅为烟道的1.3倍。 循环液: 循环液采用“双碱流程”工艺,主要是是为了克服循环液系统容易结垢的弱点和提高SO2的去除率。 系统运行前,将循环池中灌满一定浓度的NaOH和Ca(OH)2溶液,系统运行时,烟气中的SO2与循环液中的Ca2+和OH-反应,生成 Ca(SO4)2和水,其中硫酸钙沉淀在循环池中,可定期打捞,只有OH-

烟气脱硫基本原理及方法

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。

目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

氨法脱硫工艺

氨法脱硫 氨法脱硫工艺是用氨水吸收SO2的成熟的脱硫工艺。不同的氨法工艺,区别仅在于从吸收溶液中除去二氧化硫的方法。不同的方法可获得不同的产品。 氨法工艺主要有氨-硫酸铵法、氨-亚硫酸氢铵法、氨-酸法和氨-石膏法。 氨-硫酸铵法 一、工艺原理: 该工艺利用氨液吸收烟气中的SO2生成亚硫酸铵溶液,并在富氧条件下将亚硫酸氨氧化成硫酸铵,再经加热蒸发结晶析出硫酸铵,过滤干燥后得化肥产品。主要包括吸收过程、氧化过程和结晶过程。 (1)吸收过程 在脱硫塔中,氨和SO2在液态环境中以离子形式反应: 2NH3+H2O+SO2 → (NH4)2SO3 (NH4)2SO3+H2O+SO2 → 2NH4HSO3

随着吸收进程的持续,溶液中的NH4HSO3会逐渐增多,而NH4HSO3已不具备对SO2的吸收能力,应及时补充氨水维持吸收浓度。 (2)氧化过程 氧化过程主要是利用空气生成(NH4)2SO4的过程: (NH4)2SO3+O2 → (NH4)2SO4 NH4HSO3 +O2 →NH4HSO4 NH4HSO4 +NH3 → (NH4)2SO4 (3)结晶过程 氧化后的(NH4)2SO4经加热蒸发,形成过饱和溶液,(NH4)2SO4从溶液中结晶析出,过滤干燥后得到化肥产品硫酸铵。 二、工艺流程

三、运行参数对脱硫效率的影响 (1)氨水量;(2)氨水浓度;(3)反应温度。 四、值得注意的问题 氨-硫酸铵法脱硫工艺存在的主要问题是存在二次污染的隐患,净化后的烟气含有微量的NH3和亚硫酸铵、硫酸铵气溶胶。 氨法脱硫中的氨损失主要包括液氨蒸气损失和脱硫塔雾沫夹带损失两部分。亚硫酸铵、硫酸铵气溶胶一旦形成,很难去除。所以国外公司(如美国GE公司等)在脱硫塔出口设置电除雾器,以消除逃逸的氨损耗和亚硫氨气溶胶。 本公司采用独特的MW微雾净化系统可高效去除逃逸的氨损耗和亚硫氨气溶胶。

烟气脱硫之氨法烟气脱硫技术

烟气脱硫之氨法烟气脱硫技术 氨回收法符合世界FGD发展趋势 氨法脱硫技术在化学工业领域应用普遍,用氨吸收硫酸生产尾气中的SO2, 生产亚硫铵和硫铵。 80-90年代,在我国硫酸和磷肥厂,具有氨法脱硫装置高达100余套。 美国和德国的脱硫石膏已成为一个突出的环境问题,正着力研究转化为硫铵的技术。 据不完全统计,全世界目前使用氨法脱硫的机组大约在10000MW · 专家论点 美国Ellison 咨询公司:采用硫铵过程,烟气脱硫可以实现自负盈亏。 美国John Brown工程师和建筑师有限公司:通过大量、高价值的副产品生产,烟气脱硫可以获得卓越的投资效益。 美国GE公司:氨法烟气脱硫时代已经到来了。 Krupp公司:经过二十多年一步一步地漫长的发展,如今,氨法已进入工业化应用阶段。 ·氨法特点 氨法是高效、低耗能的湿法。氨法是气液相反应,反应速率快,吸收剂利用率高,能保持脱硫效率95-99%. 氨在水中的溶解度超过20%.氨法具有丰富的原料。氨法以氨为原料,其形式可以是液氨、氨水和碳铵。目前我国火电厂年排放二氧化硫约1000万吨,即使全部采用氨法脱硫,用氨量不超过500万吨/年,供应完全有保证。 氨法的最大特点是 SO2的可资源化,可将污染物SO2回收成为高附加值的商品化产品。副产品硫铵是一种性能优良的氮肥,在我国具有很好的市场前景。

江南氨回收法是湿式氨法的一种。1995年氨法技术作为国家重点科技攻关项目列入"十五"863计划;1998年公司成立了专门的环保研究所进行技术攻关;2000年我们研制的第1台简易氨法脱硫装置通过江苏省科技成果鉴定。此后公司通过与多家科研院校的密切合作,在简易氨法的基础上逐步发展成现在的氨回收法,并在天津碱厂、云南解化、亚能天元等项目上成功运行1年以上,各项指标均达到了预期效果。 · 技术特点 1、完全资源化--变废为宝、化害为利 江南氨回收法技术将回收的二氧化硫、氨全部转化为化肥,不产生任何废水、废液和废渣,没有二次污染,是一项真正意义上的将污染物全部资源化,符合循环经济要求的脱硫技术。 2、脱硫副产物价值高 江南氨回收法脱硫装置的运行过程即是硫酸铵的生产过程,每吸收1吨液氨可脱除2吨二氧化硫,生产4吨硫酸铵,按照常规价格液氨2000元/吨、硫酸铵700元/吨,则烟气中每吨二氧化硫体现了约400元的价值。因此相对运行费用小,并且煤中含硫量愈高,运行费用愈低。企业可利用价格低廉的高硫煤,同时大幅度降低燃料成本和脱硫费用,一举两得。 3、装置阻力小,节省运行电耗 利用氨法脱硫的高活性,使液气比较常规湿法脱硫技术降低。脱硫塔的阻力仅为850Pa左右,无加热装置时包括烟道等阻力脱硫岛总阻力在1000Pa左右;配蒸汽加热器时脱硫岛的总设计阻力也只有1250Pa左右。因此,氨法脱硫装置可以利用原锅炉引风机的潜力,大多无需新配增压风机;即便原风机无潜力,也可适当进行风机改造或增加小压头的风机即可。系统阻力较常规脱硫技术节电50%以上。另外,循环泵的功耗降低了近70%. 4、防腐先进、运行可靠

至万吨有机肥生产的工艺流程

1至5万吨有机肥生产的工艺流程加工有机肥原料如下: 1、农业废弃物:比如秸秆、豆粕、棉粕等。 2、畜禽粪便:比如鸡粪、牛羊马粪、兔粪; 3、工业废弃物:比如酒糟、醋糟、木薯渣、糖渣、糠醛渣等; 4、生活垃圾:比如餐厨垃圾等; 5、污泥; 有机肥原料发酵工艺: 机肥全套生产线产品是以鲜鸡粪、猪粪,秸秆,污泥等为主要原料制造成有机肥料,不含任何化学成份。那么该如何操作有机肥生产线生产肥料呢? 下面为大家介绍有机肥生产线 一、设施:地面堆放 二、设备:铁锹、粪钩、脸盆、称等。 三、操作方法 1、准备工作:将需处理的畜禽粪便(含水量在70%左右)称量分份。准备BM菌剂。 2、生产工艺 (1)将畜禽粪便和BM菌种按1:10000的重量比例进行混合,然后进行搅拌,搅拌2-3遍即可。 (2)搅拌好的发酵物水份应控制在55%-60%,达到手握成团,松手既散的效果即可。 (3)把搅拌好的发酵物堆放到平地上面,高度不小于1m,宽度不小于1.5m。长度不限。 (4)发酵24-48小时,温度可过到55℃以上,最高达70℃以上,三天可达到除臭效果。 (5)堆放发酵10—15天后达到无公害和国家有机肥规范,可作基肥和专用肥使用。 步骤一:拌匀发酵剂。 1~1.5吨干鸡粪(鲜鸡粪约2.5~3.5吨)加一公斤鸡粪发酵剂,每公斤的发酵剂平均加5~10公斤M糠或玉M、麸皮,搅拌均匀后撒入已准备好的物料中,效果最佳。 步骤二:调剂碳氮比。发酵肥料的碳氮比应保持在25~30:1,酸碱度调到6~8(ph)为宜,因鸡粪的碳氮比偏高,应在发酵时加入一些秸秆、稻草、蘑菇渣等一起发酵。 步骤三:调节鸡粪水分。发酵有机肥料的过程中,水分含量是否适宜非常重要的,不能太高,也不能太低,应保持在60~65%,判断方法:手紧抓一把物料,指缝见水印但不滴水,落地能散开为宜。 步骤四:鸡粪建堆。在做发酵堆时不能做的太小太矮,太小会影响发酵,高度一般在1.5M左右,宽度2M左右,长度在2~4M以上的堆发酵效果较好。 步骤五:拌匀通气。发酵助剂是耗氧性微生物,所以在发酵过程中应加大供氧措施,做到拌匀、勤翻、通气为宜,否则会因为厌氧发酵影响物料发酵效果。 步骤六: 发酵完成。一般在鸡粪堆积48小时后,温度会升至50~60℃,第三天可达65℃以上,在此高温下翻倒一次,一般情况下,在发酵过程中会出现2~3次65℃以上的高温,翻倒2~3次即可完成发酵,正常一周左右可发酵完成,使物料彻底脱臭、发酵腐熟,灭菌杀虫。鸡粪发酵有机肥技术鸡粪经鸡粪发酵剂发酵之后,肥效更好,使用更安全方便,还可提高化肥利用率等。不仅鸡粪可以发酵有机肥,各种动物粪便、秸秆、落叶垃圾、树皮、锯末等均可发酵有机肥,发酵方法基本一样。最后还要提醒大家,无论用什么物料发酵有机肥,都要把握好水分含量,否则会功亏一篑。 5万吨有机肥生产工艺: 1、生产工艺发酵池投放发酵物--均匀撒入菌剂--翻堆发酵--发酵12-15天--出池--分筛--粉碎--予混--(造粒)--烘干--冷却--筛分--包装--出售. 2、生产设备工艺流程 1)、槽式翻堆机采用槽式生物发酵,根据您的生产规模需建9M宽45M长发酵槽三条,将发酵物连续投入发酵池中,每天利用翻堆机向发酵槽另一端移位三M,同时能够起到水分调节和搅拌均匀目的,

烟气脱硫基本原理及方法

烟气脱硫基本原理及方 法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。 目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中

用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关, 2又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, -,它们与溶解了的CaCO和SOHSO的反应3、气液界面处:参加反应的主要是323是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO在气流中的扩散,2 2、扩散通过气膜 3、 SO被水吸收,由气态转入溶液态,生成水化合物2 4、 SO水化合物和离子在液膜中扩散2 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO水化合物与溶解的石灰石粉发生反应)2 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO的物理、化学性质:无色有刺激性气味的有毒气体。密度比2 空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能溶解40体积的二氧化硫,成弱酸性。SO为酸性氧化物,具有酸性氧化物的通性、2 还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原2剂。 ②. 三氧化硫SO的物理、化学性质:由二氧化硫SO催化氧化而得,无色易挥23发晶体,熔点16.8℃,沸点44.8℃。SO为酸性氧化物,SO极易溶于水,溶于33水生成硫酸HSO,同时放出大量的热,42③. 硫酸HSO的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点423,浓硫酸溶于水会放出大量的热,密度为1.84g/cm具有10.4℃,沸点338℃,为强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO被液相吸收的反应:SO经扩散作用从气相溶入液相中与水生成亚硫 22-+,当PHH 亚硫酸迅速离解成亚硫酸氢根离子HSO值较高时,和氢离子酸HSO3232-,要使SO吸收不断进行下去,必须中和HSO二级电离才会生成较高浓度的SO233++当,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子电离产生的HH 吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸度迅速提高,PH值迅速下降,当SO溶解达到饱和后,SO的吸收就告停止,脱22硫效率迅速下降

国内几种常用脱硫工艺比较

国内几种常用烟气脱硫工艺比较 1 概述 燃煤锅炉烟气脱硫是我国现阶段污染控制的重点,脱硫工艺的选择有诸多影响因素,国家也多次出台相关政策提出指导意见,指导业主从投资、占地、系统可利用率、运行可靠性以及运行成本等方面做出合理选择。 以下将对国内几种常用脱硫工艺从投资、占地、系统可利用率、运行可靠性以及运行成本等方面做出比较,利于业主结合自身实际选择经济适用、性能优越的脱硫技术。 2 国内几种常用脱硫工艺 2.1国内烟气脱硫技术现状 世界各国研究开发和商业应用的烟气脱硫技术估计超过200种。按脱硫产物是否回收,烟气脱硫可分为抛弃法和再生回收法,前者脱硫混合物直接排放,后者将脱硫副产物以硫酸或硫磺等形式回收。按脱硫产物的干湿形态,烟气脱硫又可分为湿法、半干法和干法工艺。我国电力部门在七十年代就开始在电厂进行烟气脱硫的研究工作,先后进行了亚钠循环法(W-L法)、含碘活性炭吸咐法、石灰石-石膏法等半工业性试验或现场中间试验研究工作。进入八十年代以来,在引进吸收消化国外技术的同时,开展了一些较大规模的烟气脱硫研究开发工作,并自主开发了适合中国国情的烟气脱硫技术。

2.1.1湿法烟气脱硫工艺 湿法烟气脱硫工艺绝大多数采用碱性浆液或溶液作吸收剂,其中石灰石(石灰)-石膏法是目前使用最广泛的脱硫技术。该工艺是用石灰石或石灰为吸收剂的强制氧化湿式脱硫方式。石灰石或石灰洗涤剂与烟气中SO2反应,反应产物硫酸钙在洗涤液中沉淀下来,经分离后即可抛弃,也可以石膏形式回收。目前的系统大多数采用了大处理量洗涤塔,从而节省了投资和运行费用。系统的运行可靠性已达99%以上,通过添加有机酸可使脱硫效率提高到95%以上。 下图是重庆珞璜电厂首次引进了日本三菱公司的石灰石—石膏湿法脱硫工艺流程图: 石灰石—石膏法工艺流程图

湿法烟气脱硫的原理

湿法烟气脱硫的原理 湿法烟气脱硫的原理 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理 气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。 物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。 (2)化学吸收法的基本原理 若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。 在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。 物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中大量采用化学吸收法。用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。 (3)化学吸收的过程 化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。被吸收气体中的

烟气脱硫技术方案

烟气脱硫工程设计方案 二〇〇九年七月

目录 第一章概述 (1) 1.1 设计依据 (1) 1.2 设计参数 (1) 1.3 设计指标 (1) 1.4 设计原则 (1) 1.5 设计范围 (2) 1.6 技术标准及规范 (2) 第二章脱硫工艺概述 (4) 2.1 脱硫技术现状 (4) 2.2 工艺选择 (5) 2.3 本技术工艺的主要优点 (9) 2.4 物料消耗 (10) 第三章脱硫工程内容 (13) 3.1 脱硫剂制备系统 (12) 3.2 烟气系统 (12) 3.3 SO 吸收系统 (13) 2 3.4 脱硫液循环和脱硫渣处理系统 (15) 3.5 消防及给水部分 (17) 3.6 浆液管道布置及配管 (17) 3.7 电气系统 (17) 3.8 工程主要设备投资估算及构筑物 (18) 第四章项目实施及进度安排 (19) 4.1 项目实施条件 (19) 4.2 项目协作 (19) 4.3 项目实施进度安排 (19) 第五章效益评估和投资收益 (20)

5.1 运行费用估算统 (21) 5.2 经济效益评估 (21) 5.3 环境效益及社会效益 (21) 第六章结论 (22) 6.1 主要技术经济指标总汇 (22) 6.2 结论 (22) 第七章售后服务 (23) 附图1 脱硫系统工艺流程图24

第一章概述 1.1设计依据 根据厂方提供的有关技术资料及要求为参考依据,并严格按照所有相关的设计规范与标准,编制本方案: §《锅炉大气污染物排放标准》GB13271-2001; §厂方提供的招标技术文件; §国家相关标准与规范。 1.2设计参数 本工程的设计参数,主要依据招标文件中的具体参数,其具体参数见表1-1。 表1-1 烟气参数 1.3设计指标 设计指标严格按照国家统一标准治理标准和业主的招标文件的要求,设计参数下表1-2。 表1-2 设计指标 1.4设计原则 §认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标准。 §选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用。

氨法脱硫工艺

氨法脱硫工艺流程 随着国家环保政策要求越来越严格,SO2排放指标越来越低,新的排放标准为400mg/mm3,这么低的排放指标,对每一个企业来说不采用高效脱硫设备是很难达到这个指标的,气动浮化脱硫塔具有占地面积少、耐磨耐腐蚀、脱硫效率高、低阻力降等许多优点被国内外许多家企业首选的脱硫设备。脱硫方法国内外有成百上千种,但国内采用最多最实用的方法仍为钙法、钠法和氨法,钙法因需投资庞大的处理系统和堆渣场地、产生新的固废,不能为企业创造利润被越来越少的企业采用;钠法因投资太大,往往投入多回报少也不被大多数企业看中;氨法具有吸收高、投资少、见效快诸多优点被广泛采用。 氨法脱硫的工艺原理是:液氨首先经蒸发变成气氨,氨气与水生成氨水,氨水与烟气中的SO2结合生成亚硫氢铵,亚硫氢铵溶液继续与NH3反映生成亚硫酸铵,不断地通入氨,不断地吸收SO2循环往复,当溶液达到一定的浓度时候,将浓溶液移入中和槽,通氨中和,等反映完全,离心分离亚铵产品。 主要反映的化学方程式: NH3+H2O→NH3·H2O+Q NH3·H2O+ SO2→NH4HSO3+Q NH4HSO3+ NH3→(NH4)2SO3+Q (NH4)2SO3+ SO2→NH4HSO3+Q

分为以下几个系统: 一、氨蒸发系统 液氨由储罐出来经蒸发变为气氨,气氨进入储罐,供中和吸收系统使用。 二、吸收系统 烟气进入吸收塔,经过下部喷淋的含氨母液和浮化层含氨母液充分吸收,反应后,达标排放,母液循环使用,氨气通过控制加入,母液循环到一定浓度,部分移入高倍中和槽,循环槽补充低浓度母液或清水继续吸收。 三、中和系统 母液打入中和槽后,根据比重、母液温度情况决定何时通氨,通氨前将冷却系逐步加大,母液温度适合时通氨,通入氨后定时测PH值和中和温度。根据中和温度控制通氨量,达到终点后,待溶液温度降下后通知包装工离料出产品,并取样,交化验进行质量检定。 四、循环水系统 因为母液吸收和中和过程均有热量,为了移走热量,在循环槽内和中和槽内均加装冷却管束,用循环水移走多余热量,热水经冷却塔降温后循环使用。

有机肥生产工艺流程

有机肥生产工艺流程 楷瑞农业固体废弃物资源化利用项目采用土地利用模式,结合沼气生态模式,建立有机肥厂,利用鸡、猪、牛、羊等畜禽粪便及农作物秸杆为原料,运用生物发酵技术,经科学加工处理(生物发酵、高温杀菌、除臭、干燥),制成具有品质优良、肥效稳长的绿色、环保高效有机肥料、复混肥料、复合肥料、掺混肥、有机-无机复合肥。投入科研力量逐步建成无病菌蝇蛆蛋白饲料厂,届时养蝇育蛆的饲料也可加入有机复合肥生产的原料中,达到无污染排除,循环利用。同时在有机复合肥厂内厕所附件建设以处理厂内部分生活废水、人粪尿与少量堆肥原料渗滤液为目的的沼气池(还需要加入一定比例的粪便),为有机复合肥厂与牲畜集中养殖场提供热能与燃气。以实现养殖业废物高效资源化利用,达到畜禽养殖效益与环境保护生态效益的双赢。 一、工艺流程 整个工艺流程可以简单分为前处理、一次发酵、后处理三个过程。 前处理:堆肥原料运到堆场后,经磅秤称量后,送到混合搅拌装置,与厂内生产、生活有机废水混合,加入复合菌,并按原料成分粗调堆肥料水分、碳氮比,混合后进入下一工序。 一次发酵:将混合好后的原料用装载机送入一次发酵池,堆成发酵堆,采用风机从发酵池底部往上强制通风,进行供氧,同时2天左右进行翻堆,并补充水分(主要以厂内生产、生活有机废水为主)与养分,控制发酵温度在500C~650C,进行有氧发酵,本工程一次发酵周期为8天,每天进一池原料出一池半成品,发酵好的半成品出料后,准备进入下一工序。 后处理:进一步对堆肥成品进行筛分,筛下物根据水分含量高低分别进行处理。筛下物造粒后,送入由沼气池沼气供热的烘干机,进行烘干,按比例添加中微量元素后搅拌混合后制成成品,进行分装,入库待售。筛上物返回粉碎工序进行回用。 综上所述,整个工艺流程具体包括新鲜作物秸杆物理脱水→干原料破碎→分筛→混合(菌种+鲜畜禽粪便+粉碎的农作物秸杆按比例混合)→堆腐发酵→温度变化观测→鼓风、翻堆→水分控制→分筛→成品→包装→入库。 生物有机肥、有机-无机复混肥料、复合肥工艺流程图见图6-3、图6-4、图6-5。 二、工程方案 1、主料为畜禽粪便,对配料(秸秆、废弃烟叶、芒果种植加工废弃物等)进行粉碎,可适当添加一些氮素、磷矿粉等。调节物料的养分与碳氮比、碳磷比、PH值等。处理后原料含

湿法烟气脱硫技术及工艺流程

湿法烟气脱硫技术及工艺流程 烟气脱硫技术品种达几十种,按脱硫进程能否加水和脱硫产物的干湿状态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术比较成熟,效率高,操作简单。 湿法烟气脱硫技术 优点: 湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点: 生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类: 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石/石灰-石膏法 原理: 是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏

形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 湿法烟气脱硫技术及工艺流程 优缺点: 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 2、间接石灰石-石膏法 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。 原理: 钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法 原理: 柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。

常用的烟气脱硫技术

常用的烟气脱硫技术 一、湿法烟气脱硫技术(WFGD) 吸收剂在液态下与SO2反应,脱硫产物也为液态。该法脱硫效率高、运行稳定,但投资和运行维护费用高、系统复杂、脱硫后产物较难处理、易造成二次污染。 湿法烟气脱硫技术优点:湿法烟气脱硫技术为气液反应,反应速度快、脱硫效率高,一般均高于90%,技术成熟、适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80% 以上。 缺点:生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高、系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。分类: 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石/石灰-石膏法 是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaO3S)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏形式回收。这是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90% 以上。 2、间接石灰石-石膏法

常见的间接石灰石-石膏法有: 钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。原理: 钠碱、碱性氧化铝(Al2O3˙nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法 原理:柠檬酸(H3C6H5O7˙H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H+发生反应生成H2SO3络合物,SO2吸收率在99% 以上。这种方法仅适于低浓度SO2烟气,而不适于高浓度SO2气体吸收,应用范围比较窄。另外,还有海水脱硫法、磷铵复肥法、液相催化法等湿法烟气脱硫技术。 二、干法烟气脱硫技术(DFGD) 脱硫吸收和产物处理均在干状态下进行。该法系统简单、无污水和废酸排出、设备腐蚀小、运行费用低,但脱硫效率较低。 干法烟气脱硫技术优点:干法烟气脱硫技术为气同反应,相对于湿法脱硫系统来说,具有设备简单、占地面积小、投资和运行费用较低、操作方便、能耗低、生成物便于处置、无污水处理系统等优点。

氨法脱硫 计算过程

氨法脱硫计算过程 风量(标态):,烟气排气温度:168℃: 工况下烟气量: 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。 1、脱硫塔 (1)塔径及底面积计算: 塔内烟气流速:取 D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。 底面积S=πr2=3.14×3.252=33.17m2 塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。 (2)脱硫泵流量计算: 液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。) ①循环水泵流量: 由于烟气中SO2较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。裕量为: 119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h, 参考相关资料取泵流量为140 m3/h。配套功率可查相关资料,也可与泵厂家进行联系确定。 (3)吸收区高度计算 吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。 2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为 3.7米-3.8米进行设计。吸收区总高度为13.7米-13.8米。

(4)浓缩段高度计算 浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。总高为10.71米。 (5)除雾段高度计算 除雾器设计成两段。每层除雾器上下各设有冲洗喷嘴。最下层冲洗喷嘴距最上层(4.13)m 。冲洗水距离2.5米,填料层与冲洗水管距离为2.5米,上层除雾至塔顶距离1.9米。 除雾区总高度为: 如果脱硫塔设计为烟塔一体设备,在脱硫塔顶部需安装一段锥体段,此段高度为 1.65米,也可更高一些。 (6)烟囱高度设计 具有一定速度的热烟气从烟囱出口排除后由于具有一定的初始动量,且温度高于周围气温而产生一定浮力,所以可以上升至很高的高度。但是,高度设计必须看当地气候情况以及设备建在什么位置,如果远离市区,且周围没有敏感源,高度可与塔体一并进行考虑。一般烟塔总高度可选60-80米。 (7)氧化段高度设计 氧化段主要是对脱硫液中亚硫酸盐进行氧化,此段主要以计算氧化段氧化时间。 (8)氧化风量设计 1、需氧量A (kg/h )=氧化倍率×0.25×需脱除SO 2量(kg/h )氧化倍率一般取1.5---2 2、氧化空气量(m 3/h )=A ÷23.15%(空气中氧含量)÷(1-空气中水分1%÷100)÷空气密度1.29 (9)需氨量(T/h )根据进口烟气状态、要求脱硫效率,初步计算氨水的用量。 式中: W 氨水——氨水用量,t/h C SO2——进口烟气SO 2浓度,mg/Nm 3 V 0——进口烟气量,Nm 3/h η——要求脱硫效率 C 氨水——氨水质量百分比 (10)硫铵产量(T/h ) W3=W1×2 ×132/17。W3:硫胺产量,132为硫胺分子量,17为氨分子量

烟气脱硫技术简述

烟气脱硫技术简述 1.1烟气脱硫技术的分类 烟气脱硫(Flue Gas Desulfurization,FGD)是世界上唯一大规模商业化应用的脱硫方法,是控制酸雨和二氧化硫污染的最为有效的和主要的技术手段。 目前,世界上各国对烟气脱硫都非常重视,已开发了数十种行之有效的脱硫技术,但 是,其基本原理都是以一种碱性物质作为SO 2 的吸收剂,即脱硫剂。按脱硫剂的种类划分,烟气脱硫技术可分为如下几种方法。 (1)以CaCO 3 (石灰石)为基础的钙法; (2)以MgO为基础的镁法; (3)以Na 2SO 3 为基础的钙法; (4)以NH 3 为基础的氨法; (5)以有机碱为基础的有机碱法。 世界上普遍使用的商业化技术是钙法,所占比例在90%以上。 烟气脱硫装置相对占有率最大的国家是日本。日本的燃煤和燃油锅炉基本上都装有烟气脱硫装置。众所周知,日本的煤资源和石油资源都很缺乏,也没有石膏资源,而其石灰石资源却极为丰富。因此,FGD的石膏产品在日本得到广泛的应用。这便是钙法在日本得到广泛应用的原因。因此,其他发达国家的火电厂锅炉烟气脱硫装置多数是由日本技术商提供的。 在美国,镁法和钠法得到了较深入的研究,但实践证明,它们都不如钙法。 在我国,氨法具有很好的发展土壤。我国是一个粮食大国,也是化肥大国。氮肥以合成氨计,我国的需求量目前达到33Mt/a,其中近45%是由小型氮肥厂生产的,而且这些小氮肥厂的分布很广,每个县基本上都有氮肥厂。因此,每个电厂周围100km内,都能找到 可以提供合成氨的氮肥厂,SO 2 吸收剂的供应很丰富。更有意义的是,氨法的产品本身就是化肥,就有很好的应用价值。 在电力界,尤其是脱硫界,还有两种分类方法,一种方法将脱硫技术根据脱硫过程是否有水参与及脱硫产物的干湿状态分为湿法、干法和半干(半湿)法。 另一种分类方法是以脱硫产物的用途为根据,分为抛弃法和回收法。在我国,抛弃法多指钙法,回收法多指氨法。 下面我们将依据脱硫界的分类,先介绍湿式和干式两种脱硫方法。 1.2湿法脱硫技术简述 湿式钙法(简称湿法)烟气脱硫技术是3种脱硫方法中技术最成熟、实际应用最多、运行

氨法、石灰石石膏法、干法脱硫方案比选

氨法脱硫、半干法、石灰石石膏法方案 比选 工艺流程比较 半干法烟气脱硫 半干法以生石灰(CaO)为吸收剂,将生石灰制备成Ca(OH) 2 浆 液,或消化制成干式Ca(OH) 2 粉(也可以直接使用电石渣),然后将 Ca(OH) 2浆液或Ca(OH) 2 粉喷入吸收塔,同时喷入调温增湿水,在反应 塔内吸收剂与烟气混合接触,发生强烈的物理化学反应,一方面与烟 气中SO 2 反应生成亚硫酸钙;另一方面烟气冷却,吸收剂水分蒸发干 燥,达到脱除SO 2 的目的,同时获得固体分装脱硫副产物。原则性的工艺流程见下图。 半干法烟气脱硫工艺示意图 整套脱硫系统包含:预除尘系统,脱硫系统,脱硫后除尘系统,

吸收剂供应系统,灰再循环系统,灰外排系统,工艺水系统及其他公用系统。 目前半干法应用案例较成功的主要是福建龙净环保公司研发的DSC-M干式超净工艺,在广州石化有应用业绩。主要烟气脱硫机理为:锅炉烟气从竖井烟道出来后,先进入预电除尘器进行除灰,将大颗粒的飞灰收集、循环送回炉膛。经预电除尘器之后,烟气从半干法脱硫塔底部进入,与加入的吸收剂、循环灰及水发生反应,除去烟气中的SO 2 等气体。烟气中夹带的吸收剂和脱硫灰,在通过脱硫吸收塔下部的文丘里管时,受到气流的加速而悬浮起来,形成激烈的湍动状态,使颗粒与烟气之间具有很大的相对滑落速度,颗粒反应界面不断摩擦、碰撞更新,从而极大地强化了气固间的传热、传质。同时为了达到最佳的反应温度,通过向脱硫塔内喷水,使烟气温度冷却到高于烟气露点温度15℃以上。主要化学反应式为: Ca(OH) 2+SO 2 =CaSO 3 ·1/2 H 2 O+1/2H 2 O Ca(OH) 2+SO 3 =CaSO 4 ·1/2H 2 O+1/2H 2 O CaSO 3·1/2H 2 O+1/2O 2 =CaSO 4 ·1/2H 2 O 2Ca(OH) 2+2HCl=CaCl 2 ·Ca(OH) 2 ·2H 2 O 半干法脱硫技术特点:一是烟囱不需防腐、排放透明,无视觉污染。二是无废水产生,半干法脱硫技术采用干态的生石灰作为吸收剂,在岛内直接消化成消石灰,脱硫副产物为干态的,整个系统无废水产生,不必配套污水处理设施。缺点是脱硫剂成本高、脱硫效率较低等。 石灰石-石膏法烟气脱硫 石灰石(石灰)-石膏湿法脱硫工艺(简称钙法)采用石灰石或石灰作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆。在吸收塔内,吸收浆液与烟气接触混合,烟气中的SO2与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应而被脱除,最终反应产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,

相关文档
相关文档 最新文档