文档库 最新最全的文档下载
当前位置:文档库 › 基于MCMC方法的贝叶斯统计推断

基于MCMC方法的贝叶斯统计推断

基于MCMC方法的贝叶斯统计推断
基于MCMC方法的贝叶斯统计推断

万方数据

万方数据

基于MCMC方法的贝叶斯统计推断

作者:赵琪

作者单位:山东英才学院基础部,山东济南25001

刊名:

中国科技信息

英文刊名:China Science and Technology Information

年,卷(期):2012(10)

参考文献(5条)

1.茆诗松.王静龙.濮晓龙高等数理统计 1998

2.龚光鲁.钱敏平应用随机过程教程[外文期刊] 2004

3.王沫然MATLAB与科学计算[外文期刊] 2003

4.Gelfand A E.Smith A F M samling based approaches to calculating marginal densities 1990

5.Geifand A E.Smith A F M Gibbs sampling for marginal posterior expections 1991

本文链接:https://www.wendangku.net/doc/d56194751.html,/Periodical_zgkjxx201210028.aspx

贝叶斯统计方法(可编辑修改word版)

贝叶斯方法 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。我们甚至可以把它归结为一个如下所示的公式: 选取其中后验概率最大的c,即分类结果,可用如下公式表示

贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。 上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用1 中存储的数据,计算构造模型所需的互信息和条件互信息。 3.使用2 种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 5.根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。 6.选取其中后验概率最大的类c,即预测结果。 一、第一部分中给出了7 个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2 若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。 定义3 若定某事件未发生,而其对立事件发生,则称该事件失败 定义4 若某事件发生或失败,则称该事件确定。 定义5 任何事件的概率等于其发生的期望价值与其发生所得到

贝叶斯定理

贝叶斯定理 (重定向自后验概率) 贝叶斯定理(Bayes theorem),是概率论中的一个结果,它跟随机变量的条件概率以及边缘概率分布有关。在有些关于概率的解说中,贝叶斯定理(贝叶斯更新)能够告知我们如何利用新证据修改已有的看法。 通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯定理就是这种关系的陈述。 作为一个规范的原理,贝叶斯定理对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中,概率如何被赋值,有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本里面的个数来赋值概率;贝叶斯主义者要根据未知的命题来赋值概率。一个结果就是,贝叶斯主义者有更多的机会使用贝叶斯定理。本文深度讨论了这些争论。 贝叶斯定理的陈述 贝叶斯定理是关于随机事件A和B的条件概率和边缘概率的一则定理。

其中P(A|B)是在B发生的情况下A发生的可能性。 在贝叶斯定理中,每个名词都有约定俗成的名称: 按这些术语,Bayes定理可表述为: 后验概率= (相似度* 先验概率)/标准化常量 也就是说,后验概率与先验概率和相似度的乘积成正比。 另外,比例P(B|A)/P(B)也有时被称作标准相似度(standardised likelihood),Bayes定理可表述为: 后验概率= 标准相似度* 先验概率 从条件概率推导贝叶斯定理 根据条件概率的定义 . 在事件B发生的条件下事件A发生的概率是

同样地, 在事件A发生的条件下事件B发生的概率 整理与合并这两个方程式, 我们可以找到 这个引理有时称作概率乘法规则.上式两边同除以P(B), 若P(B)是非零的, 我们可以得到贝叶斯定理: 二中择一的形式 贝叶斯定理通常可以再写成下面的形式: 在更一般化的情况,假设{A i}是事件集合里的部份集合,对于任意的A i,贝叶斯定理可用下式表示:

比较简单的贝叶斯网络总结

贝叶斯网络 贝叶斯网络是一系列变量的联合概率分布的图形表示。 一般包含两个部分,一个就是贝叶斯网络结构图,这是一个有向无环图(DAG),其中图中的每个节点代表相应的变量,节点之间的连接关系代表了贝叶斯网络的条件独立语义。另一部分,就是节点和节点之间的条件概率表(CPT),也就是一系列的概率值。如果一个贝叶斯网络提供了足够的条件概率值,足以计算任何给定的联合概率,我们就称,它是可计算的,即可推理的。 3.5.1 贝叶斯网络基础 首先从一个具体的实例(医疗诊断的例子)来说明贝叶斯网络的构造。 假设: 命题S(moker):该患者是一个吸烟者 命题C(oal Miner):该患者是一个煤矿矿井工人 命题L(ung Cancer):他患了肺癌 命题E(mphysema):他患了肺气肿 命题S对命题L和命题E有因果影响,而C对E也有因果影响。 命题之间的关系可以描绘成如右图所示的因果关系网。 因此,贝叶斯网有时也叫因果网,因为可以将连接结点的弧认为是表达了直接的因果关系。 图3-5 贝叶斯网络的实例 图中表达了贝叶斯网的两个要素:其一为贝叶斯网的结构,也就是各节点的继承关系,其二就是条件概率表CPT。若一个贝叶斯网可计算,则这两个条件缺一不可。 贝叶斯网由一个有向无环图(DAG)及描述顶点之间的概率表组成。其中每个顶点对应一个随机变量。这个图表达了分布的一系列有条件独立属性:在给定了父亲节点的状态后,每个变量与它在图中的非继承节点在概率上是独立的。该图抓住了概率分布的定性结构,并被开发来做高效推理和决策。 贝叶斯网络能表示任意概率分布的同时,它们为这些能用简单结构表示的分布提供了可计算优势。 假设对于顶点xi,其双亲节点集为Pai,每个变量xi的条件概率P(xi|Pai)。则顶点集合X={x1,x2,…,xn}的联合概率分布可如下计算: 。 双亲结点。该结点得上一代结点。

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

贝叶斯分析

第四章贝叶斯分析 Bayesean Analysis §4.0引言 一、决策问题的表格表示——损失矩阵 对无观察(No-data)问题a=δ 可用表格(损失矩阵)替代决策树来描述决策问题的后果(损失): 或 损失矩阵直观、运算方便 二、决策原则 通常,要根据某种原则来选择决策规则δ,使结果最优(或满意),这种原则就叫决策原则,贝叶斯分析的决策原则是使期望效用极大。本章在介绍贝叶斯分

析以前先介绍芙他决策原则。 三、决策问题的分类: 1.不确定型(非确定型) 自然状态不确定,且各种状态的概率无法估计. 2.风险型 自然状态不确定,但各种状态的概率可以估计. 四、按状态优于: l ij ≤l ik ?I, 且至少对某个i严格不等式成立, 则称行动a j 按状态优于a k §4.1 不确定型决策问题 一、极小化极大(wald)原则(法则、准则) a 1a 2 a 4 min j max i l (θ i , a j ) 或max j min i u ij 例: 各行动最大损失: 13 16 12 14 其中损失最小的损失对应于行动a 3 . 采用该原则者极端保守, 是悲观主义者, 认为老天总跟自己作对. 二、极小化极小 min j min i l (θ i , a j ) 或max j max i u ij 例:

各行动最小损失: 4 1 7 2 其中损失最小的是行动a 2 . 采用该原则者极端冒险,是乐观主义者,认为总能撞大运。 三、Hurwitz准则 上两法的折衷,取乐观系数入 min j [λmin i l (θ i , a j )+(1-λ〕max i l (θ i , a j )] 例如λ=0.5时 λmin i l ij : 2 0.5 3.5 1 (1-λ〕max i l ij : 6.5 8 6 7 两者之和:8.5 8.5 9.5 8 其中损失最小的是:行动a 4 四、等概率准则(Laplace) 用 i ∑l ij来评价行动a j的优劣 选min j i ∑l ij 上例: i ∑l ij: 33 34 36 35 其中行动a1的损失最小五、后梅值极小化极大准则(svage-Niehans) 定义后梅值s ij =l ij -min k l ik 其中min k l ik 为自然状态为θ i 时采取不同行动时的最小损失.

基于贝叶斯推理的数据融合

基于贝叶斯推理的数据融合 1 贝叶斯推理的基本原理 (1) 2 数据融合中的贝叶斯推理 (2) 3 贝叶斯推理方法的优缺点 (3) 1 贝叶斯推理的基本原理 贝叶斯推理是英国学者Thomas Bayes 于1763年提出的,两个世纪以来,它越发展现出广阔的应用前景。贝叶斯推理的基本原理是随着测量的到来,将给定假设的先验密度更新为后验密度。贝叶斯推理与经典推理的不同之处,除对似然函数进行变换外,还可以用于多假设情况。 贝叶斯推理的基本原理是:给定一个前面的似然估计后,若又增加一个证据(测量),则可以对前面的(关于目标属性的)似然估计加以更新。也就是说,随着测量值的到来,可以将给定假设的先验密度更新为后验密度。贝叶斯推理的另一个特点是它适合于多假设情况。 假设12,,...,n A A A 表示n 个互不相容的穷举假设(即存在具有属性i 的一个目标)为一个事件(或事实,观测等),贝叶斯公式的形式为: 1()() ()()()i i i n j j j P B A P A P A B P B A P A ==∑ (1) 且 ()1n i i P A =∑ 11()()(,)()n n i i i i i P B A P A P B A P B ====∑∑ ()i P A 表示事件12,,...,n A A A 出现的可能性大小,为假设1A 为真的先验概率,这是实验前就已知道的事实。()i P A B 为给定证据B (目标i 存在)条件下,假设1A 为真的后布密度。

2 数据融合中的贝叶斯推理 贝叶斯推理方法可以对多传感器测量数据进行融合,以计算出给定假设为真的后验概率。设有n 个传感器,它们可能是不同类的,他们共同对一个目标进行探测。再设目标有m 个属性需要进行识别,即有m 个假设或命题1,2,...,i A m =。贝叶斯融合算法在实现上分多级进行。在传感器一级,将测量数据依其获取的信息特征与要识别的目标属性联系进行分类,最终给出关于目标属性的一个说明12,,...,n B B B ,它依赖于测量数据和传感器分类法。第二步是计算每个传感器的说明(证据)在各假设为真条件下的似然函数。第三步是依据贝叶斯公司计算多测量证据下各个假设为真的后验概率。最后一步是判定逻辑,以产生属性判定结论,过程如图1所示 传感器1传感器2传感器n P(B1/Aj ) P(B2/Aj)P(Bn/Aj ) 组合贝叶斯公式贝叶斯统计接侧判断逻辑极大后验给定门限的 极大后验等 B1B2B3融合结果 图1 基于贝叶斯推理的数据融合 在第三步中,计算目标身份的融合概率应分两步。首先,计算出假设i A 条件下,n 个证据联合似然函数,当各传感器独立探测时,12,,...,n B B B 相互独立,该联合似然函数为 1212(,,...,)()()...()n j j j n j P B B B A P B A P B A P B A = (2) 然后,应用Bayes 公式得到n 个证据条件下,假设的后验概率k A 121212(,,...,)() (,,...,)(,,...,)n j j j n n P B B B A P A P A B B B P B B B = (3) 第四步一般是采用极大后验判定逻辑,直接选取或判定门限选取具有最大后验联合概率的目

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有: P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1,B2,.... 满足 1.B1,B 2....两两互斥,即B i ∩ B j = ?,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....; 2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分 设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

《最优化方法与应用》实验指导书

《最优化方法与应用》 实验指导书 信息与计算科学系编制

1 实验目的 基于单纯形法求解线性规划问题,编写算法步骤,绘制算法流程图,编写单纯形法程序,并针对实例完成计算求解。 2实验要求 程序设计语言:C++ 输入:线性规划模型(包括线性规划模型的价值系数、系数矩阵、右侧常数等) 输出:线性规划问题的最优解及目标函数值 备注:可将线性规划模型先转化成标准形式,也可以在程序中将线性规划模型从一般形式转化成标准形式。 3实验数据 123()-5-4-6=Min f x x x x 121231212320 324423230,,03-+≤??++≤??+≤??≥? x x x x x x st x x x x x

1 实验目的 基于线性搜索的对分法、Newton 切线法、黄金分割法、抛物线法等的原理及方法,编写算法步骤和算法流程图,编写程序求解一维最优化问题,并针对实例具体计算。 2实验要求 程序设计语言:C++ 输入:线性搜索模型(目标函数系数,搜索区间,误差限等) 输出:最优解及对应目标函数值 备注:可从对分法、Newton 切线法、黄金分割法、抛物线法中选择2种具体的算法进行算法编程。 3实验数据 2211 ()+-6(0.3)0.01(0.9)0.04 = -+-+Min f x x x 区间[0.3,1],ε=10-4

实验三 无约束最优化方法 1实验目的 了解最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等的基本原理及方法,掌握其迭代步骤和算法流程图,运用Matlab 软件求解无约束非线性多元函数的最小值问题。 2实验要求 程序设计语言:Matlab 针对实验数据,对比最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等算法,比较不同算法的计算速度和收敛特性。 3实验数据 Rosenbrock's function 222211()(100)+(1-)=-Min f x x x x 初始点x=[-1.9, 2],,ε=10-4

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0则在事件B发生的条件下,事件A发生的条件概率(conditional probability) 为: P(A|B)=P(AB)/P(B) (2 )乘法公式 1. 由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2?乘法公式的推广:对于任何正整数n》全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率 (con diti onal probability) 为: P(A|B)=P(AB)/P(B) (2 )乘法公式 1. 由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2. 乘法公式的推广:对于任何正整数n》2,当P(A1A2...A n-1) > 0时,有: P(A 1A2...A n-1A n)=P(A 1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1 , B2,....满足 1. B1, B 2....两两互斥,即B i Q B = ? , i i,j=1 , 2 ,....,且P(B i)>0,i=1,2,....; 2. B1U B2U ....= 傢则称事件组B1,B2,...是样本空间Q的一个划分 设B1,B2,...是样本空间Q的一个划分,A为任一事件,则: A =y 忖》F(W) P(A) 上式即为全概率公式(formula of total probability) 2. 全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计

贝叶斯分析在风险型决策中的应用

贝叶斯分析在风险型决策中的应用 姓名:王义成 班级:12级数学与应用数学四班 摘要:本文介绍了风险型决策的概念,特点及公式,简述了贝叶斯分析的基本理论,并通过一个具体生活实例,阐明了贝叶斯分析在风险型决策中的应用。 关键词:风险型决策贝叶斯分析期望损失 引言:决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 一、风险型决策 风险决策就是不完全信息下的决策,是根据风险管理的目标,在风险识别和风险衡量的基础上,对各种风险管理方法进行合理的选择和组合,并制定出风险管理的具体方案的过程。风险决策贯穿于整个风险管理过程,它依据对风险和损失的科学分析选择合理的风险处理技术和手段,从若干备选方案中选择一个满意的方案。 风险型决策的特点是:决策人无法确知将来的真实自然状态,但他能给出各种可能出现的自然状态,还可以给出各种状态出现的可能性,即通过设定各种状态的(主观)概率来量化不 确定性。构成一个统计决策有三个基本要素:①可控参数统计结构(Α,Β,{pθ:θ∈Θ}, 其中参数空间中每个元素就是自然界或社会可能处的状态;②行动空间(?,Β?),其中?={a}是为解决某统计决策问题时,人们对自然界(或社会)可能作出的一切行动的全体。?中的每个元素表示一个行动。是?上的某个σ代数,这是为以后扩充概念而假设的;③损失函数L(θ,a),它是定义在Θ×?上的二元函数。从这三个要素出发,可以得到不同的风险情景空间。例如,要开发一种新产品,在市场需求无法准确预测的情况下,要确定生产或不生产,生产多少等问题就是一个风险决策问题。状态集就是市场销售情况,如销路好、销路一般、销路差等,这些状态不受决策者控制,而决策者做出某种决策后,后果也不确定,带有风险。所以,在风险型决策中,准确而又充分地估计信息的价值,合理地在信息的收集上增加投入来获取不断变化的市场信息,及时掌握各种自然状态的发生情况,可以使决策方案的选择更可靠,进而增加经济效益。 二、贝叶斯风险与贝叶斯规则 ⑴风险函数 给定自然状态θ,采取决策规则δ时损失函数L(θ,δ(x)),对随机试验后果x的期望值成为风险函数(risk function),记作R(θ,δ) ⑵贝叶斯风险 当自然状态的先验概率为π(θ),决策人采用策略δ时,风险函数R(δ,θ),关于自然状态θ的期望值称为贝叶斯风险,记作R(π,δ)如果R(π,δ1)< R(π,δ2)则称 记作δ1>δ2 策略δ1优于δ 2, ⑶贝叶斯决策规则 先验分布为π(θ)时,若策略空间?存在某个策略δπ,能够使?δ∈?,有R π,δπ≤ R π,δ ,则称δπ是贝叶斯规则,亦称贝叶斯策略。

教学大纲_贝叶斯统计(双语)

《贝叶斯统计(双语)》教学大纲 课程编号:120872B 课程类型:□通识教育必修课□通识教育选修课 □专业必修课□√专业选修课 □学科基础课 总学时:32 讲课学时:32实验(上机)学时:0 学分:2 适用对象:经济统计学 先修课程:微积分、概率论与数理统计学 毕业要求: 1.应用专业知识,解决数据分析问题 2.可以建立统计模型,获得有效结论 3.掌握统计软件及常用数据库工具的使用 4.关注国际统计应用的新进展 5.基于数据结论,提出决策咨询建议 6.具有不断学习的意识 一、课程的教学目标 贝叶斯统计是上世纪50年代后,才迅速发展起来的一门统计理论。目前,在欧美等西方国家,贝叶斯统计已经成为了与经典统计学派并驾齐驱的当今两大统计学派之一;随着贝叶斯理论和方法的不断发展和完善,以及相应的计算软件的研制,贝叶斯方法在实践中获得了日趋广泛的应用;特别是,贝叶斯决策问题在统计应用中占有越来越重要的地位。在商业经济预测、政府宏观经济管理、国防工业中对武器装备系统可靠性评估、生物医学研究;知识发现和数据挖掘技术等都获得了广泛应用。

本课程通过贝叶斯统计的教学使学习过传统的数理统计课程的学生了解贝叶斯统计的基本思想和基本观点,了解贝叶斯统计与传统的数理统计在理论和处理方法上的区别,了解贝叶斯统计的最新进展,能够系统的掌握贝叶斯统计的基本理论、基本方法,特别是贝叶斯统计极具特色的一些处理方法,引进一个效用函数(utility function)并选择使期望效用最大的最优决策,这样就把贝叶斯的统计思想扩展到在不确定时的决策问题。很好的将统计学与最优化的思想方法和技术很好的进行了结合。贝叶斯统计理论和方法技术的学习,不仅能够提高学生分析和解决实际问题的能力,还能够更进一步提高对经典数理统计的深入理解。 二、教学基本要求 根据贝叶斯统计课程的教学内容,本课程将重点介绍贝叶斯统计推断理论,贝叶斯决策理论。并且注重贝叶斯统计处理方法和基本观点与传统数理统计相应内容对比的讲授方式。注重案例教学,安排学生课后查阅文献资料,以及课堂研讨等方式,了解贝叶斯统计理论和应用最新成果及前沿研究进展。对最新贝叶斯网络和贝叶斯统计的方法除了传统讲授方式外,适当的安排上机实验,了解贝叶斯统计相关软件的使用方法。课程的考核方式:期末开卷+ 论文方式,卷面60%,平时和论文40%。 三、各教学环节学时分配 以表格方式表现各章节的学时分配,表格如下: 教学课时分配

全概率公式贝叶斯公式推导过程

全概率公式贝叶斯公式 推导过程 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥ (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A 1A 2 ...A n-1 ) > 0 时, 有: P(A 1A 2 ...A n-1 A n )=P(A 1 )P(A 2 |A 1 )P(A 3 |A 1 A 2 )...P(A n |A 1 A 2 ...A n-1 ) (3)全概率公式 1. 如果事件组B 1,B 2 ,.... 满足 ,B 2....两两互斥,即 B i ∩ B j = ,i≠j , i,j=1,2,....,且 P(B i )>0,i=1,2,....; ∪B 2∪....=Ω,则称事件组 B 1 ,B 2 ,...是样本空间Ω的一个划分 设B 1,B 2 ,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i ),P(A|B i ) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,

最优化方法及其应用课后答案

1 2 ( ( 最优化方法部分课后习题解答 1.一直优化问题的数学模型为: 习题一 min f (x ) = (x ? 3)2 + (x ? 4)2 ? g (x ) = x ? x ? 5 ≥ ? 1 1 2 2 ? 试用图解法求出: s .t . ?g 2 (x ) = ?x 1 ? x 2 + 5 ≥ 0 ?g (x ) = x ≥ 0 ? 3 1 ??g 4 (x ) = x 2 ≥ 0 (1) 无约束最优点,并求出最优值。 (2) 约束最优点,并求出其最优值。 (3) 如果加一个等式约束 h (x ) = x 1 ? x 2 = 0 ,其约束最优解是什么? * 解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0 (2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是 在约束集合即可行域中找一点 (x 1 , x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可 以看出,当 x * = 15 , 5 ) 时, f (x ) 所在的圆的半径最小。 4 4 ?g (x ) = x ? x ? 5 = 0 ? 15 ?x 1 = 其中:点为 g 1 (x ) 和 g 2 (x ) 的交点,令 ? 1 1 2 ? 2 求解得到: ? 4 5 即最优点为 x * = ? ?g 2 (x ) = ?x 1 ? x 2 + 5 = 0 15 , 5 ) :最优值为: f (x * ) = 65 ?x = ?? 2 4 4 4 8 (3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。 2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为: max f (x ) = x 1x 2 x 3 ?x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S

贝叶斯分析(doc 18页)

贝叶斯分析(doc 18页)

第四章贝叶斯分析 Bayesean Analysis §4.0引言 一、决策问题的表格表示——损失矩阵 对无观察(No-data)问题a=δ 可用表格(损失矩阵)替代决策树来描述决策问题的后果(损失): 或 损失矩阵直观、运算方便

二、决策原则 通常,要根据某种原则来选择决策规则δ,使结果最优(或满意),这种原则就叫决策原则,贝叶斯分析的决策原则是使期望效用极大。本章在介绍贝叶斯分析以前先介绍芙他决策原则。 三、决策问题的分类: 1.不确定型(非确定型) 自然状态不确定,且各种状态的概率无法估计. 2.风险型 自然状态不确定,但各种状态的概率可以估计. 四、按状态优于: l ij ≤l ik ?I, 且至少对某个i严格不等式成立, 则称行动a j 按状态优于a k §4.1 不确定型决策问题 一、极小化极大(wald)原则(法则、准则) a 1a 2 a 4 min j max i l (θ i , a j ) 或max j min i u ij 例: a 1a 2 a 3 a 4 θ 1 10 8 7 9 θ 2 4 1 9 2 θ 3 13 16 12 14 θ 4 6 9 8 10 各行动最大损失: 13 16 12 14

用 i ∑l ij来评价行动a j的优劣 选min j i ∑l ij 上例: i ∑l ij: 33 34 36 35 其中行动a1的损失最小五、后梅值极小化极大准则(svage-Niehans) 定义后梅值s ij =l ij -min k l ik 其中min k l ik 为自然状态为θ i 时采取不同行动时的最小损失. 构成后梅值(机会成本)矩阵S={s ij } m n ? ,使后梅值极小化极大,即: min max j i s ij 例:损失矩阵同上, 后梅值矩阵为: 3 1 0 2 3 0 8 1 1 4 0 2 0 3 2 4 各种行动的最大后梅值为: 3 4 8 4 其中行动a1 的最大后梅值最小,所以按后梅值极小化极大准则应采取行动1. 六、Krelle准则: 使损失是效用的负数(后果的效用化),再用等概率(Laplace)准则. 七、莫尔诺(Molnor)对理想决策准则的要求(1954) 1.能把方案或行动排居完全序; 2.优劣次序与行动及状态的编号无关; 3.若行动a k 按状态优于a j ,则应有a k 优于a j ; 4.无关方案独立性:已经考虑过的若干行动的优劣不因增加新的行动而改变;

贝叶斯统计知识整理

第一章先验分布和后验分布 统计学有两个主要学派,频率学派与贝叶斯学派。频率学派的观点:统计推断是根据样本信息对总体分布或总体的特征数进行推断,这里用到两种信息:总体信息和样本信息;贝叶斯学派的观点:除了上述两种信息以外,统计推断还应该使用第三种信息:先验信息。贝叶斯统计就是利用先验信息、总体信息和样本信息进行相应的统计推断。 1.1三种信息 (1)总体信息:总体分布或所属分布族提供给我们的信息 (2)样本信息:从总体抽取的样本提供给我们的信息 (3)先验信息:在抽样之前有关统计推断的一些信息 1.2贝叶斯公式 一、贝叶斯公式的三种形式 (一)贝叶斯公式的事件形式 假定k A A ,,1 是互不相容的事件,它们之和i k i A 1= 包含事件B ,即i k i A B 1=? 则有:∑==k i i i i i i A B P A P A B P A P B A P 1)()() ()()((二)贝叶斯公式的密度函数形式 1.贝叶斯学派的一些具体思想 假设I :随机变量X 有一个密度函数);(θx p ,其中θ是一个参数,不同的θ对应不同的密度函数,故从贝叶斯观点看,);(θx p 是在给定θ后的一个条件密度函数,因此记为)(θx p 更恰当一些。在贝叶斯统计中记为)(θx p 它表示在随机变量θ给定某个值时,总体指标X 的条件分布。这个条件密度能提供我们的有关的θ信息就是总体信息。 假设II :当给定θ后,从总体)(θx p 中随机抽取一个样本X1,…,Xn ,该

样本中含有θ的有关信息。这种信息就是样本信息。 假设III :从贝叶斯观点来看,未知参数θ是一个随机变量。而描述这个随机变量的分布可从先验信息中归纳出来,这个分布称为先验分布,其密度函数用)(θπ表示。 2.先验分布 定义1:将总体中的未知参数Θ∈θ看成一取值于Θ的随机变量,它有一概率分布,记为)(θπ,称为参数θ的先验分布。 3.后验分布 (1)从贝叶斯观点看,样本x =(1x ,…,n x )的产生要分两步进行。首先设想从先验分布)(θπ产生一个样本θ',这一步是“老天爷”做的,人们是看不到的,故用“设想”二字。第二部是从总体分布p (x |θ')产生一个样本x =(1x ,…,n x ),这个样本是具体的,人们能看到的,此样本x 发生的概率是与如下联合密度函数成正比。 ∏='='n i i x p x p 1) ()(θθ这个联合密度函数是综合了总体信息和样本信息,常称为似然函数,记为)(θ'L 。频率学派和贝叶斯学派都承认似然函数,两派认为:在有了样本观察值x =(1x ,…,n x )后,总体和样本中所含θ的信息都被包含在似然函数)(θ'L 之中,可在使用似然函数作统计推断时,两派之间还是有差异的。 (2)由于θ'是设想出来的,它仍然是未知的,它是按先验分布)(θπ而产生的,要把先验信息进行综合,不能只考虑θ',而应对θ的一切可能加以考虑。故要用)(θπ参与进一步综合。这样一来,样本x 和参数θ的联合分布 π θθ)(),(x p x h =把三种可用的信息都综合进去了。 (3)我们的任务是要求未知数θ做出统计推断。在没有样本信息时,人们

对贝叶斯估计的理解

对贝叶斯定理及其在信号处理中的应用的理解 信号估计中的贝叶斯方法是对贝叶斯定理的应用,要理解贝叶斯估计首先要理解贝叶斯定理。 一、 贝叶斯定理: 1. 贝叶斯定理的简单推导过程 贝叶斯定理就是条件概率公式(贝叶斯公式),所谓条件概率就是在事件A 发生的条件下事件B 发生的概率,常用(/)P B A 表示。一般情况下(/)P B A 与 (/)P A B 是不相等的。容易得到: (/)P B A = ()()P A B P A ,(/)P A B =() () P A B P B 所以 (/)P B A ()P A =(/)P A B ()P B , 对上式变形得贝叶斯公式: (/) P A B =(/)() () P B A P A P B (1) 若',A A 为样本空间的一个划分,可得全概率公式: ()P B =''(/)()(/)()P B A P A P B A P A + 所以(1)式可以改写为: '' (/)() (/)(/)()(/)() P B A P A P A B P B A P A P B A P A = + (2) 如果12n A A A ,,...,为样本空间的一个划分,由(2)式可得条件概率(/)j P A B 1 (/)() (/)(/)() j j j n i i i P B A P A P A B P B A P A == ∑ (3) (3)式就是当样本空间的划分为n 时的贝叶斯公式即贝叶斯定理。我们把其中的()(1,...)i P A i n =称为先验概率,即在B 事件发生之前我们对i A 事件概率的一个判断。(/)j P A B 称为后验概率,即在B 事件发生之后我们对i A 事件概率的重新评估。 2. 贝叶斯公式的事件形式

最优化求解法在实际问题中的应用

本科毕业论文 (2014届) 题目:最优化求解法在实际问题中的应用学院:计算机与科学技术学院 专业:数学与应用数学 班级:10数本班 学号:1006131084 姓名:严慧 指导老师:孙钢钢

目录 1.摘要 (3) 2.关键字 (3) 3.引言 (3) 4.最优化求解法在实际问题中的应用 (4) 4.1.无约束最优化问题的求解............................................... ....... 4.2.有约束最优化问题的求解............................................... ....... 4.3.线性规划问题的求解............................................... ........... ... 4.4.非线性规划问题的求解............................................... ........... 5.结束语................................................................................................参考书目

1.摘要:本文介绍最优化及相关知识在实际生活中的应用,主要是利用运筹 学来研究解决在实际生活中所遇到的一些问题,找到最优的解决方案,帮助人们提供最好的最有科学依据的最佳方法。 2.关键字:最优化,运筹学,生活,应用。 Abstract:This paper introduced the Optimization in the real life application,this is use of Operations research to solve the problem in real life,finding the best solution,and provide the best and scientifically valid solution to the people . Key words: Optimization, Operations research, life, application. 3.引言 随着社会迅速发展,各行各业中的竞争日益激烈,我们日常生活中好多事情都会牵扯到最优化,比如运输成本问题、效益分配问题等等。 什么是数学最优化问题,就是利用合理的安排和规划在一件事情或者问题上取得利润最大,时间最少,路线最短,损失最少的方法。所以最优化解决方法对实际生活现实社会的帮助作用很大。现如今,最优化解决问题已经渗透到生活中的方方面面。 一个好的决策也许会让你绝处逢生,反败为胜,譬如中国历史上田忌赛马的故事,田忌的聪明之处在于在已有的条件下,经过策划安排,选择了最好的方案,所以最后就是自己看似劣势也能取胜,筹划是非常重要的,这就是运筹学的魅力。 我们在中国的古代史上就可以看到中国古人已经具有很好的运筹学思想了,在战争中,两兵交战,各方都会有自己的军师,历史上有很多著名的军师,比如诸葛亮,刘伯温等。他们在战争中所起到的作用就是“运筹于帷幄之中,决胜于千里之外”,运筹学二字也是来源于此,了解敌方的军情,以此做出相应的对策,筹划最佳作战计划,做到“知己知彼百战不殆”,历史上也不乏一些以少胜多以弱胜强的战争,由此可见运筹学在军事中的力量有多强大。 现代社会中运筹学不仅在军事方面发挥着重要作用,同样在企业经营管理方面也是非常重要的,最优化理论最早是在工业领域产生的,它的对象可以是产

相关文档