文档库 最新最全的文档下载
当前位置:文档库 › 第三章 大型锅炉事故及预防

第三章 大型锅炉事故及预防

第三章  大型锅炉事故及预防
第三章  大型锅炉事故及预防

第三章大型锅炉事故及预防

第一节防止电站锅炉事故的意义与对策

第二节承重部件的损坏及其预防

第三节可燃物质的爆炸及其预防

第四节受热面烧损及预防

第五节防止锅炉承压部件的损伤

第六节锅炉受热面腐蚀及预防

钱祥鹏

第一节防止电站锅炉事故的意义与对策

一、防止锅炉事故的重要意义

二、当前锅炉机组事故的特点

三、预防事故发生与扩大的措施

四、故障分析的目的、方法

一、防止锅炉事故的重要意义

电力工业的安全生产关系国民经济发展与人民生活的安定,也是电力企业取得经济效益的基础。锅炉机组是火力发电厂三大主机之一。可靠性统计表明,100MW及以上机组非计划停用所造成的电量损失中,锅炉机组故障停用损失占60%~65%,1995年100MW及以上锅炉及其主要辅机故障停用损失电量近120亿kWh。故障停用造成的启停损失(启动用燃料、电、汽、水)若每次以3万元计,仅此一项全国每年直接经济损失就达2400万元。与此同时每次启停,锅炉承压部件必然发生一次温度交变导致一次寿命损耗,其中直流锅炉水冷壁与分离器可能发生几百度温度的变化,从而诱发疲劳破坏。因此,防止锅炉机组的非计划故障停用,历来受到各级领导的重视。部《防止电力生产重大事故的二十项重点要求》中列出了防止大容量锅炉承压部件爆漏、防止锅炉灭火放炮,防止制粉系统爆炸等三项反措要求,要求逐项续贯彻。

为减少锅炉机组故障引起的直接与间接损失,减少故障停用带来的紧张的抢修工作,发

电厂的安全监察、锅炉监察、技术监督工作者及全体检修、运行、管理人员,必须认真贯彻“安全第一、预防为主”的方针,落实反事故措施,提高设备的可用率,防止锅炉事故的发生。

二、当前锅炉机组事故的特点

锅炉机组的事故特点是与锅炉所用的燃烧、锅炉结构、控制手段与工艺水平密切相关的。1955年发生在天津的田熊式锅炉下泥包苛性脆性,死亡77人的事故,如今由于淘汰了铆接、胀接工艺,此类事故已被消灭。由于给水品质的提高及蒸汽参数的提高,出现在中小型锅炉的水循环事故及表面式减温器事故也趋于消灭。随着自动控制水平的提高,锅炉缺满水及灭火放炮事故也逐步得到控制。与此同时,由于采用亚临界、超临界参数,采用悬吊式全密封结构,以及实现计算机控制等等,也带来了一些新问题需要研究解决。鉴于各局、厂情况不同,防范措施理当有所区别,本文仅根据国内电厂发生的锅炉故障情况,按严重程度与分布频率,提出以下分析意见。

(1)锅炉承重结构的变形、失稳使悬吊式锅炉坍塌是导致近年来锅炉报废的最终原因,必须高度重视支吊、承重结构的安全。

(2)炉外管道爆漏、受热面腐蚀、转动机械飞车、制粉系统爆炸、锅炉尾部受热面烧损是造成人员伤亡,设备严重损坏的主要原因。

(3)锅炉四管爆漏仍居当前锅炉机组非计划停用原因的首位。锅炉四管因蠕变、磨损、腐蚀、疲劳损坏以及焊口泄漏,常常可以因调度同意使用而不构成事故,但因其停用时间较长,直接、间接损失大仍是锅炉故障损失的主要因素,必须加以重视。

(4)锅炉辅机故障,包括送风机、引风机、磨煤机、排粉机、一次凤机、捞渣机、回转式空气预热器等转动机械卡转、振动、烧瓦等,此类故障约占锅炉机组故障停用次数的10%左右,常常是机组降出力的原因。

(5)热工保护装置故障误动引起机组跳闸,其次数随保护装置采用范围的扩大而有所增加,这是当前新机组投产初期运行阶段的常见故障。说明要解决如何进行设计、安装,使控制手段与设备性能相匹配,并缩短磨合期等问题特别需要对基建工序的安排与配合问题加以研究。但当前主要应防止因耽心误动而随意退用保护装置的倾向。

三、预防事故发生与扩大的措施

综合分析全国大型锅炉故障停用的原因,可以明显地发现,必须从设计标准、设计选型、制造安装、运行调试全过程努力,才能最有效地防止事故的发生。作为发电厂必须搞好检查、修理,认真整治设备,严格各项规章制度的贯彻执行,才能真正提高设备的可靠性。

同防止发电厂其他设备故障一样,防止事故发生与扩大的措施是:

(1)重视运行分析,推广在线诊断技术,提高预防性检修的质量。

(2)重视热工报警及自动保护装置的投用,反对强撑硬拼,把事故消灭在萌芽状态。

(3)事故后要认真分析事故原因,以便采取针对性的措施。同时要研究其他单位事故案例,分析潜在的不安全因素并采取相应措施。

(4)加强燃料、汽、水品质、金属焊接管理,做好防磨防爆工作。

(5)要认真审定事故处理规程及“防灾预案”,运行人员要训练有素以正确判断与处理事故,避免灾难性事故的发生。

四、故障分析的目的、方法

控制电站锅炉故障主要在于预防,在于把缺陷消灭在酿成事故前。但是一旦发生了故障,在组织抢修的同时,分析故障原因也是安监人员与锅炉专业人员义不容辞的责任,不可偏废。

成功的故障分析可以避免类似事故的重演,加速抢修恢复,工作不有利于分清责任,从而提高设计、制造、检修、运行工作质量,也有利于合同的执行。不成功的故障分析往往导致事故的再次发生或导致反措资金的浪费。

例如,1984年10月,一台300MW机组的一台风扇磨炸裂飞车,风扇磨叶轮碎裂成23块,飞散在锅炉房零米层,当场打死检修班长李×,事故发生在检修后试转时,迅速查明原因才能在避免人身事故的前提下解决电网用电的需要(见图4-3-1)。事故调查组在记录好叶轮碎块分布状况的基础上,组织力量通过拼凑叶轮原貌,从分析断口裂纹发展方向着手找出了原始裂纹及裂纹起源点,从而把疑点迅速集中到修复叶轮磨损所用镶条的拼接点上。接着用着色探伤法逐台检查,发现只用此工艺修复的几台风扇磨叶轮的相应部位,都发现裂纹。由于很快找出了事故原因,从而可以有针对性地更换叶轮备件,使机组很快投入正常运行。

而如某厂屏式过热器联箱管座角焊缝泄漏事故,从焊接接头断口宏观检查看,焊缝焊接质量确实存在缺陷,但由于没有细致分析,即决定全部管座重新施焊,事隔不到一年该处又连续发生管座焊口泄漏。最后查明原因是:该屏式过热器用振动吹灰,为了使全屏都振动而达到除灰的目的,在管间加装了固接棍,这样屏式过热器管上部由联箱管座固定,中部由固

接棍固定,由于管间不可避免地存在温差膨胀不畅以及对接时存在的焊接残余应力,导致焊口一再泄漏。当取消固接棍后,这部分焊口泄漏才能解决。说明第一次故障分析由于没有找到事故根源,不仅多耗了返修的资金,也导致事故的重复发生。

当然对于一些多因素、复杂的或不常见的事故,要求一次抓住主要故障原因,从而采取针对性的措施解决问题有一定的难度,但作为事故调查工作的目标与责任应该是:要找出事故根源防止重复性事故发生。

根据多数安监工作者成功的经验,在事故调查方法方面应该做到:

(1)掌握故障第一手材料。包括故障前运行记录,事故追忆打印记录,损坏部位的宏观状况,部件损坏的起源点及扩大损坏面的状况等。

(2)以事实及各项化验,试验数据为依据,避免主观忄意断或过多的推论。

(3)在掌握各种损坏方式的特征及各种分析手段所能得出的结论的前提下,事故调查人员应当迅速组织取样、化验与测试。

(4)分析情况要有数量概念。在设计范围内超过设计范围,保护正确动作或定值不当或误动等都要用数据说明。

(5)根据部件失效的直接原因,查制造、安装、检修、运行历史情况,以规程、标准的规定为依据判定是非。

(6)要分析故障的起因,也要分析事故处理过程,从中找出故障扩大的原因与对策。

第二节承重部件的损坏及其预防

《电力工业锅炉监察规程》规定锅炉结构必须安全可靠的基本要求是:①锅炉各受热面均应得到可靠的冷却;②锅炉各部分受热后,其热膨胀应符合要求;③锅炉各受压部件、受压元件有足够的强度与严密性;④锅炉炉膛、烟道有一定的抗爆能力;⑤锅炉承重部件应有足够的强度、刚度与稳定性,并能适应所在地区的抗震要求;⑥锅炉结构应便于安装、维修与运行。

以往分析锅炉部件故障失效,比较重视超温过热、腐蚀、磨损与焊接质量,是因为水管锅炉在汽、水压力作用下一旦汽管、水管、管道不能承受内压作用时,即发生爆破、泄漏;但自从采用悬吊式锅炉结构后,由于锅炉受热面、汽水联箱、管道、烟风煤粉管道都通过支吊架、梁、桁架,由钢柱承重;并以膨胀中心为零点,向下,向四周膨胀。一旦承重系统失效,部件附落,部件的几何形状即发生变化,同样可以导致锅炉部件故障失效。

理论计算表明,一根细长的受热管可以承受很高的内压,但却不能承受一般的轴向压力,更不能承受侧向弯曲力的作用,所以必须重视由此而产生的变形失效。事故案例表明此类失效会导致锅炉报废,不可大意。

1988年4月某热电厂一台220t/h锅炉,由于炉膛内聚集的可燃气体爆炸,锅炉钢架不能承受爆炸引起的侧向作用力,炉后钢柱扭曲、断裂,炉顶大板梁失去支承点,向下向右塌落。于是锅炉省煤器、过热器、水冷壁也随之掉落并发生弯曲变形,回转式空气预热器也被压下沉,导致整台锅炉报废(见图4-3-2)。

1994年3月某热电厂的一台220t/h锅炉由于锅炉房起火,锅炉钢柱遇热屈服强度下降发生弯曲变形,致炉整体后倾10°,后移5.3m,汽包下沉2m,所有受热面下坍弯曲变形,锅炉报废。1993年3月某厂一台2008t/h锅炉由于大量堆集以及可能存在的塌焦、炉压突升等冲击力,使支撑该炉冷灰斗的钢结构失稳,组成冷灰斗的水冷壁管严重变形(见图4-3-3)。

除此以外,近年来国内电力系统由于支吊件失效,而发生的灰斗、煤斗、烟道、风道坍塌、受热面下沉的事故还有十余次,其中一次炉底风道跌落事故见图4-3-3。这些事故虽然没有构成全炉报废的特大、重大事故,但所造成的损失以及可能造成的人员伤亡,应该同样引起我们对承重部件安全状况的重视。

纵观锅炉承重件损坏事故,我们不难发现支吊件损坏事故的几个特点:

(1)事故的突发性。锅炉承重部件基本可以分成三类。一类是受拉部件,如吊杆;另一类是受压部件,如钢柱、支承杆;再有一类就是受弯部件,如梁。他们都具有突发性损坏

的特点,如吊杆断裂、压杆失稳和桁架失稳。

所谓失稳或翘曲失效是指作用在支撑杆、支

柱上的压力达到某一临界水平时,它们有时会突

然发生例如弓起、褶皱、弯曲等几何形状上的剧

烈变化。这时从强度观点,作用力产生的应力完全在设计范围内,但剧烈的几何变形而引起的大挠度可能破坏结构的平衡,形成不稳定的构形,使其突然崩溃,即通常所谓的失稳或翘曲失效。而吊杆的断裂因为常发生在具有应力集中特征的螺扣处,因而也具有突发性。

(2)修复困难。承重件一旦安装就位,就很难卸载,因而给修复带来难度。

(3)力的不确定性。锅炉受热膨胀,其他受力杆件的变形,将严重影响承重部件受力状况,除带受力指示标记的吊标外,一般难以了解受力状况。

(4)常常导致事故扩大。承重件的损坏使相邻承重件负载增加促进联锁损坏,同时也常常导致相关部件受力状况的变化而损坏。严重时可导致该部件的报废。

防止支、吊件损坏,应从防止超载及维持支、吊件承载能力两方面着手。当前应注意以下问题。

(1)锅炉钢结构的工作温度。美国锅炉规范规定承重构件受热后温度不得大于315℃,这是因为钢材的屈服强度因温度上升而急剧下降。锅炉钢柱、钢梁急剧升温发生在锅炉房着火时。《建筑设计防火规范》中规定无保护层的钢柱、钢架、钢层架耐火极限只有15分钟,说是说在大火中钢结构很快变形失效。为此要求:①锅炉油管路,电缆的铺设要离开承重部件;②一旦发生火灾要组织力量控制承重部件的温度,此时立柱和大梁的冷却至关重要。

(2)要避免炉膛严重堆焦、转向室灰斗存灰、风道积灰与烟道存水等超载现象。

(3)锅炉刚性梁的作用是承受一定的炉膛爆炸力,其薄弱环节是角部绞接结构。在设计抗爆压力下,刚性梁的挠度f=1/500。有怀疑时,应通过测试,确定是否需要加固。

(4)吊杆的安全性取决于力的分配及披屋内吊杆高温部位的强度是否满足要求,最好使用有承力指示的吊架。个别吊杆弹簧压死或不承力都是不正常的现象,要作为锅炉定期检验内容加以确认调整。

(5)现代锅炉普遍采用全密封膜式炉壁,并确立膨胀中心,为此在锅炉周围、上下设许多向构件,保证以膨胀中心为零点,向一定方向膨胀。凡是没有按设计值胀出的,必然存在残余应力,将涉及支吊架安全,务必要究其原因,以防意外。

(6)要弄清锅炉承重部件的设计意图,哪些是受拉杆件,哪些是受压杆件,哪些接合部位要留间隙,哪些部件是要焊牢的。在安装与检修中严格贯彻设计意图,维持结构承重功能。

第三节可燃物质的爆炸及其预防

一、可燃物质爆炸的机理及其危害

二、防止炉膛放炮事故对策

三、防止制粉系统煤粉爆炸

一、可燃物质爆炸的机理及其危害

可燃气体或粉尘与空气形成的混合物在短时间内发生化学反应,产生的高温、高压气体与冲击波,超过周围建筑物、容器、管道的承载能力,使其发生破坏,导致人身、设备事故,称为爆炸事故。

通常说,发生爆炸要有三个条件,一是有燃料和助燃空气的积存;二是燃料和空气的混合物的浓度在爆炸极限内;三是有足够的点火能源。天然气的爆炸下限约为5%,煤粉的爆炸下限是20~60g/m3,爆炸产生的压力可达0.3~1.0MPa。就锅炉范围而言,可燃物质是指天然气、煤气、石油气、油雾和煤粉;构成爆炸事故的有炉膛放炮、煤粉仓爆炸及制粉系统爆炸。

1979年3月,某厂一台1025t/h微正压燃油炉,因烟道出口挡板运行中自行关闭,炉膛燃烧恶化,汽压下降。由于没有正确处理,自动装置又由于汽压下降而自动加风加油,反向调节进一步恶化燃烧。炉膛内形成了可燃油气聚集火爆炸的条件,导致锅炉烟、风道及炉膛损坏,停用半年,仅修理费用就高达50万元。

1982年8月,某厂在检修后启动制粉系统时,煤粉仓爆炸,仓顶9块水泥板被掀起,一名输煤值班工被火、热烟烫伤,抢救无效死亡。

其他诸如制粉系统防爆门爆破引燃电缆架上积粉的火灾事故电缆及其它可燃物的火灾事故及煤粉管内爆燃使风管断裂的事故都说明锅炉可燃物质的爆炸威胁人身设备安全,修复困难应予重视。

二、防止炉膛放炮事故对策

据统计自1980年以来,至少有30台锅炉发生炉膛放炮事故,以致水冷壁焊缝开裂,刚性梁弯曲变形(见图4-3-5),顶棚被掀起,烟道膨胀节开裂等设备损伤屡屡发生。究其原因:①设计上缺乏可靠的灭火保护和可靠的联锁、报警、跳闸装置;②炉膛刚性梁抗爆能力低;③运行人员处理燃烧不稳或熄火时方法不对,错误采用“爆燃法”抢救,导致灭火放炮;

④燃料质量下降、负荷调节失当、给粉装及控制机构突然失灵等。防止锅炉灭火放炮已列入部颁二十项反措,包括炉膛安全监控系统(FSSS)在内的灭火保护装置已经在许多电厂推广使用,本文不再重复相关反措。以下强调说明几个观点

(1)关于灭火放炮的提法。部颁二十项重点反措之五,称为防止锅炉灭火放炮事故。正确的提法是炉膛爆炸(Furnace explosion),因为炉膛发生爆炸而致炉膛损坏不仅发生在运行中灭火时,检修动火点燃聚集的可燃物及点火时吹扫不够同样会发生爆炸而导致炉膛损坏。

常见炉膛中造成爆炸条件的情况是:①运行中灭火,进入炉膛的燃料没有切,经过一估时间聚集的可燃物达至爆炸浓度并点燃;②一个或几个燃烧器火焰熄灭,而其余燃烧器仍正常燃烧。从未点燃的燃烧器进入燃烧造成可燃物聚集;③燃料漏入停用中的炉膛造成可燃物聚集;

④燃料或空气瞬时中断又恢复,造成可燃物聚集。可燃物聚集后引燃造成的炉膛压力升高超过炉膛承压设计强度,以致发生损坏,称为炉膛放炮或炉膛爆炸。不发生损坏的俗称“反正”或“打抢”。

正确的提法为的是有利于完整的引入以下反事故措施。①一旦全炉灭火,应立即切断进入锅炉的全部燃料,包括给煤、给粉和点火用油、气等。即所谓主燃料切断(MFT);②锅炉点火前必须通风,排除炉膛、烟风道及其他通道中的可燃物聚集。通风时必须将烟风挡板及调风器打开到一定的位置,风量应大于满负荷风量的25%,时间不少于5min,以保证换气量大于全部容积的5倍(德国TRD规定是3倍);③点火时要维持吹扫风量;一个燃烧器投运10s内(不包括投煤及煤粉达到燃烧器所需的延滞时间)点不着,就应切断该燃烧器的燃烧。有一些锅炉不具备单个燃烧器自身点燃及火焰监视的条件,除了需明了其保护功能的局限外,我们还是应强调灭火保护及吹扫联锁的两个必要性,不可偏废。

(2)关于保护定值。为了避免爆炸,近年来必须装设炉膛安全保护装置的观点已取得了一致的认可。《火力发电厂设计技术规程》1994年版本已明确:“锅炉燃烧系统应设置炉

膛火焰监视、炉膛灭火保护、炉膛压力保护和炉膛吹扫闭锁”。虽然此提法与美国防火协会(NFPA)的标准还有差别,但毕竟大大控制了炉膛爆炸事故。当前作为安全工作者要解决的是:①监督保护装置的投用,越是燃烧不稳、低负荷运行、或是新炉投煤运行,就越要投用保护装置。在投用过程中发现问题、解决问题。作为厂技术负责人要清醒地看到退出保护可能带来的后果;②关于保护定值问题。当前不论火焰监视相关的熄火保护和黑炉膛保护,单就炉膛压力保护而言,动作值的确定并不规范。从原则上讲随炉膛结构强度的提高以及燃烧方式的变化,定值不应相同。但有一种观点认为炉膛负压保护是为防止内爆的,而正压保护是防止炉膛爆炸的,这不对的。实际测量表明,正常情况下一旦锅炉灭火,炉膛负压先增大(即负值增大),而后由于吸风自动调节的作用以及煤粉爆燃而炉膛负压反正,所以炉膛负压保护对于火焰熄灭时迅速切断进入炉膛的燃料,从而减少爆炸威力有先期制止的作用。《电力锅炉监察规程修订说明》写明:“炉膛压力保护报警值视炉膛安全监控系统的功能而异,平衡通风锅炉炉膛压力报警值一般可取±0.4kPa;动作值应避开炉膛压力的正常波动(如吹灰、投停燃烧器及一些小的坍焦等等),当然庆远低于炉膛抗爆强度,以保证保护动作后炉膛压力继续升高时,炉膛各部分不发生永久变形”。“动作值应通过试验确定,作为试运行阶段的初始值,动作值可取+1.5kPa和-0.75kPa。”过高的值也许可以防止误动,但冒拒动或保护动作过迟的风险似乎没有必要。

(3)关于炉膛防爆门。事实已经证明大型锅炉炉膛防爆门不能防止炉膛爆燃时炉膛损坏。原苏联防爆规程已明确规定:60t/h以上的锅炉不装防爆门,在此必须予以明确,以利于炉膛安全保护装置的推广使用。

(4)使用气体燃烧的锅炉要执行GB6222《工业企业煤气安全规程》的规定,防止可燃气体在炉膛内聚集、爆炸。

三、防止制粉系统煤粉爆炸

正常运行中制粉系统中的煤粉浓度在较大的范围内波动,制粉系统中具备爆炸浓度条件几乎不可避免。因此制粉系统防爆对策包括:①防止点火源(如积粉自燃),②提高结构抗爆强度,③加设爆炸卸压装置,④惰性化处理。

(1)防止点火源自燃。其反措主要指积粉自燃,如煤粉仓壁的平滑,风粉管道及挡板的布置要避免煤粉聚集,运行中控制风粉温度及检修前放粉等。

(2)提高煤粉仓及制粉系统的结构强度。虽然制粉系统防爆反事故措施的基点是防止爆炸,但从防爆门爆破的发生率看,制粉系统的爆炸实际上没有根绝。要避免事故扩大,当前结构强度的问题应引起各方面的重视。前面提到的煤粉仓掀顶事故,就是结构强度不足的结果。粉仓顶是由9块厚6cm的水泥预制板加2~4cm水泥抹面(并无钢筋、螺栓固定)组成,计算表明2kPa的压力即可掀顶,而粉仓防爆门的爆破压力却为10kPa,足见其结构强度严重不足。苏联防爆规程规定装防爆门的制粉系统的部件计算压力为150kPa,而美国防爆规程规定,除制粉系统启动、运行中均匀充满惰性气体的情况外,制粉系统的设计压力应大于344kPa,按NFPA68“爆炸排放指南”所规定的原则设爆炸排放口的不在比例,作为电厂检修、运行工作者应注意制粉系统入孔门螺栓的完整以及煤粉管道法兰或抱箍的连接强度。

(3)保持防爆门的防爆功能。试验表明容器中可燃粉尘点燃引爆后,防爆门动作压力、

卸压面积,可燃粉尘特性值与爆后实际压力值有关。防爆门排气管的长度也与卸压能力有关。有的资料甚至断定,当容器的抗爆强度小于0.1MPa时,有长排气管的防爆门已不能达到防止容器损坏的目的。因此必须按设计要求布置足量的防爆门,并控制防爆门的卸压动作压力。此外,多数磨煤机防爆门与排粉机出口风箱防爆门位于零米层上部,一旦动作后从排放口喷出的火焰极易烧损附近的电缆,应注意防范。

(4)制粉系统惰性化。在制粉系统中惰性气体及水蒸汽的存在,会减少混合物的爆炸危险性。苏联防爆规程说明,在各种工况下,制粉系统中氧的容积份额小于16%,则不发生煤粉爆炸。有的资料提出用氮惰化空气煤粉混合物时的含最高允许氧量为14%,事实上用炉烟干燥的制粉系统较少发生爆炸,而引进的中速磨制粉系统虽不设防爆门,除在设计上提高设计抗爆强度外,还在磨煤机上装设了通入惰性气体(一般为氮气)的管接,并规定,制粉系统带负荷跳闸时,应通惰性气体,一直到磨煤机温度低于66℃或将剩煤排空为止。此点应引起各方面重视以免误事。

第四节受热面烧损及预防

一、锅炉受热面烧损的原因

二、防止尾部烟道再燃烧的措施

一、锅炉受热面烧损的原因

锅炉受热面是将烟气中的热量传递给汽、水、空气的界面,在没有汽、水、空气这些冷却介质时,受热面的温度便会很快接近或达到烟温。煤、油正常燃烧可能达到的温度为1500℃~1600℃,高于钢铁的熔点,由此引起的钢材熔融、氧化称为烧损。一台670t/h炉为了停炉保养烘干过热器内的积水,错误的点油枪升温,由于当时水冷壁无水,不久水冷壁管被烧穿,当然这样的例子是极个别的。发生在发电厂中受热面烧损离主要是空气预热器及省煤器受热面烧损(也有过电气除尘器烧损的报导),通常称为锅炉尾部烟道再燃烧,或称二次燃烧,见图4-3-6、图4-3-7。一台2008t/h锅炉在调试过程中先后于1995年10月13日和11月20

日发生空气预热器着火,两台空预器传热元件遭受不同程度的损坏。究其原因是炉膛内未燃烧的可燃油垢(炭黑和油滴)沉积在尾部受热面上。当温度与氧量条件合适,便自燃起火。紧急停炉后空气预热器停转,从关不严

的烟、风挡板漏入空气等,常常是促进

油垢着火的原因。

二、防止尾部烟道再燃烧的措施

锅炉尾部烟道再燃烧的主要原因

是炉膛燃烧恶化,特别是启动和带低负

荷期间燃烧不完全,可燃物带至锅炉尾

部并在那儿聚集。防范措施包括防止可

燃物沉积以及着火后的扑救两部分。通

常包括,①油枪投用前应逐个试点火,

点火成功后再调试自动点火,避免盲目试点火;②点火不着10~30s内停枪,最好退出油枪倒出管内存油,以免残油入炉;③用好油枪根部风,保持油枪冷却,维持油枪良好的雾化功能以控制低负荷阶段油雾的完全燃烧;④锅炉点火前,空气预热器蒸汽吹灰、水冲洗(或消防水)装置必须投用(有的水冲洗装置在预热器停转后不能覆盖全部受热面,应该改进);

⑤发现排烟温度异常升高等再燃烧现象时,要及时正确处理确保省煤器与钢结构的冷却,防止事故扩大;⑥长期低负荷燃油要考虑热碱水冲洗方案。

第五节防止锅炉承压部件的损伤

一、炉外承压部件的损坏

二、防止磨损

三、防止管壁过热损坏

四、防止受热面疲劳损坏

五、防止人员责任引起的承压部件损坏

锅炉承压部件的爆漏是大型火电机组强迫停用的主要原因,占锅炉机组强迫停用次数的82%,强迫停用时间的78%。因而预防锅炉承压部件损坏,有其明显的经济效益。

本节叙述的是锅炉承压部件因各种原因,使管壁不能承受内压应力而发生的爆漏。通常是指管壁的局部应力超过材料的屈服极限、持久强度,包括管壁磨损、腐蚀、侵蚀减薄使应力升高的因素,包括管壁温度升高材料组织发生变化而使材料强度下降的因素,以及附加应力或交变应力的存在使管壁爆漏等。其中受热面内、外壁腐蚀因涉及化学专业,修复工作量一般较大,同时发生在一大批承压部件上,所以另节叙述。

一、炉外承压部件的损坏

锅炉炉外承压部件的损坏,虽然为数不多,因其涉及人身安全,故必须引起电厂安全工作者的重视。

国内外事故统计表明,饱和汽水混合物管道、主蒸汽管道及超临界压力锅炉下辐射区联络管弯头以及汽水联箱封头、手孔堵是锅炉炉外承压部件的薄弱环节。就弯头而言,分析表明,在内压作用下弯头椭圆断面上存在三个高应力区(见图4-3-8)。汽水管道弯头内表的两个高应力区,在锅炉启停、温度变化其局部应力超过材料屈服极限时,表面原有的磁性氧化铁保护膜会损坏,在含氧水的作用下再次氧化造膜,如此反复,形成应力腐蚀疲劳破坏。因其发生在内壁不易发现,且因为有二个薄弱点,一般爆破口较大;对于主汽或再热器管道,外表的高应力区促进高温蠕变的发展,较早发生蠕变孔洞或蠕变裂纹而提前损坏(见图4-3-8)。一些早期苏联和国内生产的平封头联箱及手孔堵,不适当的在管端二次应力区采用未焊透的焊接结构,也容易发生应力腐蚀疲劳裂纹。从而构成了炉外承压部件的薄弱环节。对此类运行年久的锅炉,备必重视炉外承压部件的损坏问题。

防止炉外承压部件损坏,应采取如下防范措施:①制作管道弯头要严格控制弯头不圆度,必要时增加壁厚,采用回火工艺以消除冷弯时引起的加工硬化与残余应力;②对于已运行多年的锅炉,汽水管道不圆度超过8%的弯头,在锅炉启停次数超过允许值时,要加强弯头内表面的检查。③主蒸汽、再热汽管道要重点监视弯头的外弧侧外表的微裂纹,对10-14MPa,510℃~540℃参数的φ133×10、φ194×12、φ219×14、φ273×20、φ325×22的12Cr1MoV主汽管和导汽管,以及φ426×17Cr1MoV再热汽管要重点检查。④要改善停炉保护工作,认真控制化学清洗工作的质量。⑤要加强金属监督,防止错用钢材、焊接缺陷扩展和法兰螺栓断裂。

二、防止磨损

锅炉承压部件磨损是一种机械性损坏,一般有四种形式:即飞灰磨损、吹灰器磨损、落

渣磨损与煤粒磨损。磨损使管壁减薄,当管壁应力超过材料的屈服极限时,管子爆破。近年来采用小管径、小节距、高烟速以减少省煤器体积及钢材消耗的做法已逐步淘汰。当前飞灰磨损主要发生在烟气走廊地带、管排不均匀处及导流板异常位移处。加强防磨、防爆检查,避免炉墙漏风以及正确使用与维护防磨装置是防止飞灰磨损的主要措施,中国电力出版社出版的《防止电力生产重大事故安全系列片》第三集有形象化的描述,值得一看。

吹灰介质(空气或蒸汽)带水,吹灰器卡涩在一个位置上不动以及吹灰器定位不当是吹灰磨损管壁变薄的主要原因。吹灰操作程控,吹灰器位置的正确信号显示及采用其他吹灰方式清洁受热面是解决吹灰器磨损的途径。

锅炉冷灰斗斜面被炉膛上部下落的灰渣冲刷使冷灰斗边排管壁爆管的事故还不多见,一旦发现防范措施是在此部份管壁上堆焊防磨层或加焊防磨棒。

煤粒磨损主要发生在喷燃器出口处。主要原因是喷口位置不正确,防磨保护层磨耗、脱落或管排异常变形。

三、防止管壁过热损坏

管壁在高温烟气中受热,如果得不到可靠的冷却,其运行温度超过设计值或超过运行时限发生损坏,称为过热。短期过热造成的损坏是因高温使管材强度下降,例如管子内部堵塞,缺水、水循环破坏或膜态沸腾等,大部分短期过热损坏处会呈现明显的延伸和收缩变形,在破裂处呈现刀刃状边缘;只有当过热温度超过相变温度AC3,钢材的铁素体转变为奥氏体时,管壁减薄才不明显。高温蠕变或称中、长期过热是因为钢材长期工作在蠕变温度以上,金相组织发生变化;包括:珠光体球化,碳钢和钼钢的石墨化,碳化物聚集,奥氏体钢发生σ相沉淀等,从而降低了金属的晶间强度而损坏。这种损坏管壁没有明显减薄,厚唇状破口是高温蠕变的特性。

短期过热损坏有不同的起因,防范措施亦因此而不同。一般的要求是,应建立防止作业工具、切削悄粒以及焊渣进入管段的检修工艺,建立防止汽包低水位及过量使用减温水导致过热器管内出现水塞的操作规程。高温蠕变的原因差异更大,一般情况下,首先要弄清是汽温长期超温、个别蛇形管超温、还是炉内管壁超温;弄清是因为热力偏差、水力偏差还是结构偏差引起的蛇形管超温。个别管的过热采用高一级材料替代往往可以取得良好的效果。

四、防止受热面疲劳损坏

炉管受到周期应力或应变的作用,导致疲劳裂纹的发生、发展而缩短其使用寿命,称为疲劳损坏。分为:振动疲劳、热疲劳、腐蚀疲劳及低周热疲劳。损坏时间决定于应力交变辐度,交变次数、应力集中程度与腐蚀介质种类。

(一)振动疲劳损坏

锅炉承压部件由于振动引起疲劳损伤事例并不多。机械疲劳破坏,其断口往往有明显的疲劳纹,裂纹由外表向内发展,断口表面呈细瓷状。锅炉喷水减温器喷头、喷管及温度表库通常处于一端固定,一端自由的悬壁状态,当汽流激振频率与自身固有频率相同时发生共振,就有可能导致振动破坏。锅炉转向室吊挂管在烟流“卡门旋涡”作用下也可能发生振动疲劳损坏。

在锅炉设计时加以考虑或事后加装隔板或连杆改变自振频率,是防止此类损坏的根本措施。检修中加强检查及时发现疲劳裂纹有利于早期处理。管件焊接避免咬边、实施圆滑过渡降低应力集中也是防止振动疲劳损坏的有力措施。

(二)热疲劳损坏

锅炉受压部件表面急剧冷却、加热,经

受热冲击,当应力辐度及交变次数足够时,

便出现网状、放射状或鳄鱼皮状裂纹。锅炉

汽包省煤器再循环管孔附近的裂纹(见图

4-3-9)、安全阀管座附近、疏水管管座等处,

往往容易出现两种温度不同的汽水介质,从

而构成壁面温度交变的条件,是锅炉承压部

件发生热疲劳损坏的区域。

据西德TUV报道,中间再热机组的快

速减温减压装置所用高压旁路阀体内壁在

阀门开启之际,温度变化速度最大可达4℃/S,在1~2min内个别的温度可从240℃升到450℃,加以不可避免的存在铸造缺陷,从面使相当多的一部分阀体出现热疲劳裂纹。

防止热疲劳裂纹的措施与出现温度交变的原因有关。对于省煤器再循环管孔的裂纹,我国与前苏联锅炉监察规程已规定,再循环管、给水管、减温水管、加热管、加药管等管座要采用带保护套管的管接头,以免冷热交变引起汽包、联箱壁的热疲劳。对于较长安全阀入口管段内冷凝水引起的温度交变,则采用接入小管,使该管段不流动的死汽流动的措施。禁

止或避免疏水反向流入高温主汽及再热汽联箱,避免减温水直接喷溅到联箱壁等。这些运行或设备改进措施都有利用预防热疲劳损坏。

(三)低周疲劳损坏

锅炉承压部件低疲劳损坏也是一种热疲劳,一般指承压部件因热膨胀受阻局部热应力随

锅炉启停或参数变化而引起的疲劳损坏。因其应力变化辐度大,局部应力有可能达到屈服极限,因而在数百次或数千次交变之后便可能发生低周疲劳破坏。当然对锅炉汽包,厚壁联箱内压应力随锅炉启停也发生交变,也可能出现低周疲劳损坏,但此类事故发生频率不高。

原则上,锅炉元部件只要存在温差,或各相连元部件之间的膨胀死点不同,或相连部件的膨胀系数不同都将出现热应力。问题是热应力的大小,能否导致局部屈服。例如锅炉受热管的穿墙部分,由于组成墙壁的管排(如顶棚管)与蛇形管之间的温差,冷态与运行状态下联箱与管排的相对位置有差异,当蛇形管挠度不够时,联箱管座将因这种热应力而发生低周疲劳损坏。一台WGZ400/100炉顶棚管与前悬吊管上联箱之间的高差只有500mm,计算表明,锅炉启停时,管座的根部应力达到300MPa,因而在一段时间后发生损坏,将联箱分段,并将中间段箱抬高增加挠度后,就解决了问题。

风箱、燃烧器、人孔门框架与水冷壁连接处角焊缝一般都存在温差应力,管子管卡、管道支吊架部位虽然无较大的热应力,但管子、管道的热膨胀变形也影响这些管件的受力状况。事实上,一些频繁启停的锅炉已发生过这些部件的损坏事件。日本《火力及原子力发电》杂志1989年第10期报道了日本各制造厂为提高调峰锅炉可靠性所采取的措施,有一定的参考价值(见图4-3-10)。

五、防止人员责任引起的承压部件损坏

锅炉制造、安装、维修、运行不当

均可使锅炉承压部件过早损坏。

错用钢材,焊接缺陷。杂物遗留管

内等制造、安装质量问题曾严重影响锅

炉可靠运行,锅炉汽包集中下降管管座

裂纹曾导致多台锅炉汽包挖补修理。至

今汽包炉省煤器联箱管座角焊缝、直流

炉水冷壁联箱管座角焊缝、超临界锅炉

水冷壁鳍片管对接焊缝的焊接缺陷仍

是新炉故障的重要原因。

运行锅炉燃烧控制不当、汽水流量

控制失灵(例如汽包炉的缺水、直流炉

煤水比调节失当)、过量使用减温水特别是低负荷使用喷水减温等等也是某些事故的原因,见图4-3-11。正确编订规程并严格执行规章制度,提高自动控制与保护装置的水平是预防此类事故的对策。

第六节锅炉受热面腐蚀及预防

一、水冷壁管的垢下腐蚀的预防

二、水冷壁管氢损坏的预防

三、水冷壁向火侧腐蚀及其预防

四、低温腐蚀

锅炉受热面腐蚀减薄损坏,因涉及范围较大,一旦暴露,常导致重复爆漏停炉,而且

修复工作量大,因此预防及保护设备不受腐蚀是提高机组可用率必须解决的基本任务之一。

汽、水侧腐蚀按其机理分,包括苛性腐蚀、氢损害、氧腐蚀、垢下腐蚀及应力腐蚀。

烟气侧腐蚀包括水冷壁向火侧腐蚀、高温煤灰(油灰)腐蚀和低温腐蚀。

国内电厂曾因垢下腐蚀,水冷壁氢损坏及向火侧腐蚀,导致大面积换管。曾有一台锅炉由于斜顶棚内的下降管外壁腐蚀爆破造成一死六伤的重大人身事故。国外一些超临界机组曾发生因过热器管内壁氧化皮脱落,被蒸汽带入汽机而引起喷嘴、叶片的固体硬粒侵蚀。

一、水冷壁管的垢下腐蚀的预防

水冷壁管垢下腐蚀是以紧贴管壁的垢下管壁为阳极,外围表面为阴极所构成的局部电池作用引起的电化学损害,严重时可导致鼓包或腐蚀穿孔。

一台670t/h炉在半年内先后停炉6次处理水冷壁管鼓包、穿孔。在喷燃器中心线部位换管139根、挖补167处。主要原因是凝汽器铜管泄漏,给水硬度长期严重超标(标准是2Epb,最大竞达392Epb,超标时间占运行时间25%左右),其次是停炉保养效果不好;基建酸洗质量不好;与给水含铁量超标;分析认为采用Na3PO4炉内处理时大量向炉内加入Na3PO4调节炉水的pH值也不够妥当等。

当前防止垢下腐蚀最主要的防范措施是解决凝汽器泄漏后给水硬度超标问题;要加强给水含铁量的检测与控制;对已结垢的水冷壁进行化学清洗。总之,要加强化学监督工作。

对于超临界直流炉由于给水水质纯度较高组必须采用挥发性处理。所以美国通常采用氨-联氨方式,而德国和前苏联推荐采用氨-氧处理和中性水加氧的方式。前苏联试验肯定了中性水加氧的方式,认为可以大大降低炉管垢量。我们推荐采用加氧处理方式。当然,采用何种方式还与汽水系统中管道、阀门所用的材料有关,需综合考虑。

二、水冷壁管氢损坏的预防

水冷壁管氢损坏原因是受热面内壁结垢,加以炉水处于低pH值状态。当时入凝结水系统的酸性盐类在水冷壁管垢下浓缩,氢原子进入管壁金属组织中与碳化铁作用生成甲烷,使钢材晶间强度下降。发生氢损害时,管壁几乎没有明显减薄,有时发生“开窗式”破裂。所以一般的超声探伤技术难以发现发生氢损害使金属变脆的位置,使故障处理复杂化。

例如,一台1100t/h强制循环汽包炉投产不到一年,运行只有2110h,水冷壁19.5m处向火侧应发生“开窗式”脆性爆破。事故主要原因是凝汽器铜管泄漏,除氧器长期运行不正常,凝结水处理设备不能投用,以致给水、炉水的O2、Fe、pH和电导率等指标严重超标。经查共需换管2900m,重17t。迫使该机组停产3个月,并重新酸洗。

鉴于一些火电厂热力设备腐蚀、结垢严重,甚至导致有些锅炉频繁爆管的情况,中电联1992年举办了研讨班,整理出一本《火电厂化学监督及水处理技术资料选编》,提出了加强化学监督,特别是从基建到生产全过程执行部颁规程的意见十分重要。

已投产电厂一旦发生管壁很少减薄的脆性破坏,宜割管检查,通过多相或宏观侵蚀试验,判断是否是氢损坏。若经确认是氢脆损坏,则其对策是化学清洗并更换已发生材料强度下降或管壁减薄的管子。

由于氢损坏是属于垢下发生的二次腐蚀,所以防范措施应补充:①严格控制锅水质量,不使管内壁腐蚀结垢;②发现腐蚀时要采取措施清洗管壁防止结垢;③防止凝汽器管泄漏,特别要控制锅炉水中酸性盐类,如Mgcl2等盐类存在;④监测饱和蒸汽中含氢量。

三、水冷壁向火侧腐蚀及其预防

水冷壁向火侧腐蚀是指水冷壁外壁在还原性气氛中,挥发性硫、氯化物及熔融灰渣作用下,使管壁减薄引起的故障(见图4-3-12)。

水冷壁向火侧腐蚀不可能发生在燃烧区域的氧化气氛中。一氧化碳,包括未燃烧的煤粒冲刷管壁,在硫酸盐和氨氯化物(英国

煤有一些煤氯含量超过0.6%)的作用下

加速腐蚀,导致管壁减薄,当其腐蚀速度

超过25μm/103h时,表示已有明显腐蚀。

此外低熔点的钠、磷的焦硫酸盐甩落在水

冷壁管外表,能熔掉管外表的氢化铁保护

层,也使金属受到腐蚀。超临界压力锅炉

因其布置特点及壁温相对较高,容易发生

圆周方向的沟槽或裂纹。

由于水冷壁向火侧腐蚀涉及燃烧器区域附近一批管子的安全问题,严重时1~2万小时就要更换一批水冷壁管,所以应予以重视。

预防水冷壁向火侧腐蚀的措施是:①控制喷燃器喷射角度与烟气氧量,避免未燃煤粉与还原性气体冲刷水冷壁;②采用渗铝管或火焰喷涂的方法提高水冷壁管的抗腐蚀能力;③在降低烟气含氧量采用低氧燃烧或为降低NO X而采用二次燃烧法时,要注意可能出现的向火侧腐蚀。

四、低温腐蚀

低温腐蚀是烟气中的硫酸、亚硫酸在低于露点的受热面上凝结,使受热面腐蚀的一种现象。

煤、油含硫量高、壁面温度低是产生低温腐蚀的主要原因,大容量电站锅炉低温腐蚀主要发生在空气预热器。一般情况下,空气预热器低温腐蚀并不构成事故,但影响机组的长期安全可靠运行,增加检修工作量,并降低锅炉经济性。个别情况下,由于不均匀的堵灰、腐蚀,使烟、风压随回转式空气预热器的旋转而周期性变化,当影响燃烧稳定及自动控制质量时,可能成为锅炉强迫停用的因素之一。

采用低硫煤、炉内脱硫等措施有利于防止低温腐蚀;采用耐腐蚀材料、改变传热元件型线,采用玻璃管预热器、热管式空气预热器,加装暖风器等都是防止低温腐蚀的措施。

第七节发电厂锅炉安全监察(监督)的作用

一、实行全过程安全(质量)监督

二、开展状态分析、提高设备可靠性

三、建立三道防线,杜绝重大、特大事故发生

四、搞好事故分析,防止重复性事故发生

部总结电力生产安全工作的经验教训,于1995年11月颁发了《电力生产安全工作规定》,规定明确提出了安全保证体系与安全监察体系的关系;明确了安全监察人员的职责与职权,提出“安全第一、预防为主”的方针以及坚持“保人身、保电网、保设备”的原则。

作为火电发电厂的主要设备,锅炉机组显然是发电厂安全监察的重要设备。而且由于锅炉压力容器是具有爆炸危险的设备,故世界各国都十分重视它的安全问题,设立国家监督机构或授权技术权威机构,实行强制性安全管理。

一、实行全过程安全(质量)监督

参照国际上通用的办法,国务院于1982年2月颁发了《锅炉压力容器安全监察暂行条例》,条例规定从事锅炉压力容器设计、制造、安装、检验的单位必须经资格审查,具备合格证书。使用锅炉压力容器的单位必须向有关部门申请使用登记,并接受定期检验。锅炉的设计、制造、安装、改造必须符合电力部颁发的《电力工业锅炉监察规程》的规定(或满足制造国法定制造标准)。这些规定、标准主要规定了锅炉承压部件制造阶段应遵循的人员资格、材料使用、结构强度、工艺标准及检验要求。对于电站锅炉的制造厂具备这些要求并不难,取得资格证书也基本没有问题。但总结国内一些电站锅炉发生的问题,诸如炉膛热负荷过高,受热面布置不匹配,使汽温控制困难,省煤器磨损过快、直流炉水动力不稳,锅炉辅助设备配套不良等重大设计、制造质量问题,使我们不得不重视从设计开始的全过程安全(质量)管理、监督与检验。

(1)设计阶段。在电厂筹建初期或扩建初期,诸多内外条件错综复杂,在进行、质量、投资诸因素中要把握大型锅炉投产后的运行质量,责任无疑落实到决策与参谋层中从事锅炉专业的工程技术人员身上。前水电部与电力部先后制订了《锅炉谈判导则》,由于它总结了国内电站锅炉设计方面的经验教训与国外一些设计咨询公司的经验,因此至今仍应遵循并作为决策的主要依据。炉型、燃烧器布置方式、再热器调温方式、炉膛各热负荷强度指标、过热器再热器高温段金属材料的等级、控制水平及其与所用燃料的关系等问题历来都是设计阶段讨论研究的重点。对于燃用难燃、易结焦、高硫煤种的电力,在设计中考虑上述性能要求时,要特别慎重。

当前比较普遍的问题,是对国际标准配套性的认识不够重视。众所周知,各国标准是根据该国国情制订的。历史基本形成了以美国为代表的和以德国为代表的两套系统。我国以前基本套用前苏联ГOCT标准,现在又引进美国ASME标准(前苏联标准和美国标准也都在不断修改之中)。二者在强度理论、工艺要求、检验内容、安全系数等基本要求方面存在着差异。因此比较妥当和慎重的做法是按某系列来套用标准,而不断章取义,以偏盖全。当

锅炉常见事故主要原因及预防措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 锅炉常见事故主要原因及预防措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4492-91 锅炉常见事故主要原因及预防措施 (正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 (1)锅炉事故及预防 ①锅炉爆炸事故 (a)超压爆炸:由于压力表失灵或操作人员对压力监视不严,致使压力上升,此时安全阀失效,从而造成锅炉锅筒内的压力超过其承受能力而破裂爆炸。 (b)缺陷导致爆炸:锅炉承受的压力未超过额定压力,但因主要承压部件出现裂纹、严重变形、腐蚀等情况,导致承压部件丧失承载能力,突然破裂爆炸。预防这类爆炸主要是加强检验,及时发现和处理存在的缺陷,避免锅炉带病运行。 (c)严重缺水导致爆炸锅炉一旦缺水,主要承压部件就得不到正常冷却,甚至烧红,此时如果给锅炉上水,就会酿成爆炸事故。

②锅炉重大事故 (a)缺水事故: 由于操作人员对水位监视不严,或给水系统故障、锅炉管子爆破漏水等原因,造成锅炉水位低于水位表最低安全水位刻度线,形成缺水事故。严重缺水会使锅炉蒸发受热面管子过热变形甚至爆破,处理不当还会导致锅炉爆炸事故。发现锅炉缺水时,首先用“叫水”的方法判断缺水的程度,然后予以不同的处理。对于轻微缺水,可以立即向锅炉上水;严重缺水时,必须紧急停炉检查,不得给锅炉上水。 (b)满水事故: 由于操作人员对水位监视不严,或水位表故障出现假水位而操作人员未及时发现,造成锅炉水位高于水位表最高安全水位刻度线,形成满水事故。严重满水时,锅水可进入蒸汽管道和过热器,造成水击和过热器结垢,并降低蒸汽品质。发现满水后,首先冲洗水位表,一旦确认满水,应立即关闭给水阀停止向锅炉上水,开启排污阀和疏水阀加强放水。

锅炉设备系统常见火灾、爆炸事故原因及防范措施

编号:SM-ZD-58645 锅炉设备系统常见火灾、爆炸事故原因及防范措施Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

锅炉设备系统常见火灾、爆炸事故 原因及防范措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员 之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整 体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅 读内容。 锅炉设备是火力发电厂的主要设备之一,一旦发生火灾爆炸事故,将会给国家财产和人民的生命安全构成极大的威胁,造成巨大的经济损失和不良的社会影响。为预防锅炉设备及系统火灾、爆炸事故的发生,有必要对此类事故的原因及各种隐患进行认真分析,积极制订对策,及时处理解决,把事故隐患消灭在事故发生之前,真正做到防微杜渐,防患于未然。笔者根据在实际工作中的一些经验教训,对火力发电厂锅炉设备及系统常见火灾事故的主要原因进行了分析并提出了防范措施。 1 炉前燃油系统着火 1.1 原因分析 l)各燃油管道因材质不良或长期运行导致金属疲劳等因素使管壁裂纹或爆破,泄漏的燃油触及高温热体而引燃着火。

锅炉反事故措施.docx

锅炉反事故措施 一、调试目的 为了防止本锅炉在调试期间发生重大恶性事故,保证人身、设备 安全及机组顺利投产,针对本锅炉的特点和以往机组恶性事故, 结合有关规程及本机组具体情况特制定该措施。本措施的事故处 理原则:保人身,保设备,及时发现,准确判断,迅速处理,防 止事故蔓延扩大。因此要求系统设备安装正确、规范,调试、运 行人员熟练掌握控制系统的功能和操作程序,具有事故判断准 确、处理果断迅速的能力。 二、编制依据 1、电力行业标准《电力建设安全工作规程》(第一部分:火力发 电厂) DL5009.1-2002 2、国家电力公司《安全生产工作规定》2000 版 3、电力部《火力发电厂基本建设工程启动及竣工验收规程》电 建[1996]159 号; 4、电力部《火电工程调整试运质量检验及评定标准》建质 [1996]111 号; 5、电力部《火电工程启动调试工作规定》建质[1996]40号。 6、国家电力公司《防止电力生产重大事故的二十五项重点要求》。 三、调试质量目标 在机组的整个试运过程中不发生一起恶性事故。 四、防止锅炉重大恶性事故的主要内容

1、防止锅炉汽包满水和缺水事故 1.1 确保汽包水位计指示正确,水位保护可靠投入。 1.1.1当汽包水位计有一套发生故障时,首先应维持机组稳定运行,避免加减负荷和进行重大操作,联系有关人员尽快处理,处 理时必须办理工作票并写明故障原因、处理方案和危险因素控制措施等,如8h 内不能恢复正常运行时应制定措施,经总工程师 批准后允许延长工期至24 小时。 1.1.2按规程要求对汽包水位计进行零位校验,当各水位计偏差 大于 30mm时,应立即汇报,并查明原因予以消除。 1.1.3 进行水位计校验时,运行人员和校验人员要密切配合,并要求机组负荷在满负荷情况下且运行稳定,试验期间禁止锅炉吹灰。 1.1.4 在运行中当发现汽包水位大幅度变化时,应首先分析水位变化的原因,不能盲目操作,如汽包水位变化超过规定值而保护 拒动时应执行紧停。 1.1.5冬季应保证汽包水位计测量表管伴热的投入,水位测量小 间暖气可靠投入,防止表管冻坏,引起水位指示错误。 1.2 汽包水位保护 1.2.1在锅炉启动前和停炉前应进行实际传动校验。用上水方法 进行高水位保护校验,用排污门放水的方法进行低水位保护校 验,禁止采用信号短接的方法校验。 1.2.2在锅炉启动前如果汽包水位保护不完整,锅炉禁止启动。

锅炉爆炸事故预防措施

编号:AQ-JS-04214 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 锅炉爆炸事故预防措施 Preventive measures for boiler explosion accident

锅炉爆炸事故预防措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1.压力容器爆炸事故预防措施 1.在设计上,应采用合理的结构。 2.修理、安装、改造时,加强焊接管理,提高焊接质量并按规范要求进行热处理和探伤; 3.加强材料管理,避免采用有缺陷的材料或用错钢材、焊接材料。 4.加强使用管理,避免操作失误,超温、超压、超负荷运行、失检、失修、安全装置失灵等。 5.加强检验工作,及时发现缺陷并采取有效措施。 2.锅炉尾部再燃烧预防措施 1.尽可能减少不完全燃烧损失,减少锅炉的启停次数。 2.加强尾部受热面的吹灰,保证烟道各种门孔及烟风挡板的密封良好。 3.锅炉炉膛爆炸事故预防措施

1.根据锅炉的容量和大小,装设可靠的炉膛安全保护装置。 2.尽量提高炉膛及刚性梁的抗爆能力。 3.加强使用管理,提高司炉工人技术水平。 4.锅炉汽包缺满水预防措施 1、缺水事故 (1)轻微缺水时,可以立即向锅炉上水,使水位恢复正常。 (2)严重缺水时,必须紧急停炉。 2、满水事故 关闭给水阀停止向锅炉上水,启用省煤器再循环管路,减弱燃烧,开启排污阀及过热器、蒸汽管道上的疏水阀;待水位恢复正常后,关闭排污阀及各疏水阀;查清事故原因并予以消除,恢复正常运行。 这里填写您的公司名字 Fill In Your Business Name Here

山西省太原市锅炉爆炸重大事故

山西省太原市锅炉爆炸 重大事故 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

山西省太原市8.19锅炉爆炸重大事故(一)事故概况 2004年8月19日21时40分,晋阳华龙纸业有限公司发生锅炉爆炸重大事故,造成3人死亡,3人重伤,7人轻伤。 8月19日下午,该厂负责人胡某安排无证司炉工侯某等人做点炉前的准备工作。20时20分左右来电后,开始上水进行点火运行,21时40分左右发生爆炸。胡、侯2人当场死亡,另1人抢救无效死亡,其他10人受伤。 锅炉爆炸后,从锅壳中部环向焊缝热影响区全部撕开,撕裂成4块飞出,锅壳封头向外飞出约150m,其面积约2mz,其余3块分别向外飞出约4.5m、3m和1Om,面积均为1m2左右。冲天管倾斜,锅炉本体剩余部分略有位移。锅炉进入分汽缸的主汽管上阀门已破裂,锅炉、分汽缸上压力表均已损坏,安全阀下落不明。锅炉房坍塌,周围车间、平房遭到不同 (二)事故原因分析

1.事故发生时,分汽缸上供汽阀呈完全关闭状态,安全阀、压力表失灵,锅炉处于密闭状态.由于安全阀失效,无法自动排汽泄压,锅炉压力逐步上升,直至发生爆炸是事故的直接原因。 2.事故锅炉已被有关部门责令停用,该单位法人无视事故隐患和有关指令,在锅炉安全阀、压力表等安全附件均已失效的情况下,下令使用锅炉是事故的主要原因。 3.该企业擅自使用不具备专业资格的司炉工,在安全阀失效,关闭供汽阀门的情况下,锅炉完全处于密闭状态运行,而司炉工未能及时发现异常,盲目持续运行,是事故的重要原因。 (三)预防同类事故的措施 1.加大有关法规的宣传力度,联合有关部门加强对“五小”企业违法使用锅炉的查处工作,严格执行有关国家法律法规和安全技术规范。 2.企业必须登记、使用合格锅炉,任用有资质的司炉工。 3.对小型蒸汽锅炉的安全附件进行认真检查,确认锅炉安全阀、压力表有效可靠。

锅炉事故案例大全汇编

目录 1. 鞍钢某选矿厂锅炉烧坏事故 (1) 2. 南京化学纤维厂锅炉爆管 (1) 3. 天津某厂锅炉爆炸事故 (2) 4. 天津大港电厂锅炉炉膛爆炸事故 (3) 5. 设计缺陷终酿事故 (4) 6. 嘉兴市某厂锅炉过热器爆管事故 (5) 7. 某公司锅炉炉膛煤气爆炸事故 (6) 8. 延安双翼石化公司锅炉炉膛爆炸事故 (7) 9. 郑州某厂锅炉烧干锅事故 (8) 10. 天津外运公司汽车队锅炉炉胆烧塌 (9) 11. 佛山市某公司锅炉水冷壁爆管事故 (9) 12. 河南某锅炉公司锅炉炉膛爆炸 (10) 13. 山西某造纸厂锅炉爆炸 (12) 14. 一起罕见的锅炉水冷壁爆管事故 (12) 15. 宁波市北仑港发电厂锅炉爆炸事故分析 (13) 16. 某造纸厂锅炉爆炸事故 (16) 17. 北京市昌平县回龙观区霍营乡塑料厂锅炉爆炸 (17) 18. 朝阳市长征轮胎厂锅炉炉管烧化 (17) 19. 哈尔滨新香坊化立厂锅炉爆炸 (18) 20. 河南某化工厂锅炉锅筒产生裂纹 (19) 21. 黑龙江安达糖厂锅炉爆炸 (19) 22. 辽源东丰啤酒厂锅炉爆炸 (20) 23. 黑龙江省五建公司锅炉爆炸 (21) 24. 天津某化工厂锅炉炉胆烧塌事故 (21) 25. 一起锅炉受热面泄漏事故案例 (22) 26. 牡丹江制油厂锅炉爆炸 (23)

1. 鞍钢某选矿厂锅炉烧坏事故 一、事故概况及经过 1990年2月16日,鞍钢矿山公司某选矿厂,动力车间2#锅炉——SZZl0—1.25蒸汽采暖锅炉发生重大缺水事故,造成炉膛内71根水冷壁管变形,其中严重变形21根,锅筒部分脱碳,直接经济损失39000元。 2月15日14时30分,司炉工在清理锅炉房时,2号锅炉处停炉压火状态,甲班司炉长发现双色水位计失灵,找仪表工检修。仪表工检查认定双色水位计12孔插头进水,暂时不起作用,便将双色水位计电源开关拉开断电,并告诉司炉班长。22时40分交接班时,甲班司炉班长未交待给乙班上述情况,乙班起动2#锅炉时发现水位计全绿色指示,就认为锅炉满水,当即开启两组排污阀放水,排污20分钟后见水位绿色指示还不下来就开启总排污阀。直到23时45分,才发现炉膛正压,到炉顶看水位时,发现水冷壁已经烧红,等到关闭排污阀、停炉已是16日0点10分。 二、事故原因分析 1.交接班不清,甲班已知道双色水位计失灵,不能再用,但没有将此情况交待给乙班,交接班记录也未填写。 2.司炉工未认真执行操作规程,锅炉启动前未认真检查水位。 3.乙班司炉发现水位连续长时间报警却不作认真检查,长时间排污却不去核查实际水位。 4.领导管理不力,规章制度不落实。 三、防止同类事故的措施 严格执行交接班制度,并认真填写交接班记录。水位计失灵应有标记,可有助于接班人员注意。接班人员在接班时应全面检查锅炉运行状态。 2. 南京化学纤维厂锅炉爆管 一、事故概况及经过 1986年4月22日,南京化学纤维厂SHL20—1.27型蒸汽锅炉因缺水而造成严重损坏,直接经济损失达30000元以上。 4月22日11时,该锅炉升火给车间供汽,至14时锅炉负荷开始增大,15时司炉工在仪表控制室听到高水位报警并看到黄色指示灯亮,仪表盘上的色带水位指示偏高便开始排污50秒钟, 但这样处理后半小时,色带指示又在高水位的位置。而炉前平板玻璃水位计已看不见水位,只认为是轻微缺水,于是到炉顶叫水, 看到有少量的水上来(实际上是因水连管连接不当造成的假水位),就按轻微缺水处理,加大进水,可仍不见水位上升,而见到省煤器安全阀有汽喷出。于是立即停泵,到炉前打开看火门时,听到炉内有响声,这时才判定是炉管爆破,采取紧急停炉措施。后经检查发现,34根炉膛水冷壁管和259根对流管均已不同

燃气锅炉炉膛爆炸事故预防参考文本

燃气锅炉炉膛爆炸事故预 防参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

燃气锅炉炉膛爆炸事故预防参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、概述 燃气锅炉炉膛爆炸主要是因为炉膛或烟道内有处于爆 炸极限的爆炸性混合气体于明火或被锅炉本身的高温引 燃。炉膛发生爆炸时,不仅会影响安全生产,而且会使锅 炉和建筑物发生严重毁坏,给国家和人民的生命财产带来 巨大损失。 供热公司南泉车间现有SZS29-1.6/130/70-QT型燃气 锅炉3台,6座换热站,供热面积达55万平方米,使用呼 图壁油田经过脱硫处理的天然气作为锅炉燃料,天然气日 耗量最高达到12万立方米。燃气锅炉的安全运行时刻牵动 着公司领导和广大员工的心血。几年来,南泉车间以供热 公司EMS/OSH/HSE管理体系为载体,不断分析燃气锅炉

炉膛爆炸的危害和风险,制定了有效的防范措施,采用了国内外许多先进的新技术、新工艺和新设备,保证了锅炉房安全平稳运行。 二、锅炉炉膛爆炸事故类型及其原因 1、点火爆炸原因 1.1天然气管线设计安装不合理。 1.2连续点火不成功,再次点火时通风吹扫不够。 1.3阀门质量差易泄露或杂物卡住阀门关闭不严。 1.4点火过程中熄火或燃烧器未点燃,点火枪火苗未熄灭。 1.5违反操作规程,未吹扫,先开气,后点火。 2、熄火爆炸原因 2.1供气压力波动大。 2.2低负荷运行时给风量太大。 2.3燃烧器部分堵塞,气量不足。

早爆、拒爆事故预防与处理

早爆、拒爆事故预防与处理 一、早爆事故按其原因分类: 1、雷电直接击中非电爆破网路或爆破器材的早爆; 2、明火引起的早爆; 3、火力爆破事故:主要是由于导火索快燃、过短造成的早爆; 4、电爆网路事故:包括工业电、起爆电源、仪表电、雷电、静电、杂散电流、射频电、感应电引起的早爆; 5、运输事故;如撞车、撞船、装载运输炸药及碾药等造成的早爆; 6、误操作引起的早爆事故; 7、高温环境造成的早爆事故; 8、打残眼导致爆炸; 9、销毁爆破器材引起爆炸; 10、石头砸响盲炮、雷管、炸药引起早爆: 11、化学反应引起早爆:主要是由于炸药自燃或与某种矿粉直接接触所造成的。特征是:爆炸前有大量的棕色二氧化碳气体从药包中冒出,紧接着是爆炸响声。 二、拒爆事故的分类: 1、炸药过期变质、质量差引起拒爆,如失去雷管感度,不能正常传爆,受潮结块,感度下降;密度变大,失去爆轰性能。 2、电爆网路拒爆,如设计电流不够,起爆器容量不够,接触电阻过大,线路接地、漏电,违反“三同”原则,漏接。 3、导爆索网路拒爆,如导爆索质量差,或因储存时间长,保管不良而受潮变质,漏接,施工过程中砸断线路,雷管反接,锐角传爆,

搭接不好,导爆索浸油,前排爆破挤、拉断后排导爆索,导爆索断药。 4、非电索导爆管网路的拒爆,如雷管接头不好,连接器质量有问题、漏接、微差,爆破时导爆管被冲断、拉断,导爆管有漏药段、有水、局部拉细等现象。 5、导火索起爆的拒爆,如导火索受潮,导火索断药或出现死疙瘩,连接处加工不好,雷管进水或炸药受潮,漏点火。 6、装药、堵塞作业造成拒爆,如不连续装药造成部分拒爆,装药过密。炸药感度对于深孔爆破和硐室爆破,爆破后发现下列之一者,可以着判断其药包发生了拒爆。 (1)爆破效果与设计有较大差异,爆堆形态和设计有较大差别,地表无松动或抛掷现象。 (2)在爆破地段范围内残留炮孔,爆堆中留有岩坎、陡壁或两药包之间有显著的间隔。 (3)现场发现残药和导爆索残段。 三、早爆事故的预防 1、搜集相关资料,仔细勘察现场,精心设计施工,尽量预估出意外事故的可能性。 2、制定安全制度、岗位责任制度和关键技术操作规程。 3、做好药室、炮孔的监督、检查和验收工作。 4、按规程要求做好爆破器材的检验。保证起爆器材和炸药的质量,防止由于导火索的快燃,炸药自身的化学反应引动早爆; 5、注意天气预防,避免在雷雨时从事爆破作业,对已装药又不能赶在雷雨前起爆的,人员和设备要撤离到危险区以外; 6、严格遵守爆破规程,在爆破施工区严禁有明火。 7、按爆破安全规程规定的要求进行爆破器材的运输、储存、保管和废旧爆破器材的销毁;

锅炉典型事故处理

锅炉典型事故处理 9.5.1锅炉给水流量低 9.5.1.1 现象: a)集控CRT上给水流量降低,给水压力降低。 b)主蒸汽流量及机组负荷下降。 c)锅炉受热面工质温度上升。 d)给水流量、主汽温度超限报警。 e)严重时,给水流量低炉MFT。 9.5.1.2 异常原因: a)给水泵跳闸,控制系统跟踪不良或运行给水泵出力不满足当前给水流量需要。 b)给水管道、高加严重泄漏。 c)高加、给水阀门故障。 d)给水自动失灵。 e)机组负荷骤减或其它原因造成汽动给水泵汽源压力下降或中断。 9.5.1.3 处理: a)负荷高于50%给水泵跳闸,RUN BACK发生应密切监视自动控制系统的工作情况,尽 量不要手动干预。控制系统工作不正常应果断将自动控制切换为手动,将运行给水 泵出力加至最大,同时降低制粉系统出力或停止部分制粉系统。启动电动给水泵,尽量满足电网需求负荷。负荷低于50%给水泵跳闸自动控制系统工作不正常,立即 切除给水自动,将运行泵给水流量增加至跳闸前的给水流量。 b)给水管道泄漏锅炉给水能保证维持运行,应根据情况适当降低机组负荷并调整煤- 水比正常后请示停机处理。高加泄漏应立即切除高加运行,根据给水温度降低情况 逐渐降低给水流量。当给水管道或高加泄漏威胁设备及人身安全应立即停止机组运 行。 c)高加、给水阀门故障如给水流量高于保护动作值应立即将负荷降低至对应给水流量 负荷,机组运行稳定后联系检修进行处理。如运行中无法对故障阀门进行处理,应 请示停炉处理。 d)给水自动装置工作不正常,应立即将自动切至手动,维持给水流量正常后联系热工 对自动控制系统进行处理。 e)机组负荷骤减或其它原因造成汽动给泵汽源压力下降或中断,当给水流量未达保护 动作值时,应立即恢复汽源压力,同时迅速调整给水流量或减少燃料量,维持煤、水之比,确保锅炉沿程温度正常。当给水流量低于保护动作值或锅炉受热面超温不 能立即恢复至正常值应立即手动MFT。 9.5.2锅炉汽水分离器温度高 9.5.2.1 现象: a)锅炉汽水分离器温度高。 b)汽水分离器温度高于报警值信号报警。 9.5.2.2 原因: a)机组协调运行不正常,手动调整不及时造成煤-水比严重失调。 b)给水泵跳闸或其他原因造成RUN BACK,控制系统自动跟踪不好或手动调整不好造成 煤-水比严重失调。

如何预防锅炉事故的发生

如何预防锅炉事故的发 生 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

如何预防锅炉事故的发生 ①锅炉爆炸事故 (a)超压爆炸:由于压力表失灵或操作人员对压力监视不严,致使压力上升,此时安全阀失效,从而造成锅炉锅筒内的压力超过其承受能力而破裂爆炸。 (b)缺陷导致爆炸:锅炉承受的压力未超过额定压力,但因主要承压部件出现裂纹、严重变形、腐蚀等情况,导致承压部件丧失承载能力,突然破裂爆炸。预防这类爆炸主要是加强检验,及时发现和处理存在的缺陷,避免锅炉带病运行。 (c)严重缺水导致爆炸锅炉一旦缺水,主要承压部件就得不到正常冷却,甚至烧红,此时如果给锅炉上水,就会酿成爆炸事故。 ②锅炉重大事故 (a)缺水事故: 由于操作人员对水位监视不严,或给水系统故障、锅炉管子爆破漏水等原因,造成锅炉水位低于水位表最低安全水位刻度线,形成缺水事故。

严重缺水会使锅炉蒸发受热面管子过热变形甚至爆破,处理不当还会导致锅炉爆炸事故。发现锅炉缺水时,首先用“叫水”的方法判断缺水的程度,然后予以不同的处理。对于轻微缺水,可以立即向锅炉上水;严重缺水时,必须紧急停炉检查,不得给锅炉上水。 (b)满水事故: 由于操作人员对水位监视不严,或水位表故障出现假水位而操作人员未及时发现,造成锅炉水位高于水位表最高安全水位刻度线,形成满水事故。严重满水时,锅水可进入蒸汽管道和过热器,造成水击和过热器结垢,并降低蒸汽品质。发现满水后,首先冲洗水位表,一旦确认满水,应立即关闭给水阀停止向锅炉上水,开启排污阀和疏水阀加强放水。 (c)汽水共腾: 由于锅水品质太差,或负荷变化过快,使锅炉蒸发表面汽水共同升起,产生大量泡沫并上下波动,形成汽水共腾现象。严重的汽水共腾会使蒸汽带水,导致蒸汽管道发生水击,并降低蒸汽品质。发现汽水共腾后,应减弱燃烧,关小主汽阀,打开排污阀,同时上水,以改善锅水品质。 (d)锅炉爆管:

锅炉爆炸事故预防措施详细版

文件编号:GD/FS-4276 (解决方案范本系列) 锅炉爆炸事故预防措施详 细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

锅炉爆炸事故预防措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1. 压力容器爆炸事故预防措施 1. 在设计上,应采用合理的结构。 2. 修理、安装、改造时,加强焊接管理,提高焊接质量并按规范要求进行热处理和探伤; 3. 加强材料管理,避免采用有缺陷的材料或用错钢材、焊接材料。 4. 加强使用管理,避免操作失误,超温、超压、超负荷运行、失检、失修、安全装置失灵等。 5. 加强检验工作,及时发现缺陷并采取有效措施。 2. 锅炉尾部再燃烧预防措施 1.尽可能减少不完全燃烧损失,减少锅炉的启停

次数。 2.加强尾部受热面的吹灰,保证烟道各种门孔及烟风挡板的密封良好。 3. 锅炉炉膛爆炸事故预防措施 1.根据锅炉的容量和大小,装设可靠的炉膛安全保护装置。 2.尽量提高炉膛及刚性梁的抗爆能力。 3.加强使用管理,提高司炉工人技术水平。 4.锅炉汽包缺满水预防措施 1、缺水事故 (1)轻微缺水时,可以立即向锅炉上水,使水位恢复正常。 (2)严重缺水时,必须紧急停炉。 2、满水事故 关闭给水阀停止向锅炉上水,启用省煤器再循环

炼铁生产事故的预防措施和技术详细版

文件编号:GD/FS-2099 (解决方案范本系列) 炼铁生产事故的预防措施 和技术详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

炼铁生产事故的预防措施和技术详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 炼铁厂煤气中毒事故危害最为严重,死亡人员多,多发生在炉前和检修作业中。预防煤气中毒的主要措施是提高设备的完好率,尽量减少煤气泄漏;在易发生煤气泄漏的场所安装煤气报警器;进行煤气作业时,煤气作业人员佩带便携式煤气报警器,并派专人监护。 炉前还容易发生烫伤事故,主要预防措施是提高装备水平,作业人员要穿戴防护服。原料场、炉前还容易发生车辆伤害和机具伤害事故。 烟煤粉尘制备、喷吹系统,当烟煤的挥发分超过10%时,可发生粉尘爆炸事故。为了预防粉尘爆

炸,主要采取控制磨煤机的温度、控制磨煤机和收粉器中空气的氧含量等措施。目前,我国多采用喷吹混合煤的方法来降低挥发分的含量。 可在这里输入个人/品牌名/地点 Personal / Brand Name / Location Can Be Entered Here

锅炉爆管典型事故案例及分析

锅炉典型事故案例及分析 第一节锅炉承压部件泄露或爆破事故大型火力发电机组的非停事故大部分是由锅炉引起的。随着锅炉机组容量增大,“四管”爆泄事故呈现增多趋势,严重影响锅炉的安全性,对机组运行的经济性影响也很大。有的电厂因过热器、再热器管壁长期超温爆管,不得不降低汽温5~10℃运行;而主汽温度和再热汽温度每降低10℃,机组的供电煤耗将增加0.7~1.1g/kWh;主蒸汽压力每降低1MPa,将影响供电煤耗2g/kWh。为了防止锅炉承压部件爆泄事故,必须严格执行《实施细则》中关于防止承压部件爆泄的措施及相关规程制度。 一.锅炉承压部件泄露或爆破的现象及原因 (一)“四管”爆泄的现象 水冷壁、过热器、再热器、省煤器在承受压力条件下破损,称为爆管。 受热面泄露时,炉膛或烟道内有爆破或泄露声,烟气温度降低、两侧烟温偏差增大,排烟温度降低,引风机出力增大,炉膛负压指示偏正。 省煤器泄露时,在省煤器灰斗中可以看到湿灰甚至灰水渗出,给水流量不正常地大于蒸汽流量,泄露侧空预器热风温度降低;过热

器和再热器泄露时蒸汽压力下降,蒸汽温度不稳定,泄露处由明显泄露声;水冷壁爆破时,炉膛内发出强烈响声,炉膛向外冒烟、冒火和冒汽,燃烧不稳定甚至发生锅炉灭火,锅炉炉膛出口温度降低,主汽压、主汽温下降较快,给水量大量增加。 受热面炉管泄露后,发现或停炉不及时往往会冲刷其他管段,造成事故扩大。 (二)锅炉爆管原因 (1)锅炉运行中操作不当,炉管受热或冷却不均匀,产生较大的应力。 1)冷炉进水时,水温或上水速度不符合规定;启动时,升温升压 或升负荷速度过快;停炉时冷却过快。 2)机组在启停或变工况运行时,工作压力周期性变化导致机械应 力周期性变化;同时,高温蒸汽管道和部件由于温度交变产生热应力,两者共同作用造成承压部件发生疲劳破坏。 (2)运行中汽温超限,使管子过热,蠕变速度加快 1)超温与过热。超温是指金属超过额定温度运行。超温分为长期 超温和短期超温,长期超温和短期超温是一个相对概念,没有严格时间限定。超温是指运行而言,过热是针对爆管而言。过热可分为长期过热和短期过热两大类,长期过热爆管是指金属在应力和超温温度的长期作用下导致爆破,其温度水平要比短期过热的水平低很多,通常不超过钢的临界点温度。短期过热爆管是指,在短期内由于管子温度升高在应力作用下爆破,其

典型锅炉事故及预防

典型锅炉事故及预防 Written by Peter at 2021 in January

典型锅炉事故及预防1.锅炉爆炸事故 1)水蒸气爆炸 锅炉中容纳水及水蒸气较多的大型部件,如锅筒及水冷壁集箱等,在正常工作时,或者处于水、汽两相共存的饱和状态,或者是充满了饱和水,容器内的压力则等于或接近锅炉的工作压力,水的温度则是该压力对应的饱和温度。一旦该容器破裂,容器内液面上的压力瞬即下降为大气压力,与大气压力相对应的水的饱和温度是100℃。原工作压力下高于100℃的饱和水此时成了极不稳定、在大气压力下难于存在的“过饱和水”,其中的一部分即瞬时汽化,体积骤然膨胀许多倍,在容器周围空间形成爆炸。 2)超压爆炸 超压爆炸指由于安全阀、压力表不齐全、损坏或装设错误,操作人员擅离岗位或放弃监视责任,关闭或关小出汽通道,无承压能力的生活锅炉改作承压蒸气锅炉等原因,致使锅炉主要承压部件筒体、封头、管板、炉胆等承受的压力超过其承载能力而造成的锅炉爆炸。 超压爆炸是小型锅炉最常见的爆炸情况之一。预防这类爆炸的主要措施是加强运行管理。 3)缺陷导致爆炸

缺陷导致爆炸指锅炉承受的压力并未超过额定压力,但因锅炉主要承压部件出现裂纹、严重变形、腐蚀、组织变化等情况,导致主要承压部件丧失承载能力,突然大面积破裂爆炸。 缺陷导致的爆炸也是锅炉常见的爆炸情况之一。预防这类爆炸,除加强锅炉的设计、制造、安装、运行中的质量控制和安全监察外,还应加强锅炉检验,发现锅炉缺陷及时处理,避免锅炉主要承压部件带缺陷运行。 4)严重缺水导致爆炸 锅炉的主要承压部件如锅筒、封头、管板、炉胆等,不少是直接受火焰加热的。锅炉一旦严重缺水,上述主要受压部件得不到正常冷却,甚至被烧,金属温度急剧上升甚至被烧红。在这样的缺水情况下是严禁加水的,应立即停炉。如给严重缺水的锅炉上水,往往酿成爆炸事故。长时间缺水干烧的锅炉也会爆炸。 防止这类爆炸的主要措施也是加强运行管理。 【例题】:在锅筒和潮湿的烟道内检验而用电灯照明时,照明电压不应超过()v。 A.12 B.24 C.36 D.220 【答案】:B

锅炉事故及事故案例

锅炉事故的原因及其预防 锅炉是在高温高压的不利工作条件下运行的,操作不当或设备存在缺陷都可能造成超压或过热而发生爆破或爆炸事故。锅炉的部件较多,体积较大,有汽、水、风、烟等复杂系统,如运行管理不善,则燃烧、附件及管道阀门等都随时可能发生故障,而被迫停止运行。 锅炉的爆破爆炸事故,常常是造成设备、厂房毁坏和人身伤亡的灾难性事故。锅炉机组停止运行,使蒸汽动力突然切断,则会造成停产停工的恶果。这些事故的发生,都会给国民经济和人民生命安全带来巨大损失。所以,防止锅炉事故的发生,有着十分重要的意义。 一.事故分类 锅炉事故按事故的严重程度可分为: 锅炉爆炸事故、重大事故与一般事故。 锅炉爆炸事故是锅炉运行中,锅筒、集箱等部件损坏,并有较大的泄压突破口而在瞬间将工作压力降至大气压的一种事故。这种事故爆炸威力大,造成的损失很大。 重大事故是运行中发生爆破、爆管、严重变形、炉膛塌陷、炉墙倒墙、钢架烧红等而被迫停炉大修的各类事故。 一般事故则是运行中发生故障而被迫停炉,但又能很快恢复运行的事故。 锅炉事故如按事故发生的部位来分类,则有锅筒等水容量较大的受压部件突然开裂的爆炸事故,炉管爆炸事故,省煤器事故,过热器事故,管道、烟道、炉墙事故;安全附件、给水设备、燃烧设备等部位的事故。 锅炉事故如按事故发生的原因来分类,则有水位监督不慎造成的缺水、

满水事故,水质不好引起的事故,设计、制造或安装、检修不良引起的事故,维修保养不当,而由腐蚀、积结污垢灰焦而引起的事故,燃烧控制不好引起的事故。 二.事故的预防 ⒈应健全锅炉运行规程、安全操作规程、岗位责任制、检修质量标准、交接班制度等各项有关规章制度,并严格贯彻执行。(八项制度、六项纪录) ⒉应加强锅炉用水管理,给水水质应符合规定要求,软化水应达到质量标准,炉水碱度不应过高。排污要有制度,受热面内部应保持不结垢或仅有较簿水垢,定期用机械或化学方法清除水垢,以免造成钢板或钢管过热。 ⒊在安装和检修时,应选用符合图纸要求的材料。 ⒋采用合理的锅炉结构。在制造、安装或检修以及锅炉的技术改造中,应注意改进锅炉的不合理结构,使之达到合理或基本合理。 ⒌有计划的组织培训司炉人员和管理人员,提高安全运行操作和管理水平。司炉人员在熟悉设备性能的基础上,达到安全经济运行,避免发生事故。司炉人员要坚守工作岗位,在事故发生时,应冷静迅速地采取处理措施。三.常见的锅炉事故 近年来,锅炉爆炸事故时有发生,缺水事故最为常见,而且危害较大。再有就是因水质管理不善而造成的炉管等受热面过热烧损事故。在叙述常见锅炉事故时,除了锅炉爆炸事故和缺水、满水、汽水共腾事故以外,其他事故均以事故发生的部位来分别叙述。 (一)锅炉爆炸事故 锅炉爆炸发生是由于锅筒(汽水锅筒或水锅筒)破裂,锅筒内储存着的几吨、甚至几十吨有压力的饱和水及汽瞬时释放巨大能量的过程。

锅炉事故的原因及其预防正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.锅炉事故的原因及其预防 正式版

锅炉事故的原因及其预防正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 锅炉是在高温高压的不利工作条件下运行的,操作不当或设备存在缺陷都可能造成超压或过热而发生爆破或爆炸事故。锅炉的部件较多,体积较大,有汽、水、风、烟等复杂系统,如运行管理不善,则燃烧、附件及管道阀门等都随时可能发生故障,而被迫停上运行。 锅炉的爆破爆炸事故,常常是造成设备、厂房毁坏和人身伤亡的灾难性事故。锅炉机组停止运行,使蒸汽动力突然切断,则会造成停产停工的恶果。这些事故

的发生,都会给国民经济和人民生命安全带来巨大损失。所以,防止锅炉事故的发生,有着十分重要的意义。 一、事故分类 锅炉事故按事故的严重程度可分为:锅炉爆炸事故、重大事故与一般事故。 锅炉爆炸事故是锅炉运行中,锅筒、集箱等部件损坏,并有较大的泄压突破口而在瞬间将工作压力降至大气压力的一种事故。这种事故炸爆威力大,造成的损失很大。

重大事故是运行中发生爆破、爆管、严重变形、炉膛塌陷、炉墙倒墙、钢架烧红等而被迫停炉大修的各类事故。 一般事故则是运行中发生故障而被迫停炉,但又能很快恢复运行的事故。 锅炉事故如按事故发生的部位来分类,则有锅筒等水容量较大的受压部件突然开裂的爆炸事故,炉管爆破事故,省煤器事故,过热器事故,管道、烟道、炉墙事故;安全附件、给水设备、燃烧设备等部位的事故。 锅炉事故如按事故的发生原因分类,

山西锅炉爆炸事故案例

山西锅炉爆炸事故案例 2000年11月28日4时30分,山西省文水县嘉宝酒业有限公司一台锅炉造成2人死亡,2人重伤,2人轻伤。直接经济损失30万元,间接损失20万元。 1.事故发生主要经过 2000年11月21日,文水县嘉宝酒业有限公司从交城县安定村鑫宇焊接厂拉回一台锅炉。锅炉的钢板、封头、冲天管、火管是由嘉宝酒业有限公司自备,由交城县安定村鑫宇焊接厂制造成没有任何附件的立式火管蒸汽锅炉,经嘉宝酒业有限公司维修人员开孔安装了安全阀、压力表、水位计、上水、主汽管、排污附件后,就位安装。于2000年11月27日上午安装完成,接着进行了0.7~0.9MPa的冷态试压两次后,调整了安全阀,公司领导安排司炉人员下5点开始点火煮炉,晚上10点压火,司炉人员下班,2000年11月28日4时,早班司炉工上班开如启动锅炉,通火升温,大约在4时30分左右突然一声巨响,锅炉发生了爆炸,炉体骤然释放出强大气流,锅炉失稳倒落在距锅炉原地6地米外的空地上,烟囱落在距锅炉本体10余米处的空地上断为数节,锅炉底部在灰坑炸成一个1.5×4米的大坑,原炉的燃煤灰四周飞落,在声的4人2人死亡,2人重伤,距锅炉较远的2人也不同程度地受了轻伤。 2.事故前设备状况 事故发生后,通过现场勘察,向有关当事人和群众调查了解该锅炉是嘉宝酒业有限公司从太原买回两个废旧碟形封头(Φ2200×10)和(Φ108×6)的钢管,榆次制做两个封头。(2500×14、 2200×14),交城购买10mm钢板,由交城县安定村鑫宇焊接厂制做的

一台(6200×2500)立式火管锅炉,装有安全阀一个,压力表一个,水位计两个,排污阀一组,从锅炉的设计、制造、安装直到投入使用,均无任何资料、图纸、材质证明,也未向有关部门输过任何手续,属非法制造锅炉。 3.事故破坏情况 锅炉的爆炸点是在上烟室上封头,与冲天管的角焊缝根部初裂,尔后沿碟形封头两端撕开长1700MM的大口,未撕开的部分有明显的不规则向下鼓包变形,烟囱的第一道法兰螺栓断开折成数段,炉坑下部炸出一个1.5×4m的大坑,由于没有锅炉房,没有造成建筑物的损失。通过事故调查了解,该锅炉是私自设计、土法制造、自行安装投入使用的非法私造锅炉,各个环节均没有任何资料与合法手续,整个制造、安装,使用过程中的人员都没有经过专业方面的培训学习,锅炉知识比较溃乏。是造成这次事故的主要原因。 从锅炉的状况看,属粗制滥造,所有材料均非锅炉专用,特别是上烟箱的两个封头,是从原废旧化工设备上割下来的,外表面有黄色漆防腐涂层内表面腐蚀比较严重,部分部位的腐蚀凹坑接近板厚的一半,从断口看,钢板已成层状断面,没有塑性变形,氢脆明显,且与冲天管直角焊口连接,结构极不合理,焊缝超宽,且有较长而深的咬边。碟形封头水平直面较大,板材较薄,在变形外向受力的情况下,鼓包变形直到从焊口根部开裂,继而向两端撕开,导致大量汽流向烟管、烟囱涌出,是形锅炉爆炸事故的直接原因。 锅炉在制造完工后,在无任何科学依据的情况下,进行了两次0.7~0.9MPa的冷态水压试验,操作方法是用锅炉多级给水泵加压,也未保压,难以发现缺陷。锅炉安全阀定压与工

高炉炉前事故的预防与处理示范文本

高炉炉前事故的预防与处 理示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

高炉炉前事故的预防与处理示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 高炉炉前出现事故,不仅会直接影响高炉的正常生 产,而且会威胁到人身安全,为此,高炉操作者应强化炉 前生产组织,以便适应快节奏生产的需要。 1渣坝过铁事故 渣坝过铁会造成铁水流入渣槽放炮,堵塞渣槽,严重 者会崩倒渣槽,导致高炉被迫休风。西钢2号高炉春检复 风后,由于电炮出现故障,使撇渣器流铁不畅通,渣坝过 铁,铁水流入渣槽放炮,崩倒渣槽、崩坏渣槽衬板,高炉 被迫休风,影响了炉况的正常恢复。采取的措施有: (1)增设杠杆式活动渣坝插板,确保渣坝耐铁水冲刷;

(2)增设二次渣坝,必要时渣铁落地; (3)逢春检、秋检,铁水流动性差,撇渣器未投用前放干渣,一方面减少铁水粘罐,影响铁水罐的正常周转,另一方面为快速恢复炉况创造有利条件; (4)强化炉前设备的日常维护工作,确保出现突发性事故能够及时采取相应的有效措施; (5)高炉操作者及时采取相应的操作手段,如休、拉、排、减风,以便减少事故损失,防止事故扩大化。 2铁水跑大流事故 铁口连续过浅或开铁口操作不当,极易导致出铁时

锅炉爆炸事故专项应急预案

锅炉爆炸事故专项应急预案 1 事故风险分析 燃气锅炉事故属于工业热灾害三种主要事故类型中造成损失最大的爆炸事故。主要可分为两种爆炸原因,一是炉膛爆炸,另一种是炉体爆炸。燃气锅炉发生爆炸事故频率较高。 (1)燃气锅炉的火灾危险性分析 燃气锅炉的燃料是可燃气体,主要是天然气或煤气。天然气和煤气的主要成分都是甲烷,还搀杂一些简单的烷烃,这些组分都是高度易燃易爆的气体,天然气的爆炸下限为4%,煤气的爆炸下限为6.2%,极易发生爆炸事故。 (2)炉膛爆炸火灾危险性 炉膛爆炸是由于可燃气体漏入并与空气混合形成爆炸性混合物,这种混合物处在爆炸极限范围时一接触到适当的点火源就会发生爆炸事故。伴随着化学变化,炉内气体压力瞬时剧增,所产生的爆炸力超过结构强度而造成向外爆炸,由于在极短时间内大量能量在有限体积内积聚,造成锅炉炉膛处于非寻常的高压或高温状态,使周围介质发生震动或邻近的物质遭到破坏。炉膛爆炸主要由以下因素造成。 1)点火不当 在点火时,如启动操作不当,出现熄火而又未及时切断气源、配气管进行可燃气体吹扫,或吹扫不彻底、打开阀门时喷嘴也点不着火或者被吹灭,或其他可能使炉膛中存积大量高浓度可燃气体并处于爆炸极限范围内的情况,则再次点火时引燃这些可燃气体,引起爆炸。 2)火焰不稳定而熄灭 如果煤气燃烧器出力过大,火焰就会脱开燃烧器,发生脱火现象;相反出力过小,火焰就会缩回燃烧器内,发生回火现象,使锅炉运行中火焰不稳定而熄灭,由于炉膛呈炽热状态,达到或超过可燃气体与空气混合物的着火温度,且继续进入可燃气体时,就有可能立即发生爆炸。 3)设备不完善 阀门漏气,设备不完善,没有点火、灭火保护装置和火焰检测装置,可燃气体充满炉内点火发生爆炸。 4)输气管道泄漏

相关文档
相关文档 最新文档