文档库 最新最全的文档下载
当前位置:文档库 › 无线传感器网络典型时间同步技术分析_杨颖2

无线传感器网络典型时间同步技术分析_杨颖2

无线传感器网络典型时间同步技术分析_杨颖2
无线传感器网络典型时间同步技术分析_杨颖2

2011年第24卷第12期

Electronic Sci.&Tech./Dec.15,2011

协议·算法及仿真

收稿日期:2011-06-02

基金项目:陕西省教育厅专项科研计划基金资助项目(09JK492)作者简介:杨颖(1986—),女,硕士研究生。研究方向:无线传感器网络。刘军(1963—),男,硕士研究生。研究方向:无线数据通信,电子技术应用。

无线传感器网络典型时间同步技术分析

颖,刘军

(武警工程学院研究生管理大队,陕西西安710086)

从无线传感器网络特点出发,结合三种时间同步模型及已有的时间同步算法,根据评价时间同步算法性能的指标,对典型的时间同步算法性能进行了分析评估,为进一步改进时间同步算法的性能提供了帮助。

关键词无线传感器网络;时间同步;模型

中图分类号

TP212.9

文献标识码

A

文章编号1007-7820(2011)12-093-04

Analyzing of Typical Time Synchronization Technique for Wireless Sensor Networks

YANG Ying ,LIU Jun

(Graduate Management Team ,Engineering College of CAPF ,Xi'an 710086,China )

Abstract

From the characteristics of WSN ,the article analyzes tree time synchronization models and existing

time synchronization algorithms.According to the performance guidelines of time synchronization algorithms ,these synchronization methods are compared and analyzed ,which helps to make further improvement on the performance of the time synchronization algorithm.

Keywords

wireless sensor networks ;time synchronization ;model

无线传感器网络是集微机电系统、传感器技术、嵌入式计算技术、信息处理技术、现代网络、无线通信技术和数字电子学于一体的新一代面向任务的分布式网络。它是由在物理空间上密集分布的大量各类集成化的传感器节点,通过自组织方式构成网络,借助节点中

不同类型的微型传感器实时监测、

感知和采集各种环境或被监测对象信息,协作地进行处理,并以自组织多

跳的方式将信息传送到用户终端,实现物理世界、计算机世界以及人类社会三元世界的连通[1]

。无线传感器

网络具有广阔的应用前景,

主要应用在工业控制、生态环境、农业、防灾救灾、医疗保健、军事国防、智能家居、

空间探索、物流等领域。时间同步是无线传感器网络支撑技术的重要组成部分。研究无线传感器网络中的时间同步首先要分析其应用需求,在无线传感器网络中,由于传感器节点分布密度高,而且自身资源有限,因此传统网络中高精度、不计成本和能耗的时间同步技术就不再适用于无线传感器网络,例如NTP 协议。因此,研究适合无线传感器网络的时间同步就成为个国内外热点问题。

1

时间同步模型及算法

1.1

时间同步模型

随着时间同步概念的提出,其根据应用需求经历

了3种模型的演变。

(1)模糊模型。是指所谓的时间同步仅需知道事件发生的先后次序,无需了解事件发生的具体时间。它是将时间同步简化为先来后到的问题,给人直观的印象,无须将细节具体化。(2)相对模型。指在维持节点间的相对时间。在该模型中,节点间彼此独立,不同步,每个节点都有自己的本地时钟,且它知道与其他节点的时间偏移量。根据需要,每个节点可与其他节点保持相对同步。(3)精准模型。特点在于它的惟一性,它要求全网所有节点都与基准参考点保持同步,维持全网惟一的时间标准。

1.2时间同步算法

随着应用需求的不断提高,时间同步趋于第3种模型,而时间同步算法也逐步成熟,完成级间的跳跃。1.2.1

RBS

RBS (Reference Broadcast Synchronization )[2]由J.Elson 等人于2002年提出基于参考广播接收者与接收者之间的局部时间同步。具体描述为:第三方节点定时发送参考广播给相邻节点,相邻节点接收广播并记录到达时间,以此时间作为参考与本地时钟比较。相邻节点交换广播到达时间利用最小方差线性拟合的

DOI:10.16180/https://www.wendangku.net/doc/df6646677.html,ki.issn1007-7820.2011.12.031

协议·算法及仿真

杨颖,等:无线传感器网络典型时间同步技术分析

方法,估算两者的初始相位差和频率差,以此调整本地时钟,达到接收节点间的同步。为提高同步精度,可以增加参考广播的个数,

也可以多次广播。RBS 消除了发送节点的时延不确定性,误差来源于传输和接收时延,同步精度较高;但由于多次广播参考消息,能耗较大,随着网络规模及节点数目的增多,开销也会越来越大,不适用于能量有限的无线传感器网络。1.2.2

TPSN

TPSN (Timing -sync Protocol for Sensor Networks )[3]

是由Saurabh Ganeriwal 等人于2003年提出的基于成对双向消息传送的发送者与接收者之间的全网时间同步。具体描述如下:同步过程分为分层和同步两个阶段。分层阶段是一个网络拓扑的建立过程。首先

确定根节点及等级,

此节点是全网的时钟参考节点,等级为0级,根节点广播包含有自身等级信息的数据

包,相邻节点收到该数据包后,确定自身等级为1级,然后1级节点继续广播带有自身等级信息的数据包,

以此类推,

i 级节点广播带有自身等级信息的数据包,其相邻节点收到后确定自身等级为i +1,直到网络中

所有节点都有自身的等级。一旦节点被定级,它将拒收分级数据包。同步阶段从根节点开始,与其下一级节点进行成对同步,然后i 级节点与i -1级节点同步,直到每个节点都与根节点同步。成对同步的过程如图1所示

图1成对同步过程

节点i 在本地时刻T 1时向节点j 发送同步请求,

该请求中包含节点i 的等级和T 1,节点j 在本地时刻T 2时收到请求并在T 3时回发同步应答,该应答包含T 2和T 3,节点i 于本地时刻T 4收到应答信息,根据时间关系可列出方程

T 2=T 1+d +Δ(1)T 4=T 3+d -Δ(2)其中,d 是消息传输迟延;Δ为时钟偏差,经过计算得d =(T 2-T 1)+(T 4-T 3)2

(3)

Δ

=(T 2-T 1)-(T 4-T 3)2(4)节点i 计算出时间偏差Δ,从而调整自己的时钟,达到

同步。

TPSN 采用层次分级形成拓扑树结构,从根节点开始完成了所有叶子节点与根节点的同步,在MAC 层打时间戳,降低了发送端的不确定性,减少了传送时延、传播时延和接收时延。该算法中任意节点的同步误差与其到根节点的跳数有关,跳数越多,误差越大,而与网络节点总数无关,所以该算法具有较好的可扩展性;但由于全网参考时间由根节点确定,一旦根节点失效,就要重新选取根节点进行同步,其鲁棒性不强,再同步

还需要大量计算和能量开销,增加整个网络负荷。1.2.3

DMTS

DMTS (Delay Measurement Time Synchroniza-tion )[4]是由Ping S 于2003年提出的基于基准节点广

播的发送者与接收者之间的全网时间同步。具体描述为:选择一个基准节点,广播包含时间的同步消息,接收节点根据时间信息估算消息传输时延,调整自身本地时间为同步消息所带时间加传输时延,消息传输时延t d 等于发射时延t s 加接收处理时间t v ,发射时延为发射前导码和起始符所需的时间,等于发射位数n 乘以发射一位所需的时间t ,接收处理时间等于接收处理完成时间t 2减消息到达时间t 1,得出公式

t d =t s +t v =nt +(t 2-t 1)

(5)

将DMTS 应用到多跳网络中还采用与TPSN 相同的分层方法进行同步,只是将每一层看作一个单跳网络,基准节点依次定在0级,1级,2级,n 级,逐步实现全网同步。为避免广播消息回传,每个节点只接收上一层等级比自己低的节点广播。

DMTS 以牺牲同步精度换取低能耗,结合使用在MAC 层打时间戳和时延估计技术,消除了发送时延和接入时延,计算简单,开销小;但DMTS 没有估算时钟频偏,时钟保持同步时间较短,时钟计时精度仍然影响

同步精度,致使精度不高难以用于定位等高精度的应用中。1.2.4

FTSP

FTSP (Flooding Time Synchronization Protocol )[5]是由Branislav Kusy 于2004年提出的基于单向广播消息传递的发送者与接收者之间的全网时间同步。FTSP 是对DMTS 的改进,具体不同在于:

(1)FTSP 降低了时延的不确定性,将其分为发送中断处理时延、编码时延、传播时延、解码时延、字节对齐时延和接收中断处理时延。

(2)类似于RBS ,FTSP 可通过发送多个信令包,接收节点通过最小方差线性拟合计算出发送者与接收者之间的初始相位差和频率差。

杨颖,等:无线传感器网络典型时间同步技术分析协议·算法及仿真

(3)FTSP根据一定时间范围内节点时钟晶振频率

稳定原则,得出各节点间时钟偏移量与时间成线性关

系,利用线性回归的方法通过节点周期性发送同步广

播使得接收节点得到多个数据对构造回归直线,而且

在误差允许的时间间隔内,节点可通过计算得出某一

时间节点间时钟偏移量,减少了同步广播的次数,节省

了能量。

(4)FTSP提出了一套较完整的针对节点失效、新

节点加入等引起的拓扑结构变化时根节点选举策略,

从而提高了系统的容错性和健壮性。

FTSP通过在MAC层打时间戳和利用线性回归的

方法估计位偏移量,降低了时延的不确定性,提高了同

步精度,适用于军事等需要高同步精度的场合。

1.2.5LTS

LTS(Lightweight Time Synchronization)[6]是由Van

Greunen Jana和Rabaey Jan于2003年提出的基于成对

机制的发送者与接收者之间的轻量级全网时间同步。

该算法是在成对同步的基础上进行了改进,具体包括

两种同步方式:第一种是集中式,首先构建一个低深度

的生成树,以根节点作为参考节点,为节省系统有限能

量,按边进行成对同步,根节点与其下一层的叶子节点

成对同步,叶子节点再与其下一层的孩子节点成对同

步,直到所有节点完成同步,因为同步时间和同步精度

误差与生成树的深度有关,所以深度越小,同步时间越

短,同步精度误差越小;第二种是分布式,当节点i需

要同步时,发送同步请求给最近的参考节点,此方式中

没有利用生成树,按已有的路由机制寻找参考点。在

节点i与参考节点路径上的所有节点都被动地与参考

节点同步,已同步节点不需要再发出同步请求,减少了

同步请求的数量。为避免相邻节点发出的同步请求重

复,节点i在发送同步请求时询问相邻节点是否也需

同步,将同步请求聚合,减少了同步请求的数目和不必

要的重复。

LTS根据不同的应用需求在可行的同步精度下降

低了成本,简化了计算复杂度,节省了系统能量。

1.2.6Tiny-sync和Mini-sync

Tiny-sync和Mini-sync[7]是由Sichitiu和

Veerarittipahan于2003年提出的基于双向消息传递的

发送者和接收者之间的轻量级时间同步。该算法的前

提是假设每个时钟可近似为一个频率固定的晶振,则

两个时钟C

1(t),C

2

(t)满足如下线性关系

C

1

(t)=a

12

C

2

(t)+b

12

(6)

其中,a

12是两时钟的相对漂移;b

12

是两时钟的相对

偏移。

算法仍采用TPSN中的双向信息传递,不同之处在于Tiny-sync和Mini-sync发送多次探测信息,探

测信息与以往的同步请求不同,接收节点收到探测信息后立即返回消息,具体如下:节点i在本地时刻t

发送一个探测消息给节点j,节点j收到消息后记录本地

时间t

b

并立即返回消息,节点i接收到消息后记录本

地时间t

r

。(t

,t

b

,t

r

)叫做数据点,节点i多次发送探

测消息,并根据式(6)用线性规划的原则得到a

12

和b

12的最优估计,但用所有点计算运算量过大,Tiny-sync 则是每次获得新数据点后与先前的进行比较,误差小于先前的误差时才采用新数据点,否则抛弃。Mini-sync是Tiny-sync的优化,修正了Tiny-sync可能抛弃有用点的缺憾,留下了可能在后面提供较好边界条件的数据点。

Tiny-sync和Mini-sync为满足无线传感器网络低能耗的要求,交换少量信息,利用夹逼准则和线性规划估算频偏和相偏,提高了同步精度,降低了通信开销。

2时间同步算法性能对比分析

2.1时间同步算法的性能评价指标

根据无线传感器网络自身资源有限、节点成本低、功耗低、自组织网络等特点,应从以下几点考虑无线传感器网络的时间同步算法[8]。

(1)能耗。由于无线传感器网络自身节点能量有限,其时间同步算法应保证在精度有效的前提下实现低能耗。

(2)可扩展性。在无线传感器网络中,节点数目增减灵活,时间同步算法应满足节点数目增减和密度变化,具有较强的可扩展性。

(3)鲁棒性。由于环境、能量等其它因素容易导致无线传感器网络节点无法正常工作,退出网络,所以时间同步算法应具有较强鲁棒性,保证通信畅通。

(4)同步寿命。是指节点间达到同步后一直保持同步的时间。同步寿命越短,节点就需要在较短时间内再同步,消耗的能量就越高。时间同步需要同步寿命较长的算法。

(5)同步消耗时间。是指节点从开始同步到完成同步所需的同步。同步消耗时间越长,所需的通信量、计算量和网络开销就越大,能耗也越高。

(6)同步间隔。是指节点同步寿命的结束到下一次同步开始所间隔的时间。同步间隔越长,同步开销就越小,能耗越低。

(7)同步精度。不同的应用要求不同数量级的同步精度,有的时间同步只需知道事件发生的先后顺序而有些则需精确到μs级。

协议·算法及仿真杨颖,等:无线传感器网络典型时间同步技术分析

(8)同步范围。分为全网同步和局部同步,全网同步难度大、费用高;局部同步较易实现。权衡整个系统的功能应用及能耗开支等因素才能选择合适的同步范围。

(9)硬件限制。考虑传感器节点的体积、大小、成本,时间同步算法会受到传感器节点硬件的限制,只有依赖硬件的条件,才能设计出满足应用需求的时间同步算法。

2.2时间同步算法性能对比分析

经过在Mica2节点上的对比实验,根据这些指标对以上的时间同步算法进行比较分析。具体性能比较如表1所示。

表1时间同步算法性能对比分析表

RBS TPSN DMTS FTSP LTS Tiny-sync/Mini-sync 能耗较高高较低较低一般一般

可扩展性有限好一般较好好较好

鲁棒性一般弱一般强较弱一般

同步间隔较大较小小较大中等较大

同步精度较高高中等较高较低较低

同步范围局部全网全网全网全网全网

3结束语

随着大规模无线传感器网络的广泛应用,时间同步技术可以向以下几方面发展:

(1)节点移动导致的拓扑结构可变。目前,大部分无线传感器网络都认为拓扑结构固定,没有考虑到节点的移动性,但节点自身移动也可以将时间信息带到另一个地方。

(2)依赖于节点的硬件条件,时间同步算法应在满足应用需求的条件下尽可能地减少能量消耗,达到最优效率。

时间同步是无线传感器网络的一个重要支撑技术,仍需要研究人员的不断探索和发现。

参考文献

[1]AKYILDIZ I F,SU W,SANKARASUBRAMANIAM Y,et al.Wireless sensor networks:a survey[J].Computer Networks,

2002,38(4):393-422.

[2]JEREMY E,LEWIS G,DEBORAH E.Fine-grained network time synchronization using reference broadcasts[C].Bos-

ton,MA:Proceedings of the Fifth Symposium on Operating

Systems Design and Implementation,2002:147-163.

[3]GANERIWAL S,KUMAR R,SRIVASTAVA M.Timing-sync protocol for sensor networks[C].Losangeles,CA:ACM Sen-

Sys,2003.[4]PING S.Delay measurement time synchronization for wireless sensor networks[EB/OL].(2003-07-12)[2011-01-

08]Http//www.intel_research.net/publication/Berkeley/

0811********_137.pdf.

[5]MAROTI M,KUSY B,SIMON G,et al.The flooding time synchronization protocol[C].Baltimore,Mariland:Proceed-

ings of the2nd ACM Conference on Embedded Networked

Sensor Systems(SenSys),2004:39-49.

[6]GREUNEN V J,RABAEY J.Lightweight time synchroniza-tion for sensor networks[C].San Diego,CA:Proc.2nd ACM

Int'l.Conf.Wireless Sensor Networks and Apps,2003:

11-19.

[7]SICHITIU M L,VEERARITTIPAHAN C.Simple,accurate time synchronization for wireless sensor networks[C].New

Orleans,LA:Proceedings of the IEEE Wireless Communica-

tions and Networking Conference(WCNC2003),2003:

1266-1273.

[8]周贤伟,韦炜,覃伯平.无线传感器网络的时间同步算法研究[J].传感技术学报,2006,19(1):1005-9490.

[9]STOJMENOVIC'I.Handbook of sensor networks:algorithms and architectures[M].New York:Wiley,2005.

[10]CHARLES S P.Mathematical aspects of heart physiology [M/OL].(2009-08-11)[2011-03-12]http://www.

math.nyu.eduPfaculty/peskin/heartnotes/index.html.[11]HONG Y,SCAGLIONE A.A scalable synchronization proto-col for large scale sensor networks and its applications[J].

IEEE Journal of Selected Areas in Communications,2005,23

(5):1085-1099.

[12]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(07):1282-1291.

[13]杨宗凯,赵大胜,王玉明,等.无线传感器网络时钟同步算法综述[J].计算机应用,2005,25(5):1170-1176.[14]康冠林,王福豹,段渭军.无线传感器网络时间同步综述[J].计算机测量与控制,2005,13(10):1021-1023.[15]谢洁锐,胡月明.无线传感器网络的时间同步技术[J].计算机工程与设计,2007,28(1):76-77.

[16]赵建军,姜建国,裴庆祺.低开销的无线传感器网络时间同步方法[J].计算机工程,2007,33(21):113-115.[17]叶雪,孙燕.一种节能的无线传感器网络分簇时间同步算法[J].计算机工程,2009,35(19):117-119.

[18]张白桦.基于TPSN的时间同步改进算法[J],计算机工程,2010,36(9):109-110.

[19]程利娟.无线传感器网络时间同步算法研究[D].西安:西北工业大学,2007.

[20]张坤.无线传感器网络时间同步技术的研究[D].重庆:西南大学,2007.

[21]孙佳伟.无线传感器网络时间同步的研究[D].鞍山:辽宁科技大学,2008.

基于无线传感器网络的环境监测系统设计与实现

南京航空航天大学 硕士学位论文 基于无线传感器网络的环境监测系统设计与实现 姓名:耿长剑 申请学位级别:硕士 专业:电路与系统 指导教师:王成华 20090101

南京航空航天大学硕士学位论文 摘要 无线传感器网络(Wireless Sensor Network,WSN)是一种集成了计算机技术、通信技术、传感器技术的新型智能监控网络,已成为当前无线通信领域研究的热点。 随着生活水平的提高,环境问题开始得到人们的重视。传统的环境监测系统由于传感器成本高,部署比较困难,并且维护成本高,因此很难应用。本文以环境温度和湿度监控为应用背景,实现了一种基于无线传感器网络的监测系统。 本系统将传感器节点部署在监测区域内,通过自组网的方式构成传感器网络,每个节点采集的数据经过多跳的方式路由到汇聚节点,汇聚节点将数据经过初步处理后存储到数据中心,远程用户可以通过网络访问采集的数据。基于CC2430无线单片机设计了无线传感器网络传感器节点,主要完成了温湿度传感器SHT10的软硬件设计和部分无线通讯程序的设计。以PXA270为处理器的汇聚节点,完成了嵌入式Linux系统的构建,将Linux2.6内核剪裁移植到平台上,并且实现了JFFS2根文件系统。为了方便调试和数据的传输,还开发了网络设备驱动程序。 测试表明,各个节点能够正确的采集温度和湿度信息,并且通信良好,信号稳定。本系统易于部署,降低了开发和维护成本,并且可以通过无线通信方式获取数据或进行远程控制,使用和维护方便。 关键词:无线传感器网络,环境监测,温湿度传感器,嵌入式Linux,设备驱动

Abstract Wireless Sensor Network, a new intelligent control and monitoring network combining sensor technology with computer and communication technology, has become a hot spot in the field of wireless communication. With the improvement of living standards, people pay more attention to environmental issues. Because of the high maintenance cost and complexity of dispose, traditional environmental monitoring system is restricted in several applications. In order to surveil the temperature and humidity of the environment, a new surveillance system based on WSN is implemented in this thesis. Sensor nodes are placed in the surveillance area casually and they construct ad hoc network automatieally. Sensor nodes send the collection data to the sink node via multi-hop routing, which is determined by a specific routing protocol. Then sink node reveives data and sends it to the remoted database server, remote users can access data through Internet. The wireless sensor network node is designed based on a wireless mcu CC2430, in which we mainly design the temperature and humidity sensors’ hardware and software as well as part of the wireless communications program. Sink node's processors is PXA270, in which we construct the sink node embedded Linux System. Port the Linux2.6 core to the platform, then implement the JFFS2 root file system. In order to facilitate debugging and data transmission, the thesis also develops the network device driver. Testing showed that each node can collect the right temperature and humidity information, and the communication is stable and good. The system is easy to deploy so the development and maintenance costs is reduced, it can be obtained data through wireless communication. It's easy to use and maintain. Key Words: Wireless Sensor Network, Environment Monitoring, Temperature and Humidity Sensor, Embedded Linux, Device Drivers

无线传感器网络面临的安全隐患及安全定位机制

无线传感器网络面临的安全隐患及安全定位机制 随着通信技术的发展,安全问题显得越来越重要。在现实生活中,有线网络已经深入到千家万户:互联网、有线电视网络、有线电话网络等与人们生活的联系越来越紧密,已经成为必不可少的一部分,有线网络的安全问题已经能够得到有效的解决。在日常生活中,人们可以放心的使用这些网络,利用它来更好的生活和学习。然而随着无线通信技术的不断发展,无线网络在日常生活中已占据重要的地位,如无线LAN技术、3G技术、4G技术等,同时也有许多新兴的无线网络技术如无线传感器网络, Ad-hoc 等有待进一步发展。随着人们对无线通信的依赖越来越强烈,无线通信的安全问题也面临着重要的考验。本章首先介绍普通网络安全定位研究方法,随后介绍无线传感器网络存在的安全隐患以及常见的网络攻击模型,分析比较这些攻击模型对定位的影响,最后介绍已有的一些安全定位算法,为后续章节的相关研究工作打下基础。 3.1 安全定位研究方法 不同的定位算法会面临着不同的安全方面的问题,安全定位的研究方法可以 采用图 3-1 所示的流程来进行。

图3-1安全定位方法研究流程图 Figure 3-1 Flowchart of security positi oning research method 在研究中首先要找出针对不同定位算法的攻击模型,分析这些攻击对定位精 度所造成的影响,然后从两方面入手来解决这个安全问题或隐患:一方面改进定 位算法使得该定位算法不易受到来自外界的攻击,另一方面可以设计进行攻击检 测判断及剔除掉受到攻击的节点的安全定位算法或者把已有的安全算法进行改进使之能够应用于无线传感器网络定位,还可以从理论上建立安全定位算法的数学模型,分析各种参数对系统性能的影响,最后根据这个数学模型对算法进行仿真,并把仿真结果作为反馈信息,对安全定位算法进一步优化和改进,直到达到最优为止。 3.2安全隐患 由于无线传感器网络随机部署、网络拓扑易变、自组织成网络和无线链路等特点,使其面临着更为严峻的安全隐患。在传感器网络不同的定位算法中具有不同的定位思想,所面临的安全问题也不尽相同。攻击者会利用定位技术的弱点设计不同的攻击手段,因此了解各定位系统自身存在的安全隐患和常见的攻击模型对安全定位至

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

无线传感器网络的应用与影响因素分析

无线传感器网络的应用与影响因素分析 摘要:无线传感器网络在信息传输、采集、处理方面的能力非常强。最初,由于军事方面的需要,无线传感网络不断发展,传感器网络技术不断进步,其应用的范围也日益广泛,已从军事防御领域扩展以及普及到社会生活的各个方面。本文全面描述了无线传感器网络的发展过程、研究领域的现状和影响传感器应用的若干因素。关键词:无线传感器网络;传感器节点;限制因素 applications of wireless sensor networks and influencing factors analysis liu peng (college of computer science,yangtze university,jingzhou434023,china) abstract:wireless sensor networks in the transmission of informa- tion,collecting,processing capacity is very strong.initially,due to the needs of the military aspects of wireless sensor networks,the continuous development of sensor network technology continues to progress its increasingly wide range of applications,from military defense field to expand and spread to various aspects of social life.a comprehensive description of the development

无线传感器网络定位方法综述

第36卷 增刊Ⅰ2008年 10月 华 中 科 技 大 学 学 报(自然科学版) J.Huazhong Univ.of Sci.&Tech.(Natural Science Edition )Vol.36Sup.Ⅰ Oct. 2008 收稿日期:2008207215. 作者简介:郝志凯(19832),男,博士研究生,E 2mail :zk -hao @https://www.wendangku.net/doc/df6646677.html,. 基金项目:国家高技术研究发展计划资助项目(2006AA11Z225);国家自然科学基金资助项目(60635010, 60605026). 无线传感器网络定位方法综述 郝志凯 王 硕 (中国科学院自动化研究所复杂系统与智能科学实验室,北京100190) 摘要:介绍了国内外研究机构在无线传感器网络定位方法方面开展的研究工作,并对这些研究工作进行了归纳和总结.定位的基本方法分为距离式定位和非距离式定位.距离式定位是通过测量距离或角度进行位置估计,测量数据的精度对定位精度有很大影响.非距离式定位是通过节点间的hop 数或估计距离计算节点的坐标,这种方法不需要测量距离或角度,利用估计距离代替真实距离,算法简单但精度不高.无线传感器网络中定位方法的应用需要针对不同的应用场合,综合考虑节点的规模、成本及系统对定位精度等要求来进行设计和选择. 关 键 词:无线传感器网络;定位方法;距离式定位;非距离式定位;相对定位 中图分类号:TN919.2;TP732 文献标识码:A 文章编号:167124512(2008)S120224204 Survey on localization algorithms for wireless sensor net w orks H ao Zhi k ai W ang S huo (Laboratory of Complex Systems and Intelligence Science ,Institute of Automation , Chinese Academy of Sciences ,Beijing 100190) Abstract :Current researches in wireless sensor networks (WSNs ′ )localization algorit hms are int ro 2duced ,and t hese researches are analyzed and concluded.The p recision of t he nodes ′locations are im 2portant for t he data ′s effectiveness in WSNs ′.The localization algorit hms are divided into range 2based and range 2free.Range 2based algorit hms use t he measured distance and angle to calculate t he nodes ′coordinates.However ,t he range 2f ree researches use hop s or evaluated distance to localization ,which are simple but low 2precision.In different occasions ,t he algorit hm should be taken account in t he net 2work ′s size ,co st ,p recision and so on. K ey w ords :wireless sensor networks (WSNs ′ );localization ;range 2based ;range 2f ree ;relative po sitio 2ning 目前广泛使用的全球卫星导航定位系统GPS 可用来确定携带者的绝对位置,但不适合在 无线传感器网络中大量使用.主要有以下原因[1]:a .成本高.无线传感器网络中的节点数量多、分 布密集,如果各节点都配备GPS 接收器成本很高;b .能源限制.网络中的节点通常是通过内部电池进行供电,由于其工作环境有时在森林、山地等人迹罕至的地方,对其进行电源更换困难;c .工作环境限制.节点有时会分布在室内等电磁 波较难到达的环境中,这种工作环境下GPS 无法完成定位任务;d .尺寸较大.由于上述种种原因使得GPS 不能广泛用在无线传感器网络系统的节点上,这就需要发展适合于无线传感器网络应用的节点定位方法. 鉴于无线传感器网络节点在能耗、计算能力、通信能力等方面的限制,其节点的定位方法应该具有分布式、低复杂性、精度较高、通用性较好等特点,国内外的研究机构已开展了大量工作[2~9].

基于无线传感器网络的智能交通系统的设计

一、课题研究目的 针对目前中国的交叉路口多,车流量大,交通混乱的现象研究一种控制交通信号灯的基于无线传感器的智能交通系统。 二、课题背景 随着经济的快速发展,生活方式变得更加快捷,城市的道路也逐渐变得纵横交错,快捷方便的交通在人们生活中占有及其重要的位置,而交通安全问题则是重中之重。据世界卫生组织统计,全世界每年死于道路交通事故的人数约有120 万,另有数100 万人受伤。中国拥有全世界1. 9 %的汽车,引发的交通事故占了全球的15 % ,已经成为交通事故最多发的国家。2000 年后全国每年的交通事故死亡人数约在10 万人,受伤人数约50万,其中60 %以上是行人、乘客和骑自行车者。中国每年由于汽车安全方面所受到的损失约为5180 亿(人民币),死亡率为9 人/ 万·车,因此,有效地解决交通安全问题成为摆在人们面前一个棘手的问题。 在中国,城市的道路纵横交错,形成很多交叉口,相交道路的各种车辆和行人都要在交叉口处汇集通过。而目前的交通情况是人车混行现象严重,非机动车的数量较大,路口混乱。由于车辆和过街行人之间、车辆和车辆之间、特别是非机动车和机动车之间的干扰,不仅会阻滞交通,而且还容易发生交通事故。根据调查数据统计,我国发生在交叉口的交通事故约占道路交通事故的1/ 3,在所有交通事故类型中居首位,对交叉口交通安全影响最大的是冲突点问题,其在很大程度上是由于信号灯配时不合理(如黄灯时间太短,驾驶员来不及反应),以及驾驶员不遵循交通信号灯,抢绿灯末或红灯头所引发交通流运行的不够稳定。随着我国经济的快速发展,私家车也越来越多,交通控制还是延续原有的定时控制,在车辆增加的基础上,这种控制弊端也越来越多的体现出来,造成了十字交叉路口的交通拥堵和秩序混乱,严重的影响了人们的出行。智能交通中的信号灯控制显示出了越来越多的重要性。国外已经率先开展了智能交通方面的研究。 美国VII系统(vehicle infrastructure integration),利用车辆与车辆、车辆与路边装置的信息交流实现某些功能,从而提高交通的安全和效率。其功能主要有提供天气信息、路面状况、交叉口防碰撞、电子收费等。目前发展的重点主要集中在2个应用上: ①以车辆为基础; ②以路边装置为基础。欧洲主要是CVIS 系统(cooperative vehicle infrastructure system)。它有60 多个合作者,由布鲁塞尔的ERTICO 组织统筹,从2006 年2 月开始到2010年6月,工作期为4年。其目标是开发出集硬件和软件于一体的综合交流平台,这个平台能运用到车辆和路边装置提高交通管理效率,其中车辆不仅仅局限于私人小汽车,还包括公共交通和商业运输。日本主要的系统是UTMS 21 ( universal traffic management system for the 21st century , UTMS 21)。是以ITS 为基础的综合系统概念,由NPA (National Police Agency) 等5个相关部门和机构共同开发的,是继20 世纪90 年代初UTMS 系统以来的第2代交通管理系统,DSSS是UTMS21中保障安全的核心项目,用于提高车辆与过街行人的安全。因此,从国外的交通控制的发展趋势可以看出,现代的交通控制向着智能化的方向发展,大多采用计算机技术、自动化控制技术和无线传感器网络系统,使车辆行驶和道路导航实现智能化,从而缓解道路交通拥堵,减少交通事故,改善道路交通环境,节约交通能源,减轻驾驶疲劳等功能,最终实现安全、舒适、快速、经济的交通环境。

无线传感器网络的应用研究

1武警部队监控平台架构介绍与设计 1.1监控系统的系统结构 基站监控系统的结构组成如上图所示,主要由三个大的部分构成,分别是监控中心、监控站点、监控单元。整个系统从资金、功能以及方便维护性出发,我们采用了干点加节点方式的监控方法。 监控中心(SC):SC的定义是指整个系统的中心枢纽点,控制整个分监控站,主要的功能是起管理作用和数据处理作用。一般只在市级包括(地、州)设置相应的监控中心,位置一般在武警部队的交换中心机房内或者指挥中心大楼内。 区域监控中心(SS):又称分点监控站,主要是分散在各个更低等级的区县,主要功能是监控自己所负责辖区的所有基站。对于固话网络,区域监控中心的管辖范围为一个县/区;移动通信网络由于其组网不同于固话本地网,则相对弱化了这一级。区域监控中心SS的机房内的设备配置与SC的差不多,但是不同的是功能不同以及SS的等级低于SC,SS的功能主要是维护设备和监控。 监控单元(SU):是整个监控系统中等级最低的单元了,它的功能就是监控并且起供电,传输等等作用,主要由SM和其他供电设备由若干监控模块、辅助设备构成。SU侧集成有无线传感网络微设备,比如定位设备或者光感,温感设备等等。 监控模块(SM):SM是监控单元的组成部分之一,主要作用监控信息的采集功能以及传输,提供相应的通信接口,完成相关信息的上传于接收。

2监控系统的分级管理结构及监控中心功能 基站监控系统的组网分级如果从管理上来看,主要采用两级结构:CSC集中监控中心和现场监控单元。CSC主要设置在运营商的枢纽大楼,主要功能为数据处理,管理远程监控单元,对告警信息进行分类统计,可实现告警查询和存储的功能。一般管理员可以在CSC实现中心调度的功能,并将告警信息进行分发。而FSU一般针对具体的某一个基站,具体作用于如何采集数据参数并进行传输。CSC集中监控中心的需要对FSU采集的数据参数进行报表统计和分析,自动生产图表并为我们的客户提供直观,方便的可视化操作,为维护工作提供依据,维护管理者可以根据大量的分析数据和报表进行快速反应,以最快的速度发现网络的故障点和优先处理点,将人力资源使用在刀刃上。监控中心CSC系统的功能中,还有维护管理类,具体描述如下: 1)实时报警功能 该系统的报警功能是指发现机房里的各种故障后,通过声音,短信,主界面显示的方式及时的上报给操作者。当机房内的动力环境,空调,烟感,人体红外等等发生变量后,这些数据通过基站监控终端上传到BTS再到BSC。最后由数据库进行分类整理后存储到SQLSEVRER2000中。下面介绍主要的几种报警方式: 2)声音报警 基站发生告警后,系统采集后,会用声卡对不一样的告警类别发出对应的语音提示。比如:声音的设置有几种,主要是以鸣叫的长短来区分的。为便于引起现场维护人员的重视紧急告警可设置为长鸣,不重要的告警故障设置为短鸣。这样一来可以用声音区分故障的等级,比方某地市的中心交换机房内相关告警声音设置,它的开关电源柜当平均电流达到40AH的时候,提示声音设置为长鸣,并立即发生短信告警工单。如果在夜晚机房无人值守的情况下:

基于arduino的无线传感器网络室内定位方法的研究大学论文

摘要 无线传感器网络(WSN,Wireless Sensor Network)是近年来迅速发展并受到普遍重视的新型网络技术,它的出现和发展给人类的生活和生产的各个领域带来了深远的影响。无线传感器网络节点定位技术是无线传感器网络应用研究的基础。目前,已有多种定位技术被应用于室内定位中,尤其是基于接收信号强度(RSSI,Received Signal Strength Indication)的定位技术以其低功耗、低成本、易于实现等优点,得到了无线传感器网络研究学者们的青睐。 本文重点研究了基于RSSI的室内定位的关键技术,主要包括定位模型分析和定位算法设计。首先,为了获得较为精确的定位,根据RSSI测距原理和无线信号传播衰减模型在设定的室内环境进行多次实验,通过计算及均值处理等方法反复调整以获得标准的定位模型参数,得到高精度的等效距离。接着,根据三边定位算法原理简化定位算法,建立更为简单的定位模型,采用双边定位得到两个可能的定位点,再利用RSSI测距原理对两个定位点进行择优选择确定定位点。最后,在Arduino开发平台上对参考节点与未知节点这两类iDuino节点的室内定位模型进行了软件开发设计和程序开发。在设定的室内环境部署iDuino节点,搭建实验定位模型,并实现了定位。 关键词:无线传感器网络,节点,室内定位,RSSI,Arduino

ABSTRACT Wireless sensor network (WSN) is developed rapidly and universally emphasized as a new network technology in recent years, the advent and development of WSN have had a profound and lasting impact on the life and all areas of production of human beings. Wireless nodes localization technology is the basis in the application and studies of wireless sensor network. There are a variety of positioning technology have been used in indoor location at present, especially the based on RSSI (received signal strength) positioning technology gets a great preference from many scholars of studies of wireless sensor network with the advantages of low power consumption, low cost and easy to realize. This paper mainly studies the key technology of indoor positioning based on RSSI, which mainly includes the positioning model analysis and positioning algorithm design. First, in order to obtain more accurate positioning, we perform several experiments according to the RSSI ranging principle and wireless signal propagation attenuation model in the setting of indoor environment, and get accurate positioning model parameters and equivalent distance by the methods of calculation and mean processing. Then, we simplify Trilateral Localization Algorithm to Bilateral Location Algorithm and establish a simpler positioning model, with which we can get two nodes of possible location, and determine the better node according to the RSSI ranging principle. At last, we make software designing and programming of these nodes that are anchor nodes and nodes of unknown on the Arduino development platform. Combined with the indoor environment we selected, we deploy the iDuino nodes and then build location model, with which we implement the location. KEY WORDS:Wireless Sensor Network,Nodes,Indoor Location,RSSI,Arduino

基于无线传感网络的大型结构健康监测系统_尚盈

文章编号:1004-9037(2009)02-0254-05 基于无线传感网络的大型结构健康监测系统 尚 盈 袁慎芳 吴 键 丁建伟 李耀曾 (南京航空航天大学智能材料与结构航空科技重点实验室,南京,210016) 摘要:针对大型碳纤维复合材料机翼盒段壁板结构,实现了基于无线传感网络的多点应变结构健康监测系统,采用自组织竞争神经网络成功判别了集中载荷模拟的损伤位置。本系统由传感采集子系统、无线传感网络子系统和终端监控子系统三部分组成。为了降低系统网络功耗及成本,提高系统的稳定性和可靠性,改善传感网络的实时性和同步性,设计了可直接配接无线传感网络节点的低功耗多通道应变传感器信号调理电路和基于无线传感网络的层次路由协议,开发了多通道应变数据采集、网络簇头转发和中继节点接收等主要软件模块。实验证明,相比于传统有线的监测方法和数据采集系统,基于无线传感网络的结构健康监测系统具有负重轻、成本低、易维护和搭建移动方便等优点。 关键词:无线传感网络;结构健康监测;层次路由协议;自组织竞争网络中图分类号:T P2;T P9 文献标识码:A  基金项目:国家“八六三”高技术研究发展计划(2007AA 032117)资助项目;国家自然科学基金(60772072,50420120133)资助项目;航空基金(20060952)资助项目。 收稿日期:2007-09-05;修订日期:2008-04-17 Large -Scale Structural Health Monitoring System Based on Wireless Sensor Networks S hang Ying ,Yuan Shenf ang ,Wu J ian ,Ding J ianw ei ,L i Yaoz eng (T he A ero nautic Key La bo rat or y o f Smart M ater ial and Str uct ur e,N anjing U niv ersit y o f Aer onautics and A str onautics,N anjing,210016,China) Abstract :Aimed at the large-scale structure and anisotropy nature o f the carbon fiber compos-ite material w ing box ,a large-scale structural health m onitoring system based on w ireless sen-sor netw orks is presented .A kind of artificial neural netw ork is designed to distinguish the damag e locatio n simulated by the co ncentrated load .The sy stem co nsists o f the sensor data ac-quisition,the w ireless sensor netw or ks,and the terminal monitoring sub-sy stem s.To im pro ve the performance o f the system ,the signal conditio ning circuit and the hierarchical routing pro -to col are designed based o n w ireless sensor netw orks ,the prog rams of data acquisition and Sink node are ex ploited.Experimental result pro ves that the system has advantag es of flexibili-ty o f deplo yment,low maintenance and deploym ent costs . Key words :w ir eless senso r netw or ks ;str uctural health monitoring ;hierarchical routing ;self -org anizing com petitive netw o rk 引 言 结构健康监测技术是采用智能材料结构的新概念,利用集成在结构中的先进传感/驱动元件网络,在线实时地获取与结构健康状况相关的信息(如应力、应变、温度、振动模态、波传播特性等),结 合先进的信号信息处理方法和材料结构力学建模 方法,提取特征参数,识别结构的状态,包括损伤,并对结构的不安全因素在其早期就加以控制,以消除安全隐患或控制安全隐患的进一步发展,从而实现结构健康自诊断、自修复、保证结构的安全和降低维修费用[1]。 无线传感网络节点具有局部信号处理的功能, 第24卷第2期2009年3月数据采集与处理Jour nal of D ata A cquisition &P ro cessing Vo l.24N o.2M a r.2009

《无线传感器网络》试题.

《无线传感器网络》试题 一、填空题(每题4分,共计60分) 1、传感器网络的三个基本要素:传感器,感知对象,观察者 2、传感器网络的基本功能:协作地感知、采集、处理和发布感知信息 3、无线传感器节点的基本功能:采集、处理、控制和通信等 4、传感器网络常见的时间同步机制有: 5、无线通信物理层的主要技术包括:介质的选择、频段的选择、调制技术和扩频技术 6扩频技术按照工作方式的不同,可以分为以下四种: :直接序列扩频、跳频、跳时、宽带线性调频扩频 7、定向扩散路由机制可以分为三个阶段:周期性的兴趣扩散、梯度建立和路径加强 8、无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 9、无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术等 10、IEEE 802.15.4标准主要包括:物理层和MAC层的标准 11、简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成。 12、数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13、无线传感器网络可以选择的频段有:868MHZ、915MHZ、2.4GHZ 5GHZ 14、传感器网络的电源节能方法:休眠机制、数据融合等, 15、传感器网络的安全问题:(1) 机密性问题。 (2) 点到点的消息认证问题。 (3) 完整性鉴别问题。 16、802.11规定三种帧间间隔:短帧间间隔SIFS,长度为 28 μs 、点协调功能帧间间隔PIFS长度是 SIFS 加一个时隙(slot)长度,即78 μs 分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为128 μs

无线传感网定位

对于定位一般的理解就是确定位置。在无线传感网中,定位是指网络通过特 定的方法确定节点的位置信息。其可分为节点的自身定位和目标定位。节点自 身定位是确定网络中节点位置坐标的过程,它是网络自身属性的确定过程,是网络 的支撑,可以通过人工配置或各种节点自定位算法完成; 目标定位是指在网络覆 盖范围内确定一个事件或一个目标的位置坐标,这可以通过把位置已知的网络节 点作为参考节点来确定事件或目标在网络中所处的位置。无线传感网定位问题 就是寻求利用少量的锚节点来确定网络中未知节点的位置坐标的方法。 无线传感网中,传感器节点的可靠性差、能量有限、节点数量庞大且节点部 署具有不确定性等,这些限制因素对定位技术提出了更高的要求。通常无线传感 网定位技术具备以下特点: ① 自组织性 通常无线传感网中的节点是随机布设的,不能依靠全局的基础设施的协助确定每 个节点的位置所在。因此,自组织性就显得格外重要。 ② 容错性 传感器节点的硬件配置低、处理能力弱、可靠性差、能量少以及测距时会产生 误差等因素决定了传感器节点本身的脆弱性,因此定位算法必须具有良好的容错 性。 ③ 能量高效性 为了尽量延长网络的生存周期,要尽可能的减少节点间的通信开销,减少算法中计 算的复杂度,用尽量少的能量完成尽可能多的工作。 ④ 分布式计算 每个节点自己对自身的位置进行估算,不需要将所有信息传送到某个特定的节点 进行集中计算。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

无线传感器网络技术的应用

无线传感器网络技术的应用 摘要:无线传感器网络(WSN)是新兴的下一代传感器网络,在国防安全和国民经济各方面均有着广阔的应用前景。本文介绍了无线传感器网络的组成和特点,讨论了无线传感器网络在军事、瓦斯监测系统、智能家具,环境监测,农业。交通等方面的现有应用,最后提出无线传感器网络技术需要解决的问题。 关键词:无线传感器网络,军事、瓦斯监测系统、智能家具,环境监测,农业。交通。 1.无线传感器网络研究背景以及发展现状 随着半导体技术、通信技术、计算机技术的快速发展,90年代末,美国首先出现无线传感器网络(WSN)。1996年,美国UCLA大学的William J Kaiser教授向DARPA提交的“低能耗无线集成微型传感器”揭开了现代WSN网络的序幕。1998年,同是UCLA大学的Gregory J Pottie教授从网络研究的角度重新阐释了WSN的科学意义。在其后的10余年里,WSN网络技术得到学术界、工业界乃至政府的广泛关注,成为在国防军事、环境监测和预报、健康护理、智能家居、建筑物结构监控、复杂机械监控、城市交通、空间探索、大型车间和仓库管理以及机场、大型工业园区的安全监测等众多领域中最有竞争力的应用技术之一。美国商业周刊将WSN网络列为21世纪最有影响的技术之一,麻省理工学院(MIT)技术评论则将其列为改变世界的10大技术之一。WSN是由布置在监测区域内传感器节点以无线通信方式形成一个多跳的无线自组网(Ad hoc),其目的是协作的感知,采集

和处理网络覆盖区域中感知对象的信息,并发送给观察者。传感器、感知对象和观察者是WSN的三要素。将Ad hoc技术与传感器技术相结合,人们可以通过WSN感知客观世界,扩展现有网络功能和人类认识世界的能力。WSN技术现已经被广泛应用。图为WSN基本结构。 WSN经历了从智能传感器,无线智能传感器到无线传感器三个发展阶段,智能传感器将计算能力嵌入传感器中,使传感器节点具有数据采集和信息处理能力。而无线智能传感器又增加了无线通信能力,WSN将交换网络技术引入到智能传感器中使其具备交换信息和协调控制功能。 无线传感网络结构由传感器节点,汇聚节点,现场数据收集处理决策部分及分散用户接收装置组成,节点间能够通过自组织方式构成网络。传感器节点获得的数据沿着相邻节点逐跳进行传输,在传输过程中所得的数据可被多个节点处理,经多跳路由到协调节点,最后通过互联网或无线传输方式到达管理节点,用户可以对传感器网络进行决策管理、发出命令以及获得信息。无线传感器网络在农业中的运用是推进农业生产走向智能化、自动化的最可行的方法之一。近年来国际上十分关注WSN在军事,环境,农业生产等领域的发展,美国和欧洲相继启动了WSN研究计划,我国于1999年正式启动研究。国家自然科学基金委员会在2005年将网络传感器中基础理论在一篇我国20年预见技术调查报告中,信息领域157项技术课题中7项与传感器网络有直接关系,2006年初发布的《国家长期科学与技术发展

相关文档
相关文档 最新文档