文档库 最新最全的文档下载
当前位置:文档库 › 高压变频器的作用

高压变频器的作用

高压变频器的作用

高压变频器的作用

主要应用效果如下:①使用变频器后风机可以实现变频软起动.避免了起动电流的冲击.不仅对电网没有任何冲击,而且还可以随时起动或停止;②使用变频器后,风机的送风量不再需要由风门来调节.而是由变频器通过变频调节风机的转速来实现.调节范围可以从0%~l00%.可以根据生产需要随意调节风量,减少了不必要的浪费:③变频节能运行,节约了大量能源使用变频器后.不再使风机一直处于满负荷工作状态.节能率非常高:④由于高压变频器能平滑调节电机负载的转速.使之与原来相比在较低转速下运行.从而大大减少了负载以及电机的机械磨损,同时降低了轴承、轴瓦的温度,有效减少了检修费用,延长了设备的使用寿命:⑤高压变频器为高一高电压源型单元串联多电平结构.功率因数可高达0.95.不仅无需功率补偿.还可提高电网的功率因数.减少了无功损失.减少了线损:⑥系统完善的监控性能和高可靠性提高了工作效率.可实现参数的实时恒定运行.提高了系统运行的安全稳定性.减少了检修和维护的工作量。

高压变频器简介

高压变频器 基本信息 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用的领域和范围也越来越为广范,这使得高效、合理地利用能源(尤其是电能成为了可能。电机是国民经济中主要的耗电大户,高压大功率的更为突出,而这些设备大部分都有节能的潜力。大力发展高压大功率变频调速技术,,将是时代赋予我们的一项神圣使命,而这一使命也将具有深远的意义。 高压大功率变频调速装置被广泛地应用于石油化工、市政供水、冶金钢铁、电力能源等行业的各种风机、水泵、压缩机、轧钢机等。 分类与结构 高压变频器的种类繁多,其分类方法也多种多样。按着中间环节有无直流部分,可分为交交变频器和交直交变频器;按着直流部分的性质,可分为电流型和电压型变频器;按着有无中间低压回路,可分为高高变频器和高低高变频器;按着输出电平数,可分为两电平、三电平、五电平及多电平变频器;按着电压等级和用途,可分为通用变频器和高压变频器;按着嵌位方式,可分为二极管嵌位型和电容嵌位型变频器等等。 分类 低压型变频器 产品定义电压等级低于690V的可调输出频率交流电机驱动装置,就归类为低压变频器(如下图。目前,随着低压变频器技术的不断成熟,低压变频的应用场合决定了它不同的分类。单

从技术角度来看,低压变频器的控制方式也在一定程度上表明了它的技术流派。 正弦脉宽调制(SPWM其特点是控制电路结构简单、成本较低,机械特 性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到 广泛应用。 电压空间矢量(SVPWM它是以三相波形整体生成效果为前提,以逼近 电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多 边形逼近圆的方式进行控制的。 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、 Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再 通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、 It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流,然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。 直接转矩控制(DTC方式该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。

最新高压变频器工作原理

高压变频器工作原理 高压变频器是一种串联叠加性高压变频器,即采用多台单相三电平逆变器串联连接,输出可变频变压的高压交流电。按照电机学的基本原理,电机的转速满足如下的关系式:n= (1 —s)60f/p=no X (1 一 s)(P:电机极对数;f:电机运行频率;s:滑差)从式中看出,电机的同步转速n。正比于电机的运行频率(n。=60fp),由于滑差s—般情况下比较小(0?0. 05),电机的实际转速n约等于电机的同步转速n。,所以调节了电机的供电频率f, 就能改变电机的实际转速。电机的滑差s和负载有关,负载越大则滑差增加,所以电机的实际转速还会随负载的增加而略有下降。 变频器本身由变压器柜、功率柜、控制柜三部分组成。三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,功率单元分为三组,一组为一相,每相的功率单元的输出首尾相串。主控制柜屮的控制单元通过光纤时对功率柜屮的每一功率单元进行整流、逆变控制与检测,这样根据实际需要通过操作界面进行频率的给定,控制单元把控制信息发送到功率单元进行相应得整流、逆变调整,输出满足负荷需求的电压等级。 1移相式变压器

移相变压器的副边绕组分为三组,构成X脉冲整流方式;这种多极移相叠加的整流方式可以大大改善网侧的电流波形,使负载下的网侧功率因数接近1。另外,由于副边绕组的独立性,使每个功率单元的主回路相对独立,这样大大提高了可靠性。 2智能化功率单元 所有的功率模块均为智能化设计具有强大的自诊断指导能力,一旦有故障发生时,功率模块将故障信息迅速返回到主控单元中,主控单元及时将主要功率元件IGBT关断,保护主电路;同时在中文人机界面上精确定位显示故障位置、类别。在设计时已将一定功率范围内的单元模块进行了标准化考虑,以此保证了单元模块在结构、功能上的一致性。当模块出现故障时,在得到报警器报警通知后,可在几分钟内更换同等功能的备用模块,减少停机时间。 6kV电网电压经过副边多重化的隔离变压器降压后给功率单元供电,功率单元为三相输入,单相输出的交直流PWM电压源型逆变器结构,相邻功率单元的输出端串联起来,形成Y接结构,实现变压变频的高压直接输出,供给高压电动机。6kV电压等级的高压变频器,每相由六个额定电压为600V的功率单元串联而成,输出相电压最高可达3464V,线电压达6000V左右。改变每相

高压变频器的工作原理和常见故障分析 贾瑟

高压变频器的工作原理和常见故障分析贾瑟 摘要:随着现代科学技术的迅速发展,大量的发电企业正在使用着高压变频器。高压变频器在使用过程中具有显著的节能效果,但也存在一定的潜在安全隐患, 可能会对发电企业的生产活动造成严重影响。基于此,本文先对高压变频器工作 原理进行具体的分析,然后对高压变频器在运行中常见的故障及原因进深入的探讨,以供相关的工作人员参考,希望能给我国发电企业的发展带来一定的贡献。 关键词:高压变频器;工作原理;常见故障;分析 采用交流变频器调速技术对交流电机进行调速,具有节电效果好、调速方便、保护功能完善、组态灵活、可靠性强等很多优点。由于交流变频调速技术的众多 优越性,在发电领域也得到了非常广泛的应用,对电厂内的风机、水泵等大功率 耗能设备实现高压变频器调速改造,已成为公认的节能方案。随着变频器应用范 围的扩大,检修维护工作中遇到的问题也越来越多。因此,本文对此进行分析。 1高压变频器工作原理 高压变频器一般采用目前国际流行的功率单元串联多电平技术,系统为高-高 结构。高压电直接输入变频器,经过变频器内部功率系统整流、逆变后,变频器 直接高压输出至电机,不需要升压变压器等部件。每个功率单元都是一台三相输入、单相输出的脉宽调制型低压变频器,技术可靠,结构和性能完全一致,极大 的提高了高压变频器的可靠性与维护性;采用叠波技术,最大限度的消除了高压 变频器输出电压中的谐波含量,电压波形接近于标准的正弦波,大大改善了变频 器的输出性能,是真正的“无谐波”高压变频器。 变频器一般由以下几个部分组成:制动单元、微处理单元、滤波、整流、逆变、检测单元以及驱动单元等等。它能够按照电动机的具体需求为其提供所需的 电源电压,从而实现调速和节能。此外,大部分变频器都具备多种保护功能,如 过载保护、过电压保护以及过电流保护等。 对于不同电压等级的高压变频系统,一般采用每相5~8个功率单元串联方案。通过主电路图,可以更加直观的了解变压器的副边绕组与功率单元以及各功率单 元之间的电路连接方式:具有相同标号的3组副边绕组,分别向同一功率柜(同 一级)内的三个功率单元供电。第一级内每个功率单元的一个输出端连接在一起 形成星型连接点,另一个输出端则与下一级功率单元的输出端相连,依此方式, 将同一相的所有功率单元串联在一起,便形成了一个星型连接的三相高压电源, 驱动电动机运行。当电网电压为6kV时,变压器的副边输出电压即功率单元的输 入电压为690V,每个功率单元的最高输出电压也为690V,同一相的五个单元串 联后,相电压为690V×5=3450V,由于三相连接成星型,那么线电压便等于 1.732×3450V≈6000V,达到电网电压的水平。功率单元串联后得到的是阶梯正弦 的PWM波形,PWM控制,脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要形状和幅值的波形,这种波形正弦度好,du/dt小,可 减少对电机和电缆的绝缘损坏,无需输出滤波器就可以使输出电缆长度很长,电 动机也不需要降额使用,可直接用于旧设备的改造;同时,电机的谐波损耗也大 大减少,消除了由此引起的机械振动,减小了轴承和传动部分的机械应力。 通过本相上的5(8)个功率单元输出的SPWM波相叠加后,可得到正弦波形。这种波形正弦度好,dv/dt小,即使在低速下也能保持很好的波形。电机的谐波

高压变频器市场情况分析报告

高压变频器市场情况分析报告 一、高压变频器产品市场概述 高压变频器技术的发展历史较短。在中国,90年代后期高压变频器才开始在电力、冶金等少数行业得到应用,由于产品和技术都由国外厂商垄断,价格高昂,而且进口产品对我国电力运行环境的适应性较差,行业发展缓慢。2000年以后,国内企业的高压变频器技术和生产制造工艺得到了大幅提高,产品运行的稳定性和可靠性显著提升,产品生产成本也大幅下降,高压变频器行业开始进入快速发展时期,行业应用领域被大幅拓宽。 高压变频器总体竞争形势而言,目前仍然是国外品牌垄断高端市场,主要由西门子、ABB、日本三菱垄断,包括炼钢高炉等场合应用的超大功率(8000KW 以上)变频器,轧钢机、机车牵引等应用的特种变频器等,而中小容量产品的低端产品则是国产品牌占据优势。虽然国内品牌在高端市场的影响力及技术水平方面与国外品牌有一定差距,但以利德华福、合康变频为代表的领先品牌已不再满足于产品应用局限于中低端市场的情况,开始向大功率、超大功率等高端应用市场的进军。例如在2008 年11 月份,广州智光电气公司推出的7 000kV A级超大功率高压变频调速系统,将打破高压大功率变频调速系统长期被国外品牌“一统天下”的格局。该设备已通过国家电控配电设备质量监督检验中心检验,这意味着我国高压变频器市场将告别被外国品牌垄断的时代。且随着国内厂家的技术进步和质量稳定性的提升,加上服务和价格方面的优势,预计未来几年高端产品被国外厂家垄断的市场局面将有所改观。 国外高压变频器的技术开发起步早,目前各大品牌的变频器生产商,均形成了系列化的产品,其控制系统也已实现全数字化。几乎所有的产品均具有矢量控制功能,完善的工艺水平也是国外品牌的一大特点。目前,在发达国家,只要有电机的场合,就会同时有变频器的存在。 二、中国高压变频器预计市场规模 根据中国电机系统节能项目组在所著的“中国电机系统能源效率与市场潜力分析”中对于1999年中国分行业用电量与电动机装机容量和耗电量的详细调查分析,中国用电设备的总容量为3.73亿kW,其耗电量为9800亿kW时,占当年全国总用电量的81%;其中由电动机拖动的设备总容量为1.83亿kW,其耗电

罗宾康高压变频器介绍

我主要写的是应用场合及功能介绍 罗宾康高压变频器介绍 一、产品介绍 1、罗宾康系列变频调速系统特点 1.1高效率、无污染、高功率因数 第宾康系列高压变频调速系统采用的是功率单元串联的高-高方案,采用了多绕组高压 移相变压器,二次侧绕组中流过的电流,在变压器一次侧叠加时,形成非常逼近正弦波的电流波形。经 过实际测试,50Hz运行时,网侧电流谐波<2 %,电机侧输岀电压谐波 <1.5 % (即使在40Hz时,仍然<2 % ),成套装置的效率>97 %,功率因数>0.96。完全满足了 IEEE519 —1992对电压、电流谐波含量的要求; *通过采用自主开发的专用PWM空制方法,比同类的其它方法可进一步降低输岀电压 谐波1?2% 。1.2先进的故障单元旁路运行(专业核心技术) *为了提高系统的可靠性,整个变频调速系统中考虑了一定的输出电压裕量,并在各功率单元中增加了旁路电路。当某个功率单元岀现故障时,可以自动监测故障并启动旁路电路,使得该单元不再投入运行,同时程序会自动进行运算,调整算法,使得输出的三个线电压仍然完全对称,电机的运行不受任何影响; *以6kV高压变频调速系统为例,每相有6个单元时,预置好参数,当某一相中有2 个功率单元岀现故障时,故障单元将自动旁路,系统仍然可以满负荷运行;即使某一相中所有6个单元 故障,全部被旁路,系统输岀容量仍可高达额定容量的57.7 %。这种控 制方法处于国际先进,国内领先水平,将大大提高系统的可靠性。 .3高性能的控制技术 *罗宾康系列高压变频调速系统率先实现了简易矢量控制技术,可以实现恒转矩快速动态响应,并且具有加、减速自适应功能,即可根据运行工控参数的实际情况,自动调整加、减速时间,在不超过最大允许电流的情况下,快速达到设定频率或转速。同时,系统可以自动识别电机转速,用户可以不考虑电机目前的运行状态,电机不需要停止运行时,可直接实现电机的启动、加速、减速或停止操作; *罗宾康系列高压变频调速系统还可以实现反馈能量自动限制功能。 1.4高可靠性 *控制电源可实现外部220V供电和高压电源辅助供电双路电源自动切换,同时配置了UPS即使两路电 源都岀现故障时,控制系统仍然可以工作足够长的时间,控制整个系统安全停机,发岀报警,并记录故障时的所有状态参数; *高压主电路与低压控制电路采用光纤传输,安全隔离,使得系统抗干扰能力强; ?当单元故障数目超过设定值,系统可自动切换到工频运行(自动旁路柜); ?移相变压器有完善的温度监控功能;

GBP-D和GBP-H系列高压变频器使用说明书

GBP-D和GBP-H系列高压变频器使用说明书 焦作市明株自动化工程有限责任公司 2009年11月

目录 第1章安全注意事项 (3) 第2章变频器柜体组成 (4) 第3章变频器安装和存放环境 (5) 第4章变频器接线说明 (6) 第6章变频器故障说明与维护 (13) 第7章变频器常见故障处理 (14) 附录1: GBP-D和GBP-H系列高压变频器型号列表 (16) 附录2: GBP-D和GBP-H系列高压变频器功率单元型号列表 (17) 附录3:干式变压器温控仪设置说明 (18) 附录4:调试内容记录表 (19)

第1章安全注意事项 1.1 在使用高压变频器前,请仔细阅读本使用说明书。 1.2 高压变频器(本章以下简称设备)属高压设备,内有能致人伤亡的高压交流电流,使用时请务必遵循本说明书。 1.3 当设备带电或有残余电压时不要打开任何柜门。 1.4 当设备停电之后,功率单元内仍可能存在危险电压,请等待5分钟之后才能打开柜门,否则可能导致电击或伤害。 1.5 在确认设备已经不发烫和不带电之前,千万不要触摸设备内部的任何部位,否则可能导致电击。 1.6 在接触或测量设备内元器件时,必须十分小心,严防表笔接触到其它端子,导致伤害或故障。 1.7 当主电源切断后,必须等待10分钟后,才能切断控制电源,否则可能导致故障。 1.8 在主电源送电之前,必须先送控制电直到触摸屏不再显示“通信中断”为止,否则可能造成设备故障或损坏。 1.9 当确认变频器有部件损坏之后,不得进行再次通入高压主电源,否则可能造成人身伤害和加深设备损坏器件。 1.10 当设备着火时,不要尝试使用设备,否则可能引起火灾。 1.11 必须由经过认证的人员正确设置参数,如果设置了错误参数,系统可能超限运行损坏设备。1.12 只有有资格的人员以及受过培训的人员可以操作设备,不具有资格或未受过培训的人员操作可能导致人员伤害或设备故障。 1.13 在设备有高压电源供电的情况下,一般不要切断控制电源,否则可能导致人身伤害或设备损坏。 1.14 如果高压输入误送到设备的输出端,这样会严重损坏变频器和引起火灾。 1.15 不要阻塞设备的通风口,否则设备内部的温度将会上升导致故障。 1.16 操作前请熟悉设备上的警告标示,否则可能导致电击或伤害。 1.17 当清理或检查时,必须切断主电源和控制电源。 1.18 不要接触旋转的风机,否则可能导致伤害。 1.19 取出功率单元时要当心,功率单元任何侧受到过大的力都会导致人身伤害或功率单元损坏。1.20 设备在运输或安装过程中,不得靠近水源,否则设备进水之后使用过程中可能导致电击或故障。 1.21 用户不允许更改和搬运设备,可能导致人员伤害或设备损坏。 1.22 安装时,设备不得倾斜超过30°,否则设备可能滑落导致伤害或故障。 1.23 确保设备外壳接地良好,接地电阻不得大于4Ω,否则绝缘能力的下降会导致漏电或电击。1.24 设备在吊装时,必须确认吊车、钢绳、吊钩有足够的吊装能力,起吊工具有足够的强度和安全系数,操作方法必须正确,否则会导致人身伤害或设备故障。 1.25 请严格遵照以上安全规范进行操作,否则将可能导致人身的伤害和设备的故障。

高压变频器方案

一、概述 高压变频器调速系统是将变频调速技术应用于大功率高压电机调速的一种电力换流装置,是国家大型设备节能技术改造及建设推广项目,应用范围广泛,应用高压变频调速器能大幅度降低电机的电耗,其节能效果一般在30%以上,具有明显的节能与环保效益,对提高企业的能源利用率,延长设备的使用寿命,减少设备运行费用与设备维护费用,确保用户的用电质量与用电可靠性,能起到极大的促进作用。在社会积极倡导各行业节能、减排的今天,甲方同时也做出积极地响应。甲方对现场控制对象(高惯量风机)提出的高性能控制装置高压变频器无疑就是其中的一例。根据现场使用情况、工艺要求,利用选用优良的大功率、高电压变频控制装置,不但可以调节电机的转速、转矩充分发挥其电气机械特性,而且可以更大程度上为钢厂、社会节能同时能够获得的更大的经济效益。本系统方案就是给现场高惯量风机选择一款综合性能较好的高压变频器。 二、被控设备基本参数、工作环境、电网情况 1、风机: 型号:Y5-2*48N026.5F 流量:700000m3/h 转速:965r/min 转动惯量:23000kg/m3 2、驱动电机: 型号:YBPK710-6 额定功率:2240KW 额定电压:6KV 额定电流:261A 变频运行:电动机Y型接法效率:96.0% 功率因素:0.86 绝缘等级:F 3、设备现场环境情况: 温度:0-40℃湿度:≤95%,不凝露 4、10KV电网情况 额定电压:10KV 正常电压波动范围:+/-10% 额定频率:50HZ 频率变化范围:+/-10% 三、高压变频器控制方案及选择 交流变频调速技术是现代化电气传动的主要发展方向之一,它不仅调速性能优越,而且节能效果良好。实践证明,驱动风机、水泵的大、中型笼型感应电动机,采用交流变频调速技术,节能效果显著,控制水平也大为提高。目前,变频调速技术已广泛应用于低压(380V)电动机,但在中压(3000V以上)电动机上却一直没有得到广泛应用,造成这种情况的主要原因是目前在低压变频器中广泛应用的功率电子器件均为电压型器件,耐压值基本都在1200-1800V,研制高压变频器难度较大,为了攻克这一技术难题,国内外许多科研机构及大公司都倾注大量人力物力进行研究,工业发达国家高压变频器技术已趋于成熟,国外几家著名电器公司都有高压大容量变频器产品,典型的如美国A-B(罗克韦尔自动化公司所属品牌)、欧洲的西门子公司、ABB 公司等。这些公司产品的电压一般为3-10kv,容量从250-4000kw,所采用的控制方式、变流方式及其他方面的关键技术也有很大差别。 A-B 从1990 年研制成功并开始投入商业运行的变频器主要采CSI-PWM技术,即电流源逆变-脉宽调制型变频器,采用电流开关器件,无需升降压变压器即可以直接输出6KV 电压,分强制风冷和水冷型,功率从300 到18000 马力,至今已经应用于多个行业上千台应用记录。是最有影响力,最为广泛接受的中压变频技术。美国罗宾康公司采用大量低压电压型开关器件,配合特殊设计的多脉冲多次级抽头输出隔离整流变压器,同样能够实现输出端直接6 千伏输出,由于是大量低压元件串接,故被称之为多极化电压性解决方案。西门子公司和ABB 公司分别采用中压IGBT 和IGCT 器件,是典型的电压型变频器。器件耐压等级为4160/3300V,直接输出电压最高达3300V。所以国内也有将此种方案称为高中方案,对应的将6KV-6KV(如A-B 方案)称为高高方案。中压变频器的发展和广泛应用是最近十几年的事情,相比之下低压变频器的应用却已经有超过二十年的时间。在中压变频器大面积推广应用之前,也出现了另外一种方案。即采用升降压变压器的“高-低-高”式变频器,

高压变频器的工作原理与性能特点

高压变频器的工作原理与性能特点 一、高压变频器的基本构成: 1、高压变频器的构成:内部是由十八个相同的单元模块构成,每六个模块为一组,分别对应高压回路的三相,单元供电由移相切分变压器进行供电。(原理图) 2、功率单元构成:功率单元是一种单相桥式变换器,由输入切分变压器的副边绕组供电。经整流、滤波后由4个IGBT 以PWM方法进行控制,产生设定的频率波形。变频器中所有的功率单元,电路的拓扑结构相同,实行模块化的设计。其控制通过光纤发送。来自主控制器的控制光信号,经光/电转换,送到控制信号处理器,由控制电路处理器接收到相应的指令后,发出相应设的IGBT的驱动信号,驱动电路接到相应的驱动信号后,发出相应的驱动电压送到IGBT控制极,操作IGBT关断和开通,输出相应波形。功率单元中的状态信息将被收集到应答信号电路中进行处理,集中后经电/光转换器变换,以光信号向主控制器发送。 二、高压变频器运行原理:高压变频器的每个功率单元相当于一个三电平的二相输出的低压变频器,通过叠加成为高压三相交流电,变频器中点与电动机中性点不连接,变频器输出实际上为线电压,由A相和B相输出电压产生的UAB输出线电压可达6000V,为25阶梯波。如下图所示,为输出的线电压和相电压的阶梯波形,UAB不仅具有正弦波形而且台阶数也成倍增加,因而谐波成分及dV/dt均较小。 三、多电平单元串联叠加高压变频器在运行后,将输入的工频的三相高压交流电转化为可以进行频率可调节的三相交流电,其电压和频率按照V/F的设定进行相应的调节,保持电机在不同的频率下运行,而定子磁心中的主磁通保持在额定水准,提高电机的转换效率。在变频器输入侧,由于变频器多个副边绕组的均匀位移,如6KV输出时共有+250、+150、+50、-50、-150、-250共6种绕组,变频器原边电流中对应的电流成分也相互均匀位移,构成等效36脉动整流线路,变流转换产生的谐波都相互抵消,湮灭。工作时的功率因数达0.95以上,不需要附加电源滤波器或功率因数补偿装置,也不会与现有的补偿电容装置发生谐振,对同一电网上运行的电气设备没有任何干扰。 四、高压变频器的性能特点: 1、应用范围:调速范转宽,可以从零转速到工频转速的范围内进行平滑调节。在大电机上能实现小电流的软启动,启动时间和启动的方式可以根据现场工况进行调整。频率的调整是根据电机在低频下的压频比系数进行电压和频率的输出,在低转速下,电机不仅是发热量低,而且输入电压低,将使电机绝缘老化速度降低。 2、技术新颖串联多重化叠加技术的应用实现了真正意义的高-高电力变换,无需降压升压变换,降低了装置的损耗,提高了可靠性,解决了高压电力变换的困难。串联多重化叠加技术的应用还为实现纯正弦波、消除电网谐波污染开辟了崭新的途径。 移相变压器 移相变压器是单元串联型多电平高压大功率变频器中的关键部件之一。 用低压电力电子元件做高压变频器通常有两种方法:一是用低压元件直接串联,另一种方法是用独立的 率变频器的主流。 以6kV变频器为例: 它的每相由6个独立的、额定电压为Ve=577V(峰值为816V)的低压功率单元串联而成,输出相电压为3464V线电压可达6000V左右。每个功率单元承受全部输出电流但只提供1/6相电压和1/18的输出功率。每个功率单元分别由变压器的一组二次绕组供电,功率单元之间以及变压器二次绕组之间相互绝缘。 很明显移相变压器在该变频器中起了两个关键的作用:一是电气隔离作用才能使各个变频功率单元相互独立从而实现电压迭加串联,二是移相接法可以有效地消除35次以下的谐波。(理论上可以消除6n-1次以下的谐波, n为单元级数)

高压变频器改造

高压变频器用于火力发电厂节能分析报告 第一章概述 国家大力提倡走节约型发展之路,做到珍惜资源、节约能源、保护环境、可持续发展。由于目前国内仍然以燃煤电厂为主,怎样在火力发电厂来落实和贯彻减能、增效的方针政策,大力促进火力发电厂节能是一个值得探讨的问题,而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。信息、通讯、计算机、智能控制、变频技术的发展,为火力发电厂的高效、节约运作、科学管理,以及过程优化提供了前所未有的手段,进而促进火力发电厂的科学管理和自动化水平的提高。 针对节能工程必须追求合理的投资回报率,下面的报告就是针对火力发电厂在提高用电率方面实施的节能工程的跟踪与效益的分析。 第二章国内火力发电厂能源消耗的分析 据国家《电动机调速技术产业化途径与对策的研究》报告披露,中国发电总量的66%消耗在电动机上。且目前电动机装机容量已超过4亿千瓦,高压电机约占一半。而高压电机中近70%拖动的负载是风机、泵类、压缩机。具体到火力发电厂来说主要有九种风机和水泵:送风机、引风机、一次风机、排粉风机、脱硫系统增压风机、锅炉给水泵、循环水泵、凝结水泵、灰浆泵。 可以说这些设备在火力发电厂中应用极广,种类数量繁多,总装机容量大,而且平均耗电量已占到厂用电的45%左右。 但是泵与风机这些主要耗电设备在我国火力发电厂中普遍存在着“大马拉小车”的现象,大量的能源在终端利用中被白白地浪费掉。浪费的主要原因有以下两点: 1、运行方式技术落后 据调查,目前我国火力发电厂中除少量采用汽动给水泵、液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动,阀门式挡板调节。这种定速驱动的泵,在变负荷的情况下,由于采用调节泵出口阀开度(风机则采用调节入口风门开度)的控制方式,达到调节流量得目的,以满足负荷变化的需要。所以在工艺只需小流量的情况下,其泵或风机仍以额定的功率,恒定的速度运转着,特别是在机组低负荷运行时,其入口调节挡板开度很小,引风机所消耗的电功率大部分将被风门节流而消耗掉,能源损失和浪费极大。另外,风机档板执行机构为大力矩电动执行机构,故障较多,风机自动率较低,存在严重的节流损耗。 2、运行实际效率低下 从实际运行效率上来说,在机组变负荷运行时,由于水泵和风机的运行偏离高效点,偏离最优运行区,使运行效率降低。调查显示,我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。这是因为,我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况运行效率低,能耗高。同时在设计选型时往往加大保险系数,裕量过大,也是造成运行工况偏离最优区,实际运行情况运行效率低下的原因。 第三章降低能源消耗的技术策略 为了降低上述火力发电厂运行设备的能源消耗,同时提高火力发电厂的发电效率,新建火力发电厂可选用高效辅机和配套设备,做法有二。一是采用液力耦合器、双速电动机、叶片角度可调的轴流式风机等设备;二是采用变频调速装置。尽管采用液力耦合器在一次投资方面具有一定的优势,但液力偶合调速装置除在节能方面比变频调速效果过相差很远以外,还在功率因数、起动性能、运行可靠性、运行维护、调节及控制特性、综合投资及回报等方面有较大差异。因此,现有老的火力发电厂减少能耗最经济,最简单可行的方法就是加装变频调

高压变频器原理与应用

高压变频器原理及应用 1、引言电机是工业生产中主要的耗电设备,高压大功率电动机的应用更为突出,而这些设备大部分都存在很大的节能潜力。所以大力发展高压大功率变频调速技术具有时代的必要性和迫切性。 目前,随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。其应用领域和围也越来越为广,这为工矿企业高效、合理地利用能源(尤其是电能)提供了技术先决条件。 2、几种常用高压变频器的主电路分析 (1)单元串联多重化电压源型高压变频器。单元串联多重化电压源型高压变频器利用低压单相变频器串联,弥补功率器件IGBT的耐压能力的不足。所谓多重化,就是每相由几个低压功率单元串联组成,各功率单元由一个多绕组的移相隔离变压器供电,用高速微处理器实现控制和以光导纤维隔离驱动。但其存在以下缺点: a)使用的功率单元及功率器件数量太多,6kV系统要使用150只功率器件(90只二极管,60只IGBT),装置的体积太大,重量大,安装位置和基建投资成问题; b)所需高压电缆太多,系统的阻无形中增大,接线太多,故障点相应的增多; c)一个单元损坏时,单元可旁路,但此时输出电压不平衡中心点的电压是浮动的,造成电压、电流不平衡,从而谐波也相应的增大,勉强运行时终究会导致电动机的损坏; d)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; e)输出电压波形在额定负载时尚好,低于25Hz以下畸变突出; f)由于系统中存在着变压器,系统效率再提高不容易实现;移相变压器中,6kV三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的部环流,必将引起阻的增加和电流的损耗,也相应的就造成了变压器的铜损增大。此时,再加上变压器的铁芯的固有损耗,变压器的效率就会降低,也就影响了整个高压变频器的效率。这种情况在越低于额定负荷运行时,越是显著。10kV时,变压器有近400个接头、近百根电缆。在额定负荷时效率可达96%,但在轻负荷时,效率低于90%。 (2)中性点钳位三电平PWM变频器。该系列变频器采用传统的电压型变频器结构。中性点钳位三电平PWM变频器的逆变部分采用传统的三电平方式,所以输出波形中会不可避免地

高压变频器的矢量控制原理

摘要:介绍四象限运行高压变频器的矢量控制原理,在煤矿副井绞车中的运用,改造。以及节能等效果 关键词:高压变频器煤矿运用 一、概述 目前矿用交流提升机普遍使用绕线式电机转子串电阻调速控制系统。在减速和重物下放时能量通过转子电阻释放,能量不能回馈回电网,随着变频调速技术的发展,交-直-交电压型变频调速技术已开始在矿井提升机中应用。HIVERT-YVF06/077大功率变频器是北京合康亿盛科技有限公司研发和生产的高压交流电机调速驱动装置。该变频器采用了先进成熟的低压变频技术,以及功率单元串联叠波、矢量控制技术、有源逆变能量回馈技术等。 二、矢量控制原理 HIVERT-YVF采用转子带速度反馈的矢量控制技术。在转子磁场定位坐标下电机定子电流分解成励磁电流与转矩电流。维持励磁电流不变,控制转矩电流也就控制电机转矩。电机转速采用闭环控制。实际运行中给定转速与实际转速的差值通过PID调节生成转矩电流IT。经过矢量变换将IT、IM变换为电机三相给定电流Ia*、Ib*、Ic*,它们与电机运行电流相比较生成三相驱动信号。控制原理框图如图1 图1 控制原理图 1、主回路 HIVERT系列高压变频器采用交-直-交直接高压(高-高)方式,主电路开关元件为IGBT。HIVERT变频器采用功率单元串联,叠波升压,充分利用常压变频器的成熟技术,因而具有很高的可靠性。

图2 HIVERT-YVF06/077高压变频器6kV系列主电路图 主隔离变压器原边为Y型接法,直接与高压相接。组数量依变频器电压等级及结构而定,6kV系列为18,延边三角形接法,为每个功率单元提供三相电源输入。输入侧隔离变压器二次线圈经过移相,为功率单元提供电源,对6KV而言相当于36脉冲不可控整流输入,消除了大部分由单个功率单元所引起的谐波电流,大大抑制了网侧谐波(尤其是低次谐波)的产生。 变频器输出是580VAC功率单元六个串联时产生3450V相电压,线电压6000V,输出Y接,中性点悬浮,得到驱动电机所需的可变频三相高压电源。 图3为6kV六单元变频器输出的Uab线电压波形实录图,图4即为输出电流Ia的实录波形图,峰值电流130A。

利德华福高压变频器

利德华福高压变频器 Document number:PBGCG-0857-BTDO-0089-PTT1998

利德华福高压变频器 应用范围 近年来,我国年工业生产总值不断提高,但是能耗比却居高不下,高能耗比已成为制约我国经济发展的瓶颈,为此国家投入大量资金支持节能降耗项目,其中高压变频调速技术已越来越广泛的应用在各行各业,它不仅可以改善工艺,延长设备使用寿命,提高工作效率等,最重要的是它可以“节能降耗”,这一点已被广大用户所认可,且深受关注。 从1998年开始,利德华福人通过一年开发,一年开局试验,一年市场考验,其研发制作的HARSVERT-A系列高压变频调速系统,完全具有自主知识产权,适合国内电网特性,符合国内用户使用习惯。该系列高压变频调速系统自2000年投入国内市场后,在市政供水、电力、冶金、石油、石化、水泥、煤炭等行业陆续投入运行。由于安装便捷、操作简单、运行稳定、安全可靠、维护方便,并在节能、节电、省人、省力、自动控制、远程监控等方面效果显着,以及优异的产品性价比和周到的服务,受到用户的广泛欢迎。 火力发电:引风机、送风机、吸尘风机、压缩机、排污泵、锅炉给水泵等 冶金:引风机、除尘风机、通风机、泥浆泵、除垢泵等 石油、化工:主管道泵、注水泵、循环水泵、锅炉给水泵、电潜泵、卤水泵、引风机、除垢泵等 市政供水:水泵等 污水处理:污水泵、净化泵、清水泵等

水泥制造:窑炉引风机、压力送风机、冷却器吸尘风机、生料碾磨机、窑炉供气风机、冷却器排风机、 分选器风机、主吸尘风机等 造纸:打浆机等 制药:清洗泵等 采矿行业:矿井的排水泵和排风扇、介质泵等 其他:风洞试验等 系统原理 HARSVERT-A系列高压变频调速系统采用单元串联多电平技术,属高-高电压源型变频器,直接3、6、10KV输入,直接3、6、10KV高压输出。变频器主要由移相变压器、功率模块和控制器组成。 系统结构 功率模块结构 功率模块为基本的交-直-交单相逆变电 路,整流侧为二极管三相全桥,通过对IGBT 逆变桥进行正弦PWM控制,可得到单相交流 [功率单元电路结构] 输出。 每个功率模块结构及电气性能上完全一 致,可以互换。(备件种类单一) 输入侧结构 输入侧由移相变压器给每个功率模块供电,移相变压器的副边绕组分为三组,根据电压等级和模块串联级数,一般由24、30、42、48脉冲系列等构成多

高压变频器介绍

1、引言 随着电气传动技术的发展,尤其是变频调速技术的发展,作为大容量传动的高压变频调速技术也得到了广泛的应用。高压电机利用高压变频器可以实现无级调速,满足生产工艺过程对电机调速控制的要求,以提高产品的产量和质量,又可大幅度节约能源,降低生产成本。近年来,各种高压变频器不断出现,高压变频器到目前为止还没有像低压变频器那样近乎统一的拓扑结构。根据高电压组成方式可分为直接高压型和高低高型;根据有无中间直流环节可以分为交-交变频器和交-直-交变频器;在交直交变频器中,按中间直流滤波环节的不同,可分为电压源型和电流源型。直接高压交-直-交变频器直接输出高压,无需输出变压,效率高,输出频率不受限制,应用较为广泛。评价高压变频器的指标主要有成本、可靠性、对电网的谐波污染、输入功率因数、输出谐波、dvdt、共模电压、系统效率、能否四象限运行等。本文主要从使用高压变频器后对电网的谐波污染、功率因数等方面讨论高压变频器对电网的影响,并从高压变频器的输出谐波、dvdt、共模电压等方面讨论高压变频器对电机的影响。变频器对电网的影响主要取决于变频器整流电路的结构和特性。高压变频器输出对电机的影响主要取决于逆变电路的结构和特性。美国的NEMA标准中对电机谐波发热、dvdt等方面的相应规定,具体规定是在MGI-1993的第30节。 2、高压变频器对电网的谐波污染 近年来,高压变频器的应用越来越广泛,由于高压变频器相对来说容量较大,占整个电网容量的比重较为显著,所以高压变频器对电网的谐波污染问题已经不容忽视。许多场合由于采用了输入谐波电流较高的变频器,产生了严重的谐波污染问题。从本质上而言,任何高压变频器或多或少会产生输入谐波电流,只是程度不同而已。解决谐波污染的办法有二种一是采取谐波滤波器,对高压变频器产生的谐波进行治理,以达到供电部门的要求,也即通常所说的“先污染,后治理”的办法;二是采用产生谐波电流小的变频器,变频器本身基本上不对电网造成谐波污染,即所谓的“绿色”电力电子产品,从本质上解决谐波污染问题。国际上对电网谐波污染控制的标准中,应用较为普遍的是IEEE519-1992,我国也有相应的谐波控制标准。 图1示出了一种常见的6脉冲晶闸管整流电路结构,主要用于各种电流源型变频器。这种整流电路结构简单,但是输入电流中含有很高的谐波分量,输入电流的5次谐波可达20%,7次谐波可达12%(图2)。由于晶闸管的快速换相会产生一定的高次谐波,可达35次以上,高次谐波会对通信线路产生一定的干扰。这种整流电路总的谐波电流失真约为30%,由于输入谐波较高,一般要设置输入谐波滤波器,滤波器的设计与电网参数和负载工况都有关系,一旦参数和工况发生变化,滤波器又得重新调整,十分不便,且影响滤波效果。但此方案较为经济,一般适用于变频器占电网负荷较小比例下安装。 图1 6脉冲晶闸管整流电路 图2 晶闸管整流电路的输入谐波电流

6kV800kW高压变频器操作说明书

WLdrive系列高压变频器 使用说明书 卧龙电气集团股份有限公司 2012年4月

目录 一、前言 (3) 二、安全操作 (4) 1、安全注意事项 (4) 2、安全操作 (4) 3、安全性规则与警告 (6) 三、验货和产品检查 (8) 1、检查项目 (8) 2、变频器的尺寸 (8) 3、变频器型号说明 (8) 4、产品铭牌 (9) 5、WLdrive-HV系列高压变频器的技术参数 (9) 四、变频器接线 (12) 五、WLdrive系列高压变频器原理 (14) 1、系统结构 (14) 2、多重化输入设计 (15) 4、接口与通讯 (17) 5、控制器 (17) 六、硬件组成及特点 (18) 1、WLdrive-HV高压IGBT变频器硬件配置 (18) 2、旁路柜 (18) 3、变压器柜 (20) 4、功率柜 (21) 5、控制器柜 (22) 七、按钮及面板功能 (23) 1、按钮 (23) 2、触摸屏介绍 (24) 3、画面结构 (25) 4、主控画面 (26) 八、触摸屏操作 (28) 1、数据查询操作步骤 (28) 2、参数设定步骤 (29) 3、系统管理操作步骤 (32) 九、参数设定 (34) 1、参数设定画面介绍 (34) 2、功能参数一览表 (39) 十、系统管理 (41) 1、密码设定 (41) 2、时间设定 (41) 3、PLC时间同步 (42) 4、系统信息 (42) 5、软件版本 (43)

6、数据保护 (43) 7、参数初始化 (44) 8、高级设置 (44) 十一、故障管理 (45) 1、当前故障 (45) 2、故障首出 (45) 3、历史故障 (46) 4、故障记录 (46) 十二、参数的详细说明 (47) 十三、产品标准与性能 (57) 1、特点 (57) 2、符合的相关标准 (57) 3、应用范围 (58) 4、功能 (58) 十四、故障对策 (61) 1、故障报警的处理 (61) 2、故障保护的处理 (61) 3、功率单元过电压 (62) 4、功率单元欠电压 (62) 5、输出过电流 (62) 6、功率单元过热 (62) 7、功率柜风机故障 (63) 8、变压器过热报警与保护 (63) 9、故障后功率单元更换 (63) 十五、保养和维护 (64) 1、变频器的日常维护 (64) 2、保养和维护 (64) 4、绝缘试验 (65) 5、变频器贮存 (66) 6、报废注意事项 (66) 7、保修 (66) 附录A(接线端子功能说明) (67)

浅析高压变频器节能技术应用发展

浅析高压变频器节能技术应用发展 发表时间:2017-10-24T11:33:46.870Z 来源:《电力设备》2017年第16期作者:郭敬番[导读] 摘要:随着社会经济不断的发展,但是能源危机问题越来越严重,使得人们对于能源的高效利用引起了很大的关注。在工业生产中,电能的使用量是非常大的。通过利用高压变频器,实现工业生产中的电气节能问题。分析高压变频器在实践运用中的具体内容,加强节能环保的意识,使得高压变频器发挥最好的使用效果。 (广州东芝白云菱机电力电子有限公司广州市白云区 510460)摘要:随着社会经济不断的发展,但是能源危机问题越来越严重,使得人们对于能源的高效利用引起了很大的关注。在工业生产中,电能的使用量是非常大的。通过利用高压变频器,实现工业生产中的电气节能问题。分析高压变频器在实践运用中的具体内容,加强节能环保的意识,使得高压变频器发挥最好的使用效果。 关键词:高压;变频器;节能 引言 工业节能工作需要持续的进行下去,加强高压变频器在工业中的应用,能够使得生产的节能效果得到提高。因此,相关工作人员需要加强高压变频器的工作原理,以及高压变频器具有的工作优点,加强高压变频器节能效果的体现,不仅为企业经济的发展,同时为社会资源的可持续性发展都提供保障。 1高压变频器的原理以及特点分析 1.1高压变频器的原理 对于高压变频器的原理进行分析后,主要的特点包括以下几个部分:功率单元模块、移相变压器和控制器。这其中功率单元模块的电路构成中,整流侧是三相的全桥结构,开关的器件也都是二极管;滤波电容使用高耐压薄膜电容,逆变侧为IGBT逆变桥,在输出端可以输出两相近似正弦波的交流电。功率单元模块的电路一般是移相变压器供电的,一般情况下,移相的变压器副边绕组会被分成几组,电压等级不同,脉冲叠加的数量也不同,最后实现整流。变压器的副边绕组之间是独立存在的,每个功率单元的主回路也是独立的,这就和常规的低压变频器类似,都是在输出侧给电机进行供电。 1.2高压变频器的性能 (1)具有完美的波形。高压变频器的输出的谐波是和我国的国标要求相符的,他对谐波进行抑制的主要方式输入变压器进行多重化的设计,进而产生多脉冲整流,理论上来说,36 脉冲整流,35次以及以下的谐波是可以自主抵消的。 (2)输出功率因素较高。对变频器的输入功率有一定影响的是中间环节的直流,对于电压源型来讲,中间的直流环节是一个较大的电流,电机中的无功电流就是由电容提供的,电网之间不会存在无功交换,较高的功率因素得以保证;而电流源型,其中的直流环节是大电感,电网和电机之间会交换无功功率,高功率的因数得不到保障,当电机的负荷大大削弱时,功率因素也会随之降低。高压变频器的中间环节,选用的是电压源型的电容,所以输入功率因数相对较高。 (3)具有单元旁路的相关功能。在高压的变频器中,一旦有一个单元出现了故障,和其相对性的相就不会产生电压的输出,造成了电机的缺相工作,该情况是明确禁止的。因此要在高压变频器中间增加单元的旁路功能,提高了运行的可靠性。工作的原理是,其中的一个单元出现故障之后,这个单元会通过对应的旁路的接触器或旁路IGBT成为旁路,不参与到工作中去,变频器还能正常的工作,旁路的时间在 250 毫秒时,从物理的角度进行分析,这个时间将故障单元旁路去掉是绰绰有余的。与此同时,高压变频器还采用了中心点的漂移技术,最终实现了三相线的电压平衡。 (3)具有中性点的偏移功能。高压的变频器的单元旁路功能可以确保变频器的正常运转,但是如果故障的单元被旁路了,对应的电压的容量会大幅度的下降,变频器可以实现的最大的速度也得到了相应的下降。所以,在实际的工作中,要尽可能的控制电机的有效电压,如果变频器没有出现单元故障,是可以输出额定电压给电动机的。 2变频节能系统的组成与特征 变频节能系统的主要结构是由物理方面、管理方面以及控制方面的技术及设备组成,它们都是依靠计算机网络来完成的。在此系统中主要以计算机技术为核心内容,将数据的采集以及相关管理软件的开发结合到一起,以达到便捷采集数据、处理数据的目的。每个系统分管的职责也大不相同,各个系统都可以对数据的来源及渠道进行审核与分析,其职责主要包括以下几种:1)物理方面。主要以硬环境为主,通过运用综合节能柜来对厂内的耗电量进行改善,并利用机泵的变频技术对其进行完善。2)控制方面。例如水泵在实际工作时,运行的情况会受时间的影响,且这种时间变化是具有规律性的。智能控制系统在工作时会对每天、每月中不同时间内最高供水量和最低供水量进行记录,并根据所出现的规律制成图表,并在恰当时给出调节信号,以使设备正常运行。3)管理方面。系统内部的工作环境被称之为软环境,主要负责变频节能软件的管理和分析。在工作开始前,首先要由生产变频器厂家中的专业人员来对水厂的情况及监管方面进行考察和分析,以保证变频器可以满足水厂的工作要求,只有经过一段时间对数据的收集与分析,多次进行试验试查,才可以更好、更准确地为管理人员提供依据,并可以通过软件设计来实现管理要求。 3水泵电机变频器更好实现节能的措施 3.1提升技术要求,保障技术质量 提升水泵电机的运行质量达到节能降耗的效果是应用变频器的目的,要更好地利用变频器来实现节能,工作人员对水泵电机变频器的应用质量一定要做到很好的把握,并且要不断地对相关技术进行探究,以提高技术应用水平,从而满足水泵电机变频器的运转需求;由于变频器的运转要求相对于一般的设备都高,工作人员还要全面做好数字化管理,实现水泵电机运转的自动化,施行四象限运行,强化能量回馈。 3.2改进机械设备,强化散热功能 由于工作环境的特殊性,水泵电机变频器要实现散热,通常用的冷风和冷对系统并不能满足变频器的散热要求,这就要对散热系统性能进一步地改善,以确保变频器散热功能能够正常发挥。要对机械设备进行不断的改善,以不断强化散热功能,满足变频器的散热要求,确保变频器能够正常散热,提高变频器应用效果。

相关文档