文档库 最新最全的文档下载
当前位置:文档库 › 反激变压器设计 实战经验总结

反激变压器设计 实战经验总结

反激变压器设计 实战经验总结
反激变压器设计 实战经验总结

反激变换器设计(电源网rj44444 网友提供)

整理电源网lixuelei 2013年8月7日6:57:01

开关电源的出现使得使用使用市电的设备告别了笨重的变压器和需要使用庞大散热器的线性稳压器,电子产品做到了更小的体积、更轻的重量和更高的效率。但是,开关电源使得设计门槛大大提高,它要求设计者在电路和磁学上必须有深刻的理解。介绍开关电源的书籍很多,但是大都过于繁杂,学习和消化完一本书需要大量的时间精力,而即便完成了这一艰巨的任务,设计者也不见得具备独立设计一个完整电源系统的能力。

这里笔者根据自己所学知识和实际经验谈下反激式开关电源的设计方法,并结合实例变压器设计的详细计算过程。由于笔者接触开关电源时间不长,文中疏漏与不当之处难免,还望读者批评指正。

1. 基本反激变换器原理

在讨论具体的设计步骤之前,我们有必要介绍一下反激式开关电源的原理。对于反激式开关电源,在一个工作周期中,电源输入端先把能量存储在储能元件(通常是电感)中,然后储能元件再将能量传递给负载。这好比银行的自动取款系统,银行工作人员每天在某一时间段向自动取款机内部充入一定数目的钱(相当于电源输入端向储能元件存储能量),一天中剩下的时间里,银行用户从取款机中将钱取走(相当于负载从储能元件中获取能量)。在银行工作人员向取款机充钱的时候,用户不能从取款机中取钱;客户正在取钱的阶段,银行工作人员也不会向存款机里面充钱。这就是反激式开关电源的特点,任何时刻,负载不能直接从输入电源处获取能量,能量总是以储能元件为媒介在输入电源和负载间进行传递的。

下面来看图一,这是反激式变换器的最基本形式,也就是我们常说的buck-boost(或者flyback)拓扑。当开关闭合时,输入电源加在电感L 上,流过电感的电流线性上升,上升斜率就是输入电压与电感量的比值(在这里以及以下讨论中,我们忽略了开关管的压降,但是不忽略二极管的压降,这将更符合后面关于离线式反激变换器的实际情况),如下式:

在之一过程中,电能转换成磁场能量储存在电感内,电感量一定时,时间越长流过电感的电流越大,电感中储存的能量也就越大,电感内部储能大小如下式:

开关闭合期间,二极管 D 是反偏的,输入到输出端没有通路,电源输入端和电感都不向负载提供能量。

当开关断开时,电感需要通过维持电流的恒定来阻止磁通量的突变,但此时电源输入端和电感之间没有通路,所以电感两端的电压必须反向(原来的上正下负变为上负下正),使得二极管 D 正偏导通,储存在电感内部的能量一方面传递给负载,另一方面装换成电场能储存在输出电容Co 当中。电感中的电流线性下降,下降斜率为电感上电压与电感量的比值,而此时电感上的电压等于输出电压加上二极管的正向压降,如下式:

以上讨论了一个开关周期的情况,为了电路能够持续稳定工作,必需满足一定的条件,我们仍然以银行自动取款系统做比喻。试想,如果一天过去后,取款机里面的钱还有剩余,那么第二天银行工作人员就必需减少充入的钱的数目,否则,取款机就肯定放不下这么多钱。电路中也是一样,如果开关关断的时候,电感内部的能量没有完全转移出去(被负载消耗或者存入输出电容中),那么接下来开关闭合的时间Ton 就必需减小,否则周而复始的话,电感中的电流会不断积累,最终使得电感饱和,换一句话

说,为了系统稳定工作,必须满足的条件就是开关闭合期间电感的电流增加量必须等于开关断开器件电流的减小量,即下式:

以一个完整的周期分析,对上面的式子化简得到:

从上面的式子可以看出,系统维持稳定工作的条件就是开关闭合时电感上的电压与开关闭合时间的乘积等于开关关断时电感上的电压与开关关断时间的乘积相等,这也就是伏秒数数守恒,这两个乘积其中的一个叫做电感的伏秒数。从上面的一系列式子可以看出,伏秒数描述了电感中电流的变化量,实际上对应着电感中储存的能够被利用的能量。

下面给出基本反激变换器的电感电流波形。如图二所示,以一个周期为例,从 A 点到C 点间,开关闭合,电感电流线性上升,在此期间电感电流即开关管电流;从C 点到B 点,开关断开,电感电流线性下降,在此期间电感电流即二极管电流。图中可以看出,流过电感的平均电流等于电感的峰值电流和谷值电流的中间值。而流过开关管和二极管的平均电流可以由下式确定:

这里引出了占空比 D 的概念,即开关开启时间与开关周期的比值。从伏秒数守恒的关系式我们可以得到基本反激变换器中占空比的计算式如下:

从图一中,我们看到电源输入端只与开关管相连,所以输入电流即开关管电流,也就是开关闭合时的电感电流;输出端只与二极管和电容相连,又因为电容器不可能流过直流,所以平均输出电流等于平均二级管电流,即有下式成立:

最后我们给出一个很重要的定义,那就是纹波系数,在不同的书籍和文献中,纹波系数的定义有一定的区别,为了方便我们接下来的讨论和计算,在这里将纹波系数KRF 定为电感电流变化量的一半比上电感平均电流,即:

图二电路中,整个开关周期内,流过电感的电流始终不为零。当输出电流减小时,相应的电感平均电流也减小,如果开关周期、电感量以及输入输出电压不变的话,电感中电流的变化量保持不变,那么,就可能出现电感中变化的电流大小等于或者大于平均电流两倍的情况。这个时候,每一个周期内,开关闭合时,电感电流从零开始上升,开关断开后,电感电流会下降到零。也就是说,此时的KRF 等于或者大于1,这就是我们说的临界工作模式和断续工作模式。相对应的电感电流始终不为零的情况就是连续工作模式。

在反激式变换器中,电感量取值越大,电流的变化量(纹波电流)就越小,在相同输出电流情况下,越不容易进入断续模式;反之,电感量取值越小,纹波电流越大,在相同的输出电流情况下,越容易进入断续工作模式。

通常在设计过程中,我们可以设定在某一输出电流(即输出功率)时变换器进入临界模式,电流大于设定值时就进入连续工作模式,小于这一值时进入断续工作模式(即KR F在0 到1 之间)。也可以将变换器设计为一直工作在临界模式或者断续模式(即K

RF 大于等于1),特别是在单级PFC 反激式变换器以及准谐振反激式变换器中,这种方式应用较多。本文以下的讨论均以连续模式为例。

上面讨论了基本反激变换器满足的基本关系式,接下来一节我们开始讨论隔离输出的反激变换器原理。

2.隔离输出的反反激式变换器电压和电流关系

如果将图一中的电感换成耦合电感,使输入和输出加在不同的绕组上,得到图四 a 所示的电路。为了方便讨论,我们假设L1 和L2 的线圈匝比为n,耦合系数为1。当开关闭合时,电源输入端向电感L1 中存储能量,根据同名端的关系,L2 中感应出上正下负的电压,二极管 D 反偏。在开关关断前的一瞬间,L1 中的电流上升到最大值,在开关关断瞬间,L1 与输入端没有通路,为了阻止磁通量的突变,L2 上的电压反向,使得输出二极管正偏导通,存储在磁芯中的磁场能转移到输出电容和负载中。

图四隔离输出的反激变换器原理图

图四 a 给出的电路就是离线式反激变换器的雏形了,在实际应用中,我们往往把开关管放在电源输入的负端,并且输出为上正下负看起来也比较习惯,于是得到了图四b 所示的反激式变换器基本结构。

首先我们讨论图四 b 所示电路中L1 和L2 中的电流,图五给出了相应的波形图。开关关断瞬间,磁通量不能突变,所以L2 中的电流等于关断前一瞬间L1 电流值的

n 倍(n 为L1 和L2 线圈匝比)。开关闭合瞬间,为了阻止磁通量突变,L1 中电流等于闭合前一瞬间L2 中电流的1/n.。又因为在开关闭合期间和开关断开期间L1 和L2 中电流都是线性变化的,所以我们可以得出如下的关系式:

从上面的关系式进一步得到:

上面式子中的n=N1/N2,其中N1 为L1 的线圈匝数,N2 为L2 的线圈匝数。

图五隔离输出的反激式变换器初次级电感电流波形

接下来讨论L1 和L2 的电压关系,图六给出了相应的波形图。开关闭合期间,根据同名端和匝比的关系,L2 上感应出上负下正的电压,大小为Vin/n;开关关断期间,

L2 上的电压等于输出电压加上二极管电压正向压降,极性为上正下负,设这个电压为VL2,则根据同名端和匝比关系,L1 上的感应电压为nVL2,极性变为上负下正。我们把这个电压叫做次级反射电压Vor。

图六隔离输出的反激变换器输入输出电压波形

前面提到,为了维持变换器的稳定工作,开关闭合期间电感上电压与闭合时间的乘积应等于开关断开期间电感上电压与断开时间的乘积。对于耦合电感,我们计算时将开关闭合和断开期间的电压全部这算到初级来计算的话,就有如下关系:

通过上式可以求得占空比如下:

不难看出,对于当输入电压最低时,占空比最大。在反激式开关电源中,最大占空比是一个很重要的参数,对于连续模式的反激式变换器,一般情况下,最大占空比限定在0.5 以内,超过0.5 的话,容易出现次谐波振荡。

不可忽略的是,实际工程中L1 不可能和L2 形成理想的全耦合,L1 中有少量的磁通不能完全耦合到L2 中,等效为L1 上串联一个电感量较小的电感,也就是常说的漏感Lleak。在开关断开瞬间,这部分不能耦合到L2 中的磁通也不能突变,于是Lleak 试图通过将电压反向来续流,此时开关闭合,没有续流通道,于是Lleak 上感应出一个很高的尖峰电压Vpk,这个电压和上面的反射电压方向相同。在开关断开的瞬间,电源输入电压、次级反射电压和漏感尖峰电压一起加在开关管上,由于漏感尖峰电压通常很高,能够瞬间造成开关管的损坏,实际电路中一般要进行钳位处理。

3. 离线式反激变换器的电路原理

图七给出了一个输出5V/2A 的电源适配器用到的离线式反激变换器完整的原理图,主芯片型号为RM6203(西安亚成微电子),芯片内部集成了完整的控制电路和一个800V 的高压功率BJT。下面我们以这个电路为例分析外围电路的基本作用,对于使用其他控制芯片的电路,原理上大同小异。

图七输出5V/2A 的离线式反激变换器

输入的交流市电经过保险丝F1 后进入由C3 和T2 构成的共模滤波器,滤除电网中的共模干扰信号,然后经过D2 全桥整流和电容C6 滤波后得到较为平坦的直流电。直流电通过R2 和R5 加在内部开关功率管的基极,向基极注入电流,开关管的集电极(也就是芯片的OC 引脚)有电流流过,初级绕组开始有电流流过。同时直流电通过R2 和R5 向电容C8 开始充电,当C8 上的电压达到IC 工作的启动电压时,I C 开始工作。

IC 进入正常工作后,在开关关断期间,辅助供电绕组Na 上感应出的电压使D5 导通,辅助绕组为IC 供电,并将部分能量储存在电容C8 中,待下一周期开关导通期间,电容为IC 供电。

图七电路中,R4、C5 和D3 并联在变压器的初级绕组上,这就是常见的一种吸收漏感尖峰的电路结构,RCD 吸收电路。当开关管关断瞬间,初级线圈的漏感以及PCB 线路的寄生电感感应出很高的尖峰电压时,D3 会正偏导通,由于电容C5 上的电压不能突变,于是尖峰电压被箝位在一定的范围内,保护开关管不被损坏。开关断开期间C5 上增加的能量会在开关闭合期间消耗在R4 上,防止C5 上的电压不断升高。

图七中的电容C10 用于设置IC 内部的振荡器工作频率,C1 并联在初次级之间用于减小差模干扰。R10 和R11 接在开关管发射极和初级地之间,当次级电流增大时,由第二节推出的关系可知,初级开关的峰值电流也会成比例增加,导致R10 和R11 上的电压升高,IC 通过检测这个电压判断次级是否出现过流或者短路,如果是,IC 将执行相应的保护动作。

接下来我们看次级电路。次级绕组Ns 输出后的基本结构和第二节讨论的完全一致,增加的输出LC 滤波器L1 和C7 用于减小纹波,并联在输出二极管上的RC 电路用于吸收输出二极管上的尖峰。

图八输出二极管的波形

在高速开关下,二极管导通瞬时,电流变化率很大,在导通瞬间,二极管呈现较大的正向压降(如图八b),又由于二极管结电容、次级漏感和PCB 线路寄生电感的存在,二极管上可能会会出现振荡(如图八c)。正向电压过冲或者电压的振荡都会导致二极管的损耗增加,在输出电流较大时,这一损耗远远超过二极管的导通损耗,造成二极管过热。为了一定程度抑制振荡或者减小过冲,通常在二极管上并联RC 吸收网络(图六所示的R1 和C2),引入这一这一电路后,二极管的损耗被部分转移到电阻上。

最后简单讨论反馈环路。通常的离线式反激变换器使用TL431 加光耦的形式作为次级反馈电路。TL431 的内部等效电路如图九所示。它实际上包含了一个电压基准源和一个误差放大器。

图九TL431 内部等效电路

分析图七所示电路,当某种因素(如电网电压波动、负载电流的增加等)导致输出电压降低时,由R9 和R12 得到的TL431 的REF 端电位降低,图九所示的等效电路中BJT 的基极电流相应减小,从而集电极电流减小,流过TL431 阴极的电流也减小,光耦的输入电流(即发光二极管电流)随之减小,最终导致连接初级部分的光耦输出端(光敏三极管集电极)电流减小,集电极电位升高。至此,次级电压减小的信号反馈到了初级,初级通过监测光耦输出端的集电极电位的升降来判断输出电压是降低还是升高。如果降低,初级将通过增大开关管的导通时间(对于PWM 模式)或者开关频率(对于PFM 模式)来是输出电压稳定;反之亦然。

4. 磁芯电感器的基本知识

反激式变换器会用到较多的电感元器件,因此在讨论设计之前我们简单地介绍一下磁性元器件的基本知识。选择电感器时,我们经常提到电感的饱和电流,首先我们看一下什么是电感饱和电流。

图十环形线圈示意图

如图十所示的环形线圈,假设线圈匝数为N 匝,流入电流I,那么根据安培环路定律,以图中r 为半径对磁场强度进行积分可得:

不难看出,磁场强度正比于电感电流,反比于磁路长度。又因为磁场强度与磁感应强度B(也可以叫做磁通密度)存在如下关系:

其中μ0 和μr 分别为空气磁导率和介质磁导率。所以当电流增大时,电感内部的磁场强度增大,如果想对磁导率保持不变的话,磁感应强度也会随之增大。对于开关电源中的电感器件,一般都是带有磁芯材料的,对于一般的磁芯材料,对磁感应强度(磁通密度)的大小有一定的限制,当材料中的磁感应强度随磁场强度增大到一定值后,磁感应强度不再随磁场强度增加而增加,可以看做相对磁导率μr 不为常量,我们把此时的情况叫做磁芯饱和。

为了防止磁芯进入饱和,我们必须将磁芯中才磁感应强度限定在一定的范围内,另外,考虑到磁芯的损耗也与磁感应强度的大小成正相关关系,所以又进一步减小了磁感应强度的选取范围。对于通常的铁氧体磁芯,我们一般选择工作的磁感应强度为1600 G(即0.16T)。

根据磁通量、磁链的定义以及相关关系,我们有如下公式:

其中φ表示截面积为 A 的磁芯中的磁通量,ψ表示磁链,N 表示线圈匝数。从上面的关系式可以得出:

不难看出,当要求的电感量一定时,减小磁芯中磁感应强度的方法有两种:增加线圈匝数或增大磁芯截面积(即选用更大尺寸的磁芯)。在实际的工程应用中,增加线圈的

匝数一方面可能导致磁芯无法容纳所有绕组,另一方面会导致电感的内阻增加,线圈损耗增加,从而不得不增加线径,使得磁芯容纳绕组更加困难。所以在选择磁芯时,需要同时考虑磁芯截面积Ae 和磁芯的窗口面积Aw。常见的经验公式中,一般选取Ae 和Aw 的乘积Ap 作为选择磁芯的标准。

5. 离线式反激式变换器的系统设计

本节将讨论离线式反激变换器的电路元件参数选取和变压器设计,重点介绍变压器的设计。

5.1 保险丝和负温度系数热敏电阻

反激式变换器的输入端通常串联保险丝盒一个标称阻值几欧到几十欧的负温度系数热敏电阻(NTC),保险丝的作用显而易见,在电路出现短路或者过流时,为整个电路提供最后一道保护屏障。负温度系数热敏电阻则在电路启动时起到了减小浪涌电流的作用。当输入端接通电源时,对于没有PFC 功能的电路,输入滤波大电容将造成输入端出现大的浪涌电流,接入NTC 后,由于启动瞬间NTC 温度较低,阻值较大,有效抑制了浪涌电流。随着电源的工作,NTC 流过电流发热,阻值减小,NTC 造成的线电压损耗也随之降低。

由于保险丝和热敏电阻都属于阻性元件所以选取时根据有效值电流计算。例如图七所示的电路中,输出5V/2A,预估效率75%,我们首先计算出电源输入端的最大有效值电流:

那么,我们选择保险丝的时候,要求额定电流大于这个值,考虑到浪涌电流对保险丝寿命的影响,我们通常选择额定电流比这个值大数倍的保险丝。另外需要注意的是保

险丝的额定电压,如果选择的保险丝额定电压低于电源最高输入电压,可能造成保险丝的两极之间出现拉弧现象。例如图六中选择了1A/250V 的保险丝。

对于热敏电阻,我们首先需要了解稳定情况下的阻值,然后根据阻值和最大有效值电流得出电阻上的功耗,最后选取额定功率大于计算值的电阻。对于小功率的开关电源,通常省去了热敏电阻。

5.2 共模电感和安规X 电容的选取

共模电感和安规X 电容一起组成了共模滤波器。在开关电源中,这两者的参数相对变化较小。对于共模滤波器电感,电感量在几mH 到几十mH,一般情况下,功率越大时,共模电感的电感量越小。安规X 电容恰恰相反,功率越大时,该电容的容量通常越大。安规Y 电容的容量一般在100nF 到几百nF。

共模电感和安规X 电容的具体参数很难通过公式计算,通常应用中,依据经验值大概确定电感量和电容量的大小,然后在测试者对参数调整。共模电感选取的另一个要点是保证输入电流不会导致磁芯的饱和。对于成品化的共模电感,可以提供输入功率等参数进行选购。

5.3 输入整流二极管的选择

市电输入一般为50Hz 或60Hz 的工频信号,输入整流二极管一般为高压PiN 二极管,因此二极管的功耗主要是导通损耗。导通损耗等于二极管的正向压降与正向平均电流的乘积,对于交流正弦输入和全桥整流的应用,平均二极管电流等于有效值电流乘以正弦因子,计算公式如下:

所以理论上计算得到所需的二极管最大整流电流只需大于75mA。但是考虑到额定电流更大的二极管发热更低,并且在大的输入滤波电容作用下,流过整流二极管的电流波形为尖脉冲,为了增加二极管的寿命和可靠性,通常选择额定电流远大于计算所得到的最大平均电流。整流二极管的另一个重要参数是最大反向工作电压,桥式整流中,二极管承受的最大反向电压即市电输入最高电压。在实际应用中,为了安全起见,一般选择最大方向工作电压为市电最高输入电压 2 倍的二极管。图七所示的电路中选取了1A/600V 的整流桥。

5.4 输入滤波电容的选取

输入滤波电容使整流后的半正弦信号变为相对平坦的直流电,电容量的大小决定了直流的平坦度。假设充放电阶段电容上的电压都是线性变化的,我们可以得到图九所示的波形。一个周期内,在AB 段,市电通过整流二极管向电容充电,电容上的电压上升,在BC 段,电容向后级负载放电,电容上的电压下降。电容上的电压周期性地波动,周期为工频周期的一半。

图九电容上的直流电压波形输入滤波电容上的电压即变换器的输入电压,为了较为准确地得到变换器输入直流电压的范围,我们需要计算电容上电压的波动值。我们假设一个周期内电容的充电时间为Tch,并且规定充电时间占周期时长的百分比Dch,根据经验,Dch 一般取0.2 到0.3,我们得到如下的计算过程:

其中,I 表示电容后接负载的平均电流,在电容上电压波动不大的情况下,我们通过下式估算:

其中Pin 为反激变换器的输入功率,等于输出功率与系统效率的比值。最后我们得到电容上电压波动范围计算式如下:

其中fin 表示工频频率,50 或60Hz,η为系统的效率。从上面的计算可以看出,变换器输入直流电压的波动正比于输入功率,反比于输入电容容量。对于离线式反激式变换器,一般按照每W 输出功率2—3μF 选取输入滤波电容。在确定输入滤波电容容量后,就可以得到变换器的输入直流电压范围。例如,对于图七所示电路,输入85V—265V 交流市电,预估效率为0.75,取Dch=0.2,得到如下计算结果:

5.5 变压器的设计

变压器是开关电源设计中的难点和重点,变压器参数是否合适对整个电源的效率、纹波、辐射等方面有重要影响。反激式变换器的变压器实际是一个耦合电感,它传递的是电流信号,因此匝比和输出电压没有直接关系,但是匝比会影响初级开关管和次级输出二极管的电压电流应力。

如果不考虑漏感尖峰电压,那么关断期间开关管承受的最大电压等于输入最大直流电压加上次级反射电压,输出电压一定时,变压器匝比越大,反射电压越高。另一方面,开关闭合导通期间,次级输出二极管承受的反向电压为初级反射电压加上输出电压,变压器匝比越大,初级反射电压越高,二极管承受的反向电压也就越高。所以匝比的选取需要综合考虑开关管和输出二极管的电压应力。

5.5.1 确定最大占空比

在实际应用中,初级开关管的耐压通常是比较固定的,而次级输出二极管的选择则可以比较灵活,所以我们在下面的设计过程中从开关管的电压应力这一角度考虑。考虑输入电压最小时,对应最大的占空比,从第二节占空比的关系式可以得出次级反

射电压与占空比存在如下关系:

前面提到过,一般限定最大占空比不超过0.5,在这里我们取0.45(这是计算时最常用的值)的话,得到图七所示电路中初级反射电压为:

反激式开关电源设计的思考六-变压器设计实例

反激式开关电源设计的思考六 -变压器设计实例 已知条件: 输入电压:DC:380V~700V 输出电压:1) 5V/0.5A 2) 12V/0.5A 3) 24V/0.3A PWM控制论芯片选用UC2842, 开关频率:50KHz 效率η:80% 取样电压用12V,5V用7-8V电压通过低压差三端稳压块得到; 算得Po=5×0.5+12×0.5+24×0.3=15.7 W 计算步骤: 1、确定变比N N=Np/Ns VoR = N(VO+VD) N=VoR/(VO+VD) VoR取210V N=210/(12+1)=16.1 取16 2.计算最大占空比Dmax 3、选择磁芯 计划选择EE型磁芯,因此ΔB为0.2T,电流密度J取4A/mm2 Ap = AwAe = 6500×P0 / (△B×J×f) =2.51×103 (mm4) 通过查南通华兴磁性材料有限公司EE型磁芯参数知

通过上面计算,考虑到还有反馈绕组,要留有一定余量,最终选择EE25磁芯 EE25磁芯的Ae=42.2mm2=4.22X10-3m2 4、计算初级匝数Np

5、初级峰值电流:Ip 6、初级电感量L

7、次级匝数 1) 、12V取样绕组Ns: Ns=Np/N =250/16 =15.625 取16匝 2)、计算每匝电压数Te: Te=(Uo+Ud)/Ns =(12+1)/16 =0.8125 3)、7.5V匝数: N7.5V=U/Te =(7.5+0.5)/0.8125 =9.84取10匝 4)、24V匝数 N24V=U/Te =(24+1)/0.8125 =30.7取31匝 5)、辅助绕组15V N15V=U/Te =(15+1)/0.8125 =19.7取20匝 8、计算初级线径: 1)、计算电流有效值I

连续电流模式反激变压器的设计

连续电流模式反激变压器的设计 Design of Flyback Transformer with Continuing Current Model 作者:深圳市核达中远通电源技术有限公司- 万必明 摘要:本文首先介绍了反激变换器(Flyback Converter)的工作原理,然后重点介绍一种连续电流模式反激变压器的设计方法以及多路输出各次级电流有效值的计算. 关键词:连续电流模式(不完全能量传递方式)、不连续电流模式(完全能量传递方式)、有效值、峰值. Keywords: Continuing Current Model、Discontinuing Current Model、virtual value 、peak value. 一.序言 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计.

二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b). 图一 Io 图二(a)

5V,2A 反激式电源变压器设计(EFD20)过程整理_20110310

5V,2A 反激式電源變壓器設計過程整理 已知: VinAC = 85V ~ 265V 50/60Hz Vout = 5V + 5% Iout = 2A Vbias = 22V, 0.1A (偏置線圈電壓取 22V, 100mV) η = 0.8 fs = 132KHz 計算過程: 1.設工作模式為 DCM 臨界狀態. Pout = 5*2 = 10W Pin = Pout/η= 10/0.8 = 12.5W V inDCmin = 85* 2-30(直流紋波電壓)= 90V V inDCmax = 265* 2=375V 2.匝數比計算 , 設最大占空比Dmax = 0.45 : 13918.12) 45.01(*)2.05.05(45.0*90)1(*)d out (*n max max min in ≈=-++=-++=D V V V D V L DC 式中: Vd 為輸出整流二極管導通壓降,取0.5V; VL 為輸出濾波電感壓降, 取0.2V. 3.初級峰值電流計算: A D V P I DC 494.045 .0*9010*2*out 2p max min in === 4.初級電感量計算: H H I V D L DC u 62110*621494 .0*10*13290*45.0p *fs *p 63min in max ==== 5.變壓器磁芯選擇EFD20, 參數如下: Ae = 28.5mm 2 AL = 1200+30%-20%nH/N 2 Le = 45.49mm Cl = 1.59mm -1 Aw = 50.05mm 2 Ap = 1426.425mm 4

反激变压器设计实例(二)

反激变压器设计实例(二) 目录 反激变压器设计实例(二) (1) 导论 (1) 一.自跟踪电压抑制 (2) 2. 反激变换器“缓冲”电路 (4) 3. 选择反击变换器功率元件 (5) 3.1 输入整流器和电容器 (5) 3.2 原边开关晶体管 (5) 3.3 副边整流二极管 (5) 3.4 输出电容 (6) 4. 电路搭接和输出结果 (6) 总结 (7) 导论 前面第一节已经将反激变换器的变压器具体参数计算出来,这里整个反激电路最核心的部件已经确定,我们可以利用saber建立电路拓扑,由saber得出最初的输出参数结果。首先进行开环控制,输出电容随便输出一个值(由于C1作为输出储能单元,其容值估算应考虑到输出的伏秒,也有人用1~2uF/W进行大概估算),这里选取1000uF作为输出电容。初始设计中的输出要求12V/3A,故负载选择4欧姆电阻,对于5V/10A的输出,通过调节负载和占空比可以达到。由实际测量可得,1mm线径的平均电感和电阻值分别为6uH/匝和2.6mΩ/匝,寄生电感通常为5%,由于副边匝数较少,可不考虑寄生电感,所以原边寄生电感为27uH,电阻为11.57mΩ,最终结果如图1所示。

图1.反激电路主拓扑 图2.开关管电压、输出电压、输出电流 首先由输出情况可以看出,变压器的设计还是满足要求的。查看图2中开关管电压曲线可以看出,其开关应力过高,不做处理会导致开关管导通瞬间由于高压而击穿。 在反激变换器中,有两个主要原因会引起高开关应力。这两个原因都与晶体管自带感性负载关断特性有关。最明显的影响是由于变压器漏感的存在,集电极电压在关断边沿会产生过电压。其次,不是很明显的影响是如果没有采用负载线整形技术,开关关断期间会出现很高的二次测击穿应力。 一.自跟踪电压抑制 当警惕管所在电路中带感性或变压器负载,在晶体管关断时,由于有能量存储在电感或变压器漏感的磁场中,在其集电极将会产生高压。 在反激变换器中,储存在变压器中的大部分能量在反激期间将会传递到副边。可是由于漏感的存在,在反激期间开始时,除非采用一定形式的电压抑制,集电极电压会有增加的趋势。在图3中,变压器漏感、输出电容电感和副边电路的回路电感集中为L TL,并折算到变压器原边与原边主电感L p相串联。 考虑在关断后紧接着导通这个动作,在此期间T1原边绕组中已建立电流。当晶体管Q关断

反激式开关电源变压器的设计方法

反激式开关电源变压器的设计方法 1引言 在开关电源各类拓扑结构中,反激式开关电源以其小体积、低成本的优势,广泛应用在高电压、小功率的场合。反激式开关电源设计的关键在于其变压器的设计。由于反激变压器可以工作在断续电流(DCM )和连续电流(CCM )两种模式,因此增加了设计的复杂性。本文考虑到了两种工作模式下的差异,详细介绍了反激变压器的设计方法和步骤。 2基本原理 R 1 V o 图1 反激变换器原理图 反激变压器实际上是一个耦合电感,首先要存储能量,然后再将磁能转化为电能传输出去[1]。如图1所示,当开关管r T 导通时,输入电压i V 加在变压器初级线圈上。由于初级与次级同名端相反,次级二极管1D 截止,能量储存在初级线圈中,初级电流线性上升,变压器作为电感运行。当r T 关断时,励磁电感的电流使初级和次级绕组电压反向,1D 导通,储存在线圈中的能量传递给负载。按照电感线圈中电流的特点,可分为断续电流模式(DCM )和连续电流模式(CCM )。电流波形如图2所示。

初级 次级 初级 次级 I p2I p1I s2 I s1 I p2 I p1 I s2 I s1 DCM CCM 图2 DCM 和CCM 电流波形 DCM 为完全能量转换,在开关管开通时,初级电流从零开始逐渐增加,开关管关断期间,次级电流逐渐下降到零。 CCM 为不完全能量转换,开关管开通时,初级电流有前沿阶梯,开关管关断期间,次级电流为阶梯上叠加的衰减三角波。 3设计步骤 (1)各项参数的确定 反激式开关电源变压器的设计中涉及到很多参数,因此在计算之前必须要明确已知量和未知量。 已知参数一般由电源的设计要求和特点来确定,包括:直流输入电压i V (i min i i max V V V ≤≤),输出电压o V ,输出功率o P ,效率o i P = P η,工作频率1 f=T 。 未知量即所要求的参数包括:磁芯型号,初级线圈匝数p N ,次级线圈匝数s N ,初级导线直径p d ,次级导线直径s d ,气隙长度g l 。 另外,为了能够对未知参数进行求解,我们还必须要指定开关管的耐压值或开关的最大占空比。本文中,以规定满载和最小输入电压条件下最大占空比为 max D 来进行后续的计算。 为简化计算公式,本文中忽略开关管及二极管导通压降。

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 PCbfans提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 1

变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应强度虽然高,但在假定测试频率和整个磁通密度测试范围内,它们呈现铁损最高,因此,受到高功率密度和高效率制约,它们也不宜采用。虽然铁氧体材料损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状铁芯。对于大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成变压器是最符合其要求,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度确定 工作磁感应强度Bm是开关电源变压器设计中一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T 到0.3T之间。在本设计中,根据特定工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数计算 3.1 变压器计算功率 开关电源变压器工作时对磁芯所需功率容量即为变压器计算功率,其大小取决于变压器输出功率和整流电路形式。变换器输出电路为全波整流,因此 2

反激变压器设计过程

精心整理 反激变压器设计过程 1、初始值设定 1.1开关频率f[kHz] 对于要接受EMI规格适用的产品,不要设定在150kHz(预计余量的话120kHz左右)以上。一般设定在65kHz左右。 1.2输入电压范围设定 主要对瞬时最低输入电压/连续最低输入电压/最大输入电压的3类进行设定。 项目内容 瞬时最低输入电压 V inmin1[V] 考虑了停电保持的最低DC输入电压。为设计的基准。 连续最低输入电压V inmin2[V] 规格书上的最低AC输入电压×1.2倍。用于算出绕线的电流容量。 最大输入电压V inmax[V] 规格书上的最大AC输入电压×1.414倍。用于开关元器件/整流元器件的耐电压算出。 1.3最大输出电流设定 对于过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流(在规格书上有规定的情况下)3种类,进行设定。 另外,在这最大输出电流中需包括对于各自偏差的余量。 项目内容 过电流保护最大输出 电流 I omax1[A] 考虑了偏差的最大电流×余量1.1~1.2。 连续最大输出电流I omax2[A] 额定输出电流×余量1.1~1.2。为设计的基准。但是,在有峰值最大电流的情况下,只将峰值最大电流作为设计基准使用。连接最大电流只用于算出绕线的电流容量。 峰值最大输出电流 I opeak[A] 峰值最大电流×余量1.1~1.2。为设计的基准。 1.4最大二次绕组输出端电压设定 用以下公式算出: 最大二次绕线端输出电压:V N2max[V]=接插件端输出电压+线间损失0.1~0.5V+整流元器件Vf0.4~0.6V

※在有输出电压可变的情况下,根据客户要求规格书的内容不同,适用的范围而各不相同。 客先要求规格书内容 只保证输出电压 ※只在装置试验时电压可变的情况下。磁芯用最大输出电压来设计。绕线是用额定输出电压来设计。 保证所有的性能 ※在实际使用条件下通常的电压可变的情况下。磁芯、绕线都用最大输出电压来设计。 1.5一次电流倾斜率设定 输入电压,瞬时最低动作电压、输出电流,在过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流的任意一个最大输出电流的条件下,设定图1-1的一次电流波形的斜率。K的设定公式如下。 作为目标,设定到0.5~0.6,兼顾到之后的其他特性,作最适当的变更。 1.6最大占空比设定 一般设定为0.45~0.65。 1.7最大磁通密度设定(Bmax) 设定为磁芯的产品目录上所记载的饱和磁通密度 ×0.8~0.9。 图1-2中表示了TDK制的磁珠磁芯PC44的B-H 曲线图。 磁芯的磁通密度B[T],如图1-2所示,与磁场强度H[A/m]成比例,增加。另外,当B达到一定的值时,在那基础上,即使增加H,B也不会增加。在此磁束饱和状态下,不仅仅达不到作为变压器的机能,还有开关FET破损的危险性,因此磁芯绝对必须在此饱和磁通密度以下来使用。 另外,从产品目录上引用数据时,需要在符合使用条件的温度下选择饱和磁通密度,因此请注意。 ※磁芯的饱和磁通密度是根据温度而变动。在TDK制PC44的120℃下的饱和磁通密度,将降低到25℃时的值的68.6%。因此,如果在25℃的条件下设计的话,有可能发生使用时的故障。図1-2PC44B-Hカーブ温度特性 设计的要点: ?单一输入的情况下设定为0.45、普遍输入的情况下设定为0.65左右。 ?最大占空比的设定,对开关元器件、整流元器件施加耐压方面会造成影响,因此要进行适当的设定。加宽最大占空比的话,开关元器件的耐压将会上升,缩小最大寻通角的话,整流元器件的耐压将会上升。 .设定到考虑了控制IC保证的最大占空比(外部设定时,其设定值)的偏差的最小值×0.9以下。

高频变压器计算步骤精编版

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

反激式变压器的设计

反激式变压器的设计 反激式变压器的工作与正激式变压器不同。正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。这里的主要物理量是电压、时间、能量。 在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。磁心尺寸和磁心材料也要选好。这时,为了变压器能可靠工作,就需要有气隙。 刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。 (24) 把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25) 就可以算出一次最大电感 ——最大占空比(通常为50%或0.5)。 (25) 这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。 在开关管导通的每个周期中,存储在磁心的能量为: (26) 要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式: (27)

所有磁心工作在单象限的场合,都要加气隙。气隙的长度(cm)可以用下式近似(CGS制(美 国)): (28a) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为G(Wb/cm )。 在MKS系统(欧洲)中气隙的长度(m)为 (28b) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为T(Wb/m )。 这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。 磁心制造厂商为气隙长度提供了一个A L的参数。这参数是电感磁心绕上1000 匝后的数据(美 国)。根据设计好的电感值,绕线的匝数可以用式(29)计算确定。 (29) 式中 Lpri——一次电感量,单位为mH。 如果有些特殊的带有气隙的磁心材料没有提供A L。的值,可以使用式(30)。注意不要混淆CGS和MKS两种单位制(G和cm与T和m)。 (30)

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. 输入电压范围Vin=85 —265Vac; 输出电压/ 负载电 流:Vout1=5V/10A,Vout2=12V/1A; 变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取: 工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85* “2-20=100Vdc( 取低频纹波为20V). 根据伏特- 秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输岀电流的过流点为120%;+5v 和+12v整流二极管的正向压降均为 1.0V. +5V 输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V 输岀功率 Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输岀总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dmax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A Ip2=0.4*Ip1=1.20A 5. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt, 得: Lp= Vin(min)*Ton(max)/[Ip1-Ip2] =100*4.5/[3.00-1.20] =250uH 6. 变压器铁芯的选择. 根据式子Aw*Ae=P t*106/[2*ko*kc*fosc*Bm*j*?], 其中: Pt( 变压器的标称输岀功率)= Pout=85W Ko( 窗口的铜填充系数)=0.4 Kc( 磁芯填充系数)=1( 对于铁氧体), 变压器磁通密度Bm=1500 Gs j( 电流密度): j=5A/mm2; Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90]

反激式变压器设计原理

反激式变压器设计原理 绿色节能PWM控制器CR68XX CR6848低功耗的电流模PWM反激式控制芯片 成都启达科技有限公司联系人:陈金元TEL: 电话/传真:-218 电邮:; MSN: 概述:CR6848是一款高集成度、低功耗的电流模PWM控制芯片,适用于离线式AC-DC反激拓扑的小功率电源模块。 特点:电流模式PWM控制低启动电流低工作电流 极少的外围元件片内自带前沿消隐(300nS) 额定输出功率限制 欠压锁定(12.1V~16.1V) 内建同步斜坡补偿PWM工作频率可调 输出电压钳位(16.5V) 周期电流限制 软驱动2000V的ESD保护过载保护 过压保护(27V)60瓦以下的反激电源SOT23-6L、DIP8封装 应用领域:本芯片适用于:电池充电器、机顶盒电源、DVD 电源、小功率电源适配器等60 瓦以下(包括60 瓦)的反激电源模块。 兼容型号: SG6848/SG5701/SG5848/LD7535/LD7550/OB2262/OB2263。 原生产厂家现货热销!-218,。 CR6842兼容SG6842J/LD7552/OB2268/OB2269。 绿色节能PWM控制器AC-DC 产品型号功能描述封装形式兼容型号 CR6848 低成本小功率绿色SOT-26/DIP-8 SG6848/SG5701/SG5848 节能PWM控制器LD7535/LD7550 OB2262/OB2263 CR6850 新型低成本小功率绿色SG6848/SG5701/SG5848 节能PWM控制器SOT-26/DIP-8 LD7535/LD7550 SOP-8OB2262/OB2263 CR6851 具有频率抖动的低成本SOT-26/DIP-8 SG6848/SG5701/SG5848 绿色节能PWM控制器SOP-8 LD7535/LD755 OB2262/OB2263 CR6842 具有频率抖动的大功能DIP-8 兼容SG6842J/LD7552

反激变压器设计实例(一)

反激变压器设计实例(一) 目录 1.导论 (1) 2.磁芯参数和气隙的影响 (1) 2.1 AC极化 (2) 2.2 AC条件中的气隙影响 (2) 2.3 DC条件中的气隙影响 (2) 3. 110W反激变压器设计例子 (3) 3.1 步骤1,选择磁芯尺寸 (3) 3.2 步骤2,选择导通时间 (5) 3.3 步骤3,变换器最小DC输入电压的计算 (5) 3.4 步骤4,选择工作便宜磁通密度 (5) 3.5 步骤5,计算最小原边匝数 (6) 3.6 步骤6,计算副边匝数 (6) 3.7 步骤7,计算附加匝数 (7) 3.8 步骤8,确定磁芯气隙尺寸 (7) 3.9 步骤9,磁芯气隙尺寸(实用方法) (8)

3.10 步骤10,计算气隙 (8) 3.11 步骤11,检验磁芯磁通密度和饱和裕度 (9) 4 反激变压器饱和及暂态影响 (10) 1.导论 由于反激变换器变压器综合了许多功能(储存能量、电隔离、限流电感),并且还常常支持相当大的直流电流成分,故比直接传递能量的正激推挽变压器的设计困难得多、以下变压器设计例子中没选择过程使用反复迭代方法,无论设计从哪里开始没开始时须有大量近似的计算。没有经验工程师的问题是要得到对控制因数的掌握。特别的,磁芯大小、原边电感的选择、气隙的作用、原边匝数的选择以及磁芯内交流和直流电流(磁通)成分的相互作用常常给反激变压器设计带来挑战。 为使设计者对控制因数有好的感觉,下面的设计由检查磁芯材料的特性和气隙的影响开始,然后检查交流和直流磁芯极化条件,最后给出100W变压器的完整设计。 2.磁芯参数和气隙的影响 图1表示一个铁氧体变压器在带有和不带气隙时典型的B/H(磁滞回归线)环。 注意到虽然B/H环的磁导率(斜率)随气隙的长度变化,但磁芯和气隙结合后的饱和磁通密度保持不变。进一步,在有气隙的情况下,磁场强度H越大,剩磁通密度B r越低。这些变化对反激变压器非常有用。

反激变压器设计步骤及变压器匝数计算教学内容

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. .输入电压范围Vin=85—265Vac; .输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; .变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取:工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V). 根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输出电流的过流点为120%;+5v和+12v整流二极管的正向压降均为1.0V. +5V输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V输出功率Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输出总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dm ax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A

反激式变压器的设计实例

反激式变压器的设计实例 尽管在buck变换器的设计中没有用到反激式变压器,但由于反激式变压器介于电感与变压器之间,为了帮助大家进一步搞清楚这个特殊的磁性元件,在此我们给出反激式变压器的设计,并作为设计范例。介绍的内容要比直流电感简单一些,但是很多方面是一致的。说明一下,这里设计的反激式变压器是有隔离的,而非隔离反激式电感的设计除了没有副边以外,其他的几乎相同。我们的设计要求为:直流输入电压为48V(为了简便起见,假设没有线电压波动),功率输出为10W,开关频率是250kHz,允许功率损耗0.2W(根据总的损耗,可以知道变换器的效率要求),因此变换器效率为98%(0.2W/10W=2%)。效率的大小与磁芯的尺寸有关,变压器体积越小,效率越低。 (隔离、断续模式的)反激式变压器原边设计时只需要用到四个参数:输出功率、开关频率、功耗、输入电压(设计非隔离反激式电感也只需这四个参数)。这里,我们还没有提到电感量,电感量由很多参数决定,在下面的内容中我们将会介绍它们之间的关系。 我们用UC3845芯片(8脚、中等价格)提供PWM信号,其最大占空比为45%,占空比的大小是根据变换器是工作在连续状态还是断续状态来确定的,稍后的章节中将介绍如何计算占空比,在这个例子中,我们选用断续模式。 我们再增加一项设计要求:就是变压器体积要尽量小,有一定的高度限制。我们将会看到,变压器的设计与电感的设计不完全相同,变压器通常可以选用多种不同的磁芯来实现相同的电气特性。在这个例子中,还要根据其他一些要求来选择磁芯,包括尺寸、成本等因素。 1 反激式变压器的主要方程 首先,我们做一些基本的准备工作。正如这一章一开始介绍的理论内容中所说的那样,当反激式变换器原边开关器件导通时,变压器原边绕组的作用相当于一个电感。电压加在原边电感上,开关导通期间,电流持续上升: 这里,DC是占空比,f是开关频率,T=1/f是开关周期,这个方程适用于电流断续模式反激式变压器,原边电流波形如图案5-17所示。

TI 反激变压器设计

26.5W AC/DC Isolated Flyback Converter Design

TASK : 26.5W 9-Outputs AC/DC Isolated Flyback Converter Design SPECIFICATION: Technical Specification on Sept 10, 2008 DATE: 15 Sept. 2008

Customer Specification f L 100Hz :=Line frequency fs 100kHz :=Switching frequency Vo 1 5.0V :=Main output voltage Io 1_max 2A :=Main Nominal load current Vo 215.0V :=Io 2_max 30mA :=Vo 315.0V :=Io 3_max 30mA :=Vo 415.0V :=Io 4_max 0.3A :=Vo 524.0V :=Io 5_max 0.1A :=Vo 618.0V :=Io 6_max 0.12A :=Vo 718.0V :=Io 7_max 0.12A :=Vo 818.0V :=Io 8_max 0.12A :=Vo 918.0V :=Io 9_max 0.12A :=+5V Output ripple voltage Vr 100mV :=+5VStep load output ripple voltage ΔVo step 150mV :=ΔIo 5V Io 1_max 80?% :=+5V Step load current amplitude η0.70 :=

单端反激变压器设计简单计算

实例讲解电源高频变压器的设计方法开关电源高频变压器设计高频变压器是电源设计过程中的难点, 下面以反馈式电流不连续电源高频变压器为例, 向大家介绍一种电源高频变压器的设计方法。 设计目标: 电源输入交流电压在180V~260V之间,频率为50Hz, 输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。 设计步骤: 1、计算高频变压器初级峰值电流Ipp 由于是电流不连续性电源,当功率管导通时,电流会达到峰值,此值等于功率管的峰值电流。 由电感的电流和电压关系V=L*di/dt 可知: 输入电压:Vin(min)=Lp*Ipp/Tc 取1/Tc=f/Dmax, 则上式为: Vin(min)=Lp*Ipp*f/Dmax 其中: V in:直流输入电压,V Lp:高频变压器初级电感值,mH Ipp:变压器初级峰值电流,A Dmax:最大工作周期系数 f:电源工作频率,kHz 在电流不连续电源中,输出功率等于在工作频率下的每个周期内储存的能量,其为:Pout=1/2*Lp*Ipp2*f 将其与电感电压相除可得: Pout/Vin(min)=Lp*Ipp2*f*Dmax/(2*Lp*Ipp*f) 由此可得:Ipp=Ic=2*Pout/(Vin(min)*Dmax) 其中:Vin(min)=1.4*Vacin(min)-20V(直流涟波及二极管压降)=232V, 取最大工作周期系数Dmax=0.45。则: Ipp=Ic=2*Pout/(Vin(min)*Dmax)=2*70/(232*0.45)=1.34A 当功率管导通时,集极要能承受此电流。 2、求最小工作周期系数Dmin 在反馈式电流不连续电源中, 工作周期系数的大小由输入电压决定。 Dmin=Dmax/[(1-Dmax)*k+Dmax] 其中:k=Vin(max)/Vin(min) Vin(max)=260V*1.4-0V(直流涟波)=364V, 若允许10%误差,Vin(max)=400V。 Vin(min)=232V, 若允许7%误差,Vin(min)=216V。 由此可得: k=Vin(max)/Vin(min)=400/216=1.85 Dmin=Dmax/[(1-Dmax)*k+Dmax]=0.45/[(1-0.45)*1.85+0.45]=0.31 因此,当电源的输入直流电压在216V~400V之间时,

反激变压器计算实例.docx

技术要求:输入电压Vin : 90-253Vac 输出电压Vo:27.6V 输出电流Io: 6A 输出功率Po: 166W 效率η: 0.85 输入功率Pin:195W 一、输入滤波电容计算过程: 上图为整流后滤波电容上电压波形,在最低输入电压下,如果我们想在滤波电容上得到的电压VdC 为115V,则从上图可以得到: Vpk=90*1.414=127V Vmi n=Vdc-(Vpk-Vdc)=103V 将电源模块等效为一个电阻负载的话,相当于在T3时间内电容对恒定功率负载进行放 电,电容电压降低(VPk-Vmin)V O ldc*T3=C* △ V 其中: △ V=VPk-Vmi n=127-103=24V 关键部分在T3的计算,T3=t1+t2 , t1为半个波头,时间比较好算,对于50Hz的交流来说,t1=5mS,然后就是计算t2,其实t2也很好计算,我们知道交流输入电压的公式为 VX=VPkSin θX,根据已知条件,Vx=103V , Vpk=127V ,可以得到θx=54度,所以 t2=54*10ms∕180=3mS , T3=t1+t2=8mS。 C=1.7*8∕24=0.57mF=570uF 二、变压器的设计过程 变压器的设计分别按照DCM、CCM、QR两种方式进行计算,其实QR也是DCM的一种,不同的地方在于QR的工作频率是随着输入电压输出功率的变化而变化的。 对于变压器磁芯的选择,比较常用的方法就是AP法,但经过多次具体设计及根据公司常用型号结合,一般可以直接选择磁芯,象这个功率等级的反激,选择PQ3535的磁芯即可。磁芯的参数如下: AE=190mm2,AL=4300nH, Bmax≥0.32T 1) DCM变压器设计过程: 开关频率选择80K,最大占空比选择0.48,全范围DCM,则在最低输入电压VdC下,占空比最大,电路工作在BCM状态,根据伏秒平衡,可以得到以下公式, Vdc*Dmax=Vor*(1-Dmax),

反激变压器设计步骤及变压器匝数计算

1、确定电源规格、 、输入电压范围Vin=85—265Vac; 、输出电压/负载电流:Vout1=5V/10A,Vout2=12V/1A; 、变压器的效率?=0、90 2、工作频率与最大占空比确定、 取:工作频率fosc=100KHz, 最大占空比Dmax=0、45、 T=1/fosc=10us、Ton(max)=0、45*10=4、5us Toff=10-4、5=5、5us、 3、计算变压器初与次级匝数比n(Np/Ns=n)、 最低输入电压Vin(min)=85*√2-20=100Vdc(取低频纹波为20V)、 根据伏特-秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n、n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0、45]/[(5+1、0)*0、55]=13、64 4、变压器初级峰值电流的计算、 设+5V输出电流的过流点为120%;+5v与+12v整流二极管的正向压降均为1、0V、+5V输出功率Pout1=(V01+Vf)*I01*120%=6*10*1、2=72W +12V输出功率Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输出总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dmax] =2*85/[0、90*(1+0、4)*100*0、45] =3、00A Ip2=0、4*Ip1=1、20A 5、变压器初级电感量的计算、 由式子Vdc=Lp*dip/dt,得: Lp= Vin(min)*Ton(max)/[Ip1-Ip2] =100*4、5/[3、00-1、20] =250uH 6、变压器铁芯的选择、 根据式子Aw*Ae=Pt*106/[2*ko*kc*fosc*Bm*j*?],其中: Pt(变压器的标称输出功率)= Pout=85W Ko(窗口的铜填充系数)=0、4 Kc(磁芯填充系数)=1(对于铁氧体), 变压器磁通密度Bm=1500 Gs j(电流密度): j=5A/mm2; Aw*Ae=85*106/[2*0、4*1*100*103*1500Gs*5*0、90]

反激式变压器的设计步骤

反激式变压器的设计步骤 1 明确产品的设计要求。 一、 输入电压范围(a)220±20% (b)110±20% (c)85-264V (d)220/110V AC. 二、 输入电压、电流,输出电压V 、电流A 。 三、 工作频率F 四、 工作效率 :70-90%,Rcc 一般取70%-75%。 五、 工作占空比 D 取0.45-0.5 2 计算输入功率 Pin=Po/n n:工作效率 3 设算变压器初级的反射电压:V or V or = V min : 滤波电容上的最谷底电压V V min=V acmin *1.414-37V 3 计算匝比:N N= V or:反射电压 V o:输出电压 V f :二极管正向电压 4 计算原边峰电流(Ip )和有效值电流。 I rms = Po/(n* Vmin ) I rms =I p1: 初级有效电流 A Vmin ×D (1-D) V or V o+V f

I p = P in : 输入功率W V min : 滤波电容上的最谷底电压V 或I p = I rms /[(1-0.5*K rp )* D max ] V min=V acmin *1.414-37V K rp : 电流脉动系数 取0.6-0.75 或K rp = △B/ B max △ B= 工作磁感强度 T B max = 饱和磁同密度 I p= I p2: 初级峰值电流 A D max : 最大占空比 5 计算Ip1 I p1=I p2*(1-K rp ) I p2=I p : 初级峰值电流 A 连续模式 非连续模式 F F 6 计算初级电感量 Lp Lp= V min : 最小输入DC 电压 D max : 最大占空比 L p : 初级电感量(mH ) 2Pin V min ×D max ×(2-K rp ) Po I p 2* K rp *(1-0.5* K rp )*F*n

相关文档