文档库 最新最全的文档下载
当前位置:文档库 › 细菌纤维素研究新进展

细菌纤维素研究新进展

细菌纤维素研究新进展
细菌纤维素研究新进展

细菌纤维素研究新进展

杨礼富

(中国热带农业科学院橡胶研究所 农业部热带作物栽培生理学重点开放实验室 儋州 571737)

摘要:综述细菌纤维素的结构和性质、生物合成和分泌的过程与调控以及影响合成的因素。

细菌纤维素的化学构成与天然纤维素相近,但又有其特殊性。参与纤维素合成的酶有8

种,其中纤维素合成酶是合成纤维素的关键酶和特征酶,环二鸟苷酸系统是研究得比较透

彻的纤维素合成调节系统。培养基组成、发酵工艺和设备都会影响细菌纤维素的产量。深

入研究细菌纤维素的合成和调节机制有助于揭示植物纤维素的生物合成机理和促进细菌纤

维素的大规模商业化应用。

关键词:细菌纤维素,合成,分泌,应用

中图分类号:Q93 文献标识码:A 文章编号:025322654(2003)0420095204

细菌纤维素是由部分细菌产生的一类高分子化合物,最早由英国科学家Brown在1886年发现,他在静置条件下培养醋杆菌时,发现培养基的气2液表面形成一层白色的凝胶状薄膜,经过化学分析,确定其成分是纤维素。为了与植物来源的纤维素相区别,将其称之为“微生物纤维素”或“细菌纤维素”。细菌纤维素在物理性质、化学组成和分子结构上与天然(植物)纤维素相近,均是由β21,42葡萄糖苷键聚合而成。近些年来,随着实验手段和技术的不断提高,人们对细菌纤维素的理化特性、生物合成机制和提高产量的途径等进行了比较深入的研究。

1 细菌纤维素的结构和性质

细菌纤维素与高等植物细胞中的纤维素相比,具有特殊的结构特性。细菌纤维素由独特的丝状纤维组成,纤维宽10nm,厚3nm~8nm,每一丝状纤维由一定数量的微纤维组成,微纤维的大小与结晶度有关。细菌纤维素的结构随菌株种类和培养条件的不同而有所变化,搅拌培养时,纤维素的结晶度、聚合度和Ια含量均比静置时的低[1]。

能产生纤维素的细菌种类较多,常见的有:醋酸杆菌属(Acetobacter)、产碱菌属(Alcaligenes)、八叠球菌属(Sarcina)、根瘤菌属(Rhizobium)、假单胞菌属(P seudo2 monas)、固氮菌属(Azotobacter)和气杆菌属(Aerobacter)。其中木醋杆菌(A Xylinum)是最早发现也是研究较为透彻的纤维素产生菌株,可以利用多种底物生长,是目前已知合成纤维素能力最强的微生物菌株,也是研究纤维素生物合成过程和机制的模式菌株。和天然纤维素相比,细菌纤维素具有独特的理化性质和机械性能:(1)具有高结晶度、高聚合度和非常一致的分子取向,并且以单一纤维形式存在,纯度极高;(2)纤维直径在0101μm~011μm之间,抗拉力强度高,扬氏模量高达115×1010Pa,并且纤维素的机械性能与菌株种类、发酵方式和处理方式(加热、加压)关系不大;(3)有极强的持水性和透水透气性,能吸收60~700倍于其干重的水分;(4)具有生物可降解性,是环境友好产品[2]。

收稿日期:2002206224,修回日期:2002209230

2 细菌纤维素的合成和分泌过程

木醋酸菌的纤维素合成过程大致可以分为4个步骤,即:(1)葡萄糖在葡萄糖激酶的作用下转化为62磷酸2葡萄糖;(2)62磷酸2葡萄糖在异构酶的作用下转化为12磷酸2葡萄糖;(3)12磷酸2葡萄糖在焦磷酸化酶的作用下生成尿苷二磷酸葡萄糖(UDPG);

(4)在细胞膜上,通过纤维素合成酶的催化作用,将UDPG(纤维素的直接前体物质)合成为β21,42葡萄糖苷链,然后再聚合成纤维素。果糖在激酶、磷酸化酶和异构酶等的催化作用下转变为62磷酸2葡萄糖后同样依照上述步骤参与细菌纤维素的合成[3]。细菌纤维素的合成速度很快,一个木醋杆菌细胞在1s可以聚合200,000个葡萄糖分子。将纤维素合成酶用毛地黄皂苷溶解,在一定的条件下,数分钟内即可以在体外合成细菌纤维素丛。

细菌纤维素的分泌伴随合成同时进行。木醋杆菌在细胞中合成纤维素后,从细菌细胞壁的微孔道中分泌出与细胞纵轴平行的宽约1nm~2nm的亚小纤维(纤维素的最小构成单元),亚小纤维之间通过氢键连接成直径为3nm~4nm的微纤维,微纤维间相互缠绕,组成网状多孔的纤维丝带,其宽度为40nm~100nm,长度不定,结晶方式与植物中的I型纤维素相同。纤维丝带相互交织,形成网状多孔结构,并在培养基的气液界面形成一层透明的凝胶薄膜[3]。利用冰冻蚀刻技术进行研究,发现细菌纤维素微纤维在形成的初期存在一个由无定型外壳形成的核,分泌纤维素的微孔呈线形排列,孔径在12nm~15nm,深315nm[4]。据报道,在静置培养下,纤维素单纤维的分泌速率为2μmΠmin。

3 细菌纤维素生物合成的调控

细菌纤维素的生物合成过程复杂,受多种酶和基因以及其它因素的调节和控制,其中研究较为透彻的是环二鸟苷酸(c2di2G MP)系统。参与细菌纤维素生物合成的酶有8种,其中纤维素合成酶是纤维素合成过程中的特征酶和关键酶,为一细胞膜结合蛋白复合体,至少含4种蛋白,分子量分别为85kD,85kD,141kD和17kD,分别由bcsA、bcsB、bcsC和bcsD等4个结构基因所编码[1],催化UDPG合成纤维素。c2di2G MP是对细菌纤维素的生物合成进行调节的关键因子,它作为纤维素合成酶的变构激活剂,以可逆方式结合到酶的调节位点,使非活性的纤维素合成酶转变为活性形式,如果缺乏c2di2G MP,纤维素合成酶活性很低,甚至不具备催化活性。环二鸟苷酸浓度高低受其合成和降解两条代谢途径双重控制,其中合成受2种环化酶的催化,在PDE2A、PDE2B2种磷酸二酯酶的催化作用下则由于被降解而失活。纤维素合成酶的活性受Ca2+和PEG 的极大调节,Ca2+对位于细胞膜上的降解环二鸟苷酸的PDE2A酶的活性起选择性抑制作用[5]。

许多研究表明,摇瓶培养降低纤维素产量,其中一个重要的原因是由于菌株的遗传不稳定性,使部分菌株突变成非生产性菌株。在产生纤维素的醋杆菌中也发现有引起遗传不稳定性的插入序列的存在。为了调控纤维素的合成,日本的Y oshinaga等发展了一套宿主2载体系统,并构建出一穿梭载体,以便向P BR2001中引入各种基因[5]。R oberts on等对致癌农杆菌中影响纤维素合成的染色体基因的研究发现:Tn5位点的突变可以导致纤维素的过量合成,紧靠ilv213的另一个位点的突变同样可以导致纤维素的

过量合成[6]。

4 影响细菌纤维素生物合成的因素

411 培养基配方组成 木醋杆菌在静置条件下进行分批培养时,最佳C源是果糖,最佳N源是蛋白胨+酵母浸膏,不能以无机氮作为唯一氮源。向经过适当稀释的菠萝汁中加入15%的蔗糖和1%的柠檬酸,可以提高纤维素的产量[7]。研究还发现,玉米浸出液可以大大提高纤维素的产量,将乳酸盐加到牛肉膏和蛋白胨中,也收到同样的效果。Naritomi等(1998)在玉米浸出液2果糖培养基中对菌株BPR3001A进行分批培养时,纤维素产率为014gΠLΠh,连续培养时,纤维素产率为0162gΠLΠh。而在以乳酸盐为主要碳源的分批培养中,只有619%转化为纤维素,产率仅212gΠLΠh。研究还发现蛋氨酸是提高纤维素产量必需的[8]。此外,F ontana等人发现咖啡因和黄嘌呤对提高纤维素的产量具有促进作用。

T oy osaki等(1995)筛选出木醋杆菌的一个新亚种BPR2001,向其培养基中加入PA2 BA(对氨基苯甲酸)能提高纤维素产量。该菌株能产生一种AM22或acetan的水溶性高分子聚合多糖,它可以影响纤维素产量和结构。由BPR2001经过N2甲基2N2硝基2N2亚硝基胍诱变后,获得一株磺胺胍(PABA类似物)抗性突变株BPR3001E,在44gΠL的果糖培养基中添加PABA,纤维素的产量达到917gΠL,比出发菌株的产量高出40%以上[9]。T onouchi等向培养BPR2001的发酵罐培养基中添加少量来源于绿色木霉的纤维素复合酶(30mgΠL以内),可以提高纤维素的早期产量。利用纯化的外切β21,42葡聚糖酶实验,也得到同样的结果。实验还表明,水溶性的脱乙酰壳多糖能促进纤维素的产生,大于0101%的荧光增白剂可以使木醋杆菌连续合成β21,42葡聚糖。

412 发酵方式和条件 Chao Y P等(1997)研究了搅拌培养条件下气相中C O2分压对纤维素产量的影响,发现15%~20%的高C O

2分压降低纤维素产量,向培养BPR2001

的气升式发酵罐中供应富含O

2

的空气,经过28h发酵,纤维素产量即达到5163gΠL,比供应普通空气的纤维素产量(213gΠL)高出许多[10]。Watanabe等[11]研究了在静置培

养条件下气相中的O

2分压对纤维素产量和物理特性的影响,在10%~15%的O

2

分压

下,纤维素的产量比大气条件下高25%左右。研究还发现,纤维素的密度和产量成反比,供应高于大气O

2

分压的气体会降低胶膜的厚度、提高纤维强度。微纤维两分支之

间的片段长度与纤维素密度和O

2分压也有关,10%的O

2

分压下为700μm,50%时为

200μm,后者的密度更大。K ouda等研究了在搅拌条件下O2和C O2分压变化对纤维素生

成的影响,当发酵液中纤维素积累时,O

2的传递速率和氧传递系数下降,可以通过供给富氧空气或者提升工作压力提高氧气的供给能力,但是伴随工作压力的增加,纤维

素产率将下降,提高通气流量可以消除高C O

2分压对纤维素合成的抑制效应

[12,13]。日本的Okiyama等采用二步发酵法进行纤维素的生产工艺研究,先使细胞在气升式发酵罐中培养3d,形成大量的菌体,然后转移到浅盘中进行静置培养[14]。该工艺可以提高纤维素产量,降低生产成本。

413 发酵设备 为了增加静置培养时细菌产纤维素的表面积,Y oshino等[3]设计出一种特殊的培养体系,即在圆形发酵容器底部套上一层100μm厚的透性硅膜片,用巴氏醋杆菌AP21SK在静置条件下进行实验,结果纤维素在硅膜的内表面和液体表面同时形

成,且细菌纤维素的产量与硅膜表面的粗糙程度关系密切,光滑硅膜上的纤维素产量是粗糙表面的5倍左右,他们还通过改变发酵罐中搅拌器的构型来提高纤维素产量。

传递系据报道,具有叶轮的搅拌器适合于纤维素的发酵生产,因为其混合效果好,O

2

数高[3]。

5 细菌纤维素的应用和展望

细菌纤维素经碱和(或)氧化剂以及热压处理后,扬氏模数高达30G Pa,可用于制造具有高传播速度和高内耗(产生的声音清晰)的声音振动膜,目前已经有一些相关产品投放市场(如日本S ONY公司的部分音响制品)。用纯化的细菌纤维素生产人造皮肤,在潮湿条件下具有高的机械强度以及对气体和液体的高渗透性,优于常规皮肤代用品,在巴西已实现商业化;向纸浆中添加微生物纤维素,可以提高纸张的强度和耐用性以及吸附容量,从而生产出高强度纸。在食品工业,细菌纤维素可以作为增稠剂、结合剂、成型剂和分散剂,或者作为纤维食品。细菌纤维素还可以替代棉、麻等纺织原料或者作为医药新材料,如纱布、绷带和药物载体[1],此外,还可以作为化妆品、高吸水材料和功能性树脂、哺乳动物细胞的培养载体以及生物传感器[15]。

目前,细菌纤维素的生产都采用浅盘培养,劳动强度大、生产效率低,致使产品价格偏高,大规模应用受到限制。今后,要筛选和构建基因工程菌株,通过改变菌株的遗传结构,将纤维素合成的关键酶基因导入其它可利用便宜底物的菌株中,或者将底物利用基因转入生产菌株中,将植物纤维素基因导入细菌,甚至是将细菌产生纤维素的基因导入光合细菌,直接通过光合作用生产纤维素;可以利用价格低廉、来源广泛的工农业废料和下脚料作为生产原料,同时优化培养条件和发酵工艺,以不断降低成本、提高产量,使细菌纤维素能及早在众多领域得到广泛应用。

参考文献

[1]Y oshinaga F,T onouchi N,W atanabe K1Biosci Biotech Biochem i,1997,61(2):219~2241

[2]Y amanaka S,W atanabe K,K itamura N1J M aterials Sci,1989,24:3141~31451

[3]Y oshino T,Asakura T,T oda K1J Fer Bioeng,1996,81(1):32~361

[4]Z aar K1J C Bio,1979,80:773~7771

[5]R oss P,W einhouse H,Aloni Y,et al1Nature,1987,325:279~2811

[6]R oberts on J L,H olliday T,M atthysse A G1J Bac,1988,170(3):1408~14111

[7]Jen T Y,Ping YL,Che W M,et al1Proceedings of a sym posium on enhancing com petitiveness of fruit industry11997,38:

257~2731

[8]Naritom i T,K ouda T,Y ano H,et al1J Fer Bioeng,1998,85(1):89~951

[9]Ishikawa T,M atsuoka M,Tsuchida T,et al1Biosci Biotech Biochem,1995,59(12):2259~22621

[10]Chao Y P,Sugano Y,K ouda T,et al1Biotech~T ech,1997,11(11):829~8321

[11]W atanabe K,Y amanaka S1Biosci Biotech Biochem,1995,59(1):65~681

[12]K ouda T,Naritom i T,Y ano H,et al1J Fer Bioeng,1998,85(3):318~3211

[13]K ouda T,Naritom i T,Y ano H,et al1J Fer Bioeng,1997,84(2):124~1271

[14]Okiyama A,Shirae H,K ano H,et al1F ood2hydrocolloids,1992,6(5):471~4771

[15]E isele S,Amm on H,K indervater R,et al1Biosens or Bioelectronics,1994,9(2):119~1241

微晶纤维素USP

Microcrystalline Cellulose Cellulose [9004-34-6]. DEFINITION Microcrystalline Cellulose is purified, partially depolymerized cellulose prepared by treating alpha cellulose, obtained as a pulp from fibrous plant material, with mineral acids. IDENTIFICATION ? A. Procedure Iodinated zinc chloride solution: Dissolve 20 g of zinc chloride and 6.5 g of potassium iodide in 10.5 mL of water. Add 0.5 g of iodine, and shake for 15 min. Sample: 10 mg Analysis: Place the Sample on a watch glass, and disperse in 2 mL of Iodinated zinc chloride solution. Acceptance criteria: The substance takes on a violet-blue color. 氯化锌碘试液:取氯化锌20g、碘化钾6.5g,加水10.5ml。再加碘0.5g,振摇15min。 测定:取本品10mg,置表面皿上,加氯化锌碘试液2ml。 标准规定:应变为蓝紫色。 Change to read: ? B. Procedure Sample: 1.3 g of Microcrystalline Cellulose, accurately weighed to 0.1 mg Analysis: Transfer the Sample to a 125-mL conical flask. Add 25.0 mL of water and 25.0 mL of 1.0 M cupriethylenediamine hydroxide solution. Immediately purge the solution with nitrogen, insert the stopper, and shake on a wrist-action shaker, or other suitable mechanical shaker, until completely dissolved. Transfer an appropriate volume of the Sample solution to a calibrated number 150 Cannon-Fenske, or equivalent, viscometer. Allow the solution to equilibrate at 25 ±0.1 for NLT 5 min. Time the flow between the two marks on the viscometer, and record the flow time, t1, in s. 取本品1.3g,精密称定,置125mL具塞锥形瓶中,精密加入水25ml,再精密加入1mol/L 双氢氧化乙二胺铜溶液25ml,立即通入氮气以排除瓶中空气,密塞,强力振摇,使微晶纤维素溶解;取适量,置25±0.1℃水浴中,约5min后,移至刻度为150的坎农-芬斯克毛细管粘度计或同等的黏度计内(毛细管内径为0.7 ~1.0mm,选用适宜粘度计常数K1 ),照黏度测定法,于25±0.1℃水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间t1,按下式计算供试品溶液的运动黏度。 Calculate the kinematic viscosity, (KV)1, of the Microcrystalline Cellulose taken: 微晶纤维素的运动黏度(KV)1按下式计算: Result = t1 × k1 t1 = flow time (s) k1 = viscometer constant (see Viscosity—Capillary Methods 911 (CN 1-May-2015) ) Obtain the flow time, t2, for 0.5 M cupriethylenediamine hydroxide solutions using a number 100 Cannon-Fenske, or equivalent, viscometer.

微晶纤维素制备、应用及市场前景的研究

微晶纤维素制备、应用及市场前景的研究 曲阜天利药用辅料有限公司生产技术部,山东曲阜273105 摘要:纤维素是自然界中最丰富的天然高分子材料。对解决目前世界面临的资源短缺、环境恶化、可持续发展等问题具有重要意义。纤维素在一定条件下进行酸水解,当聚合度下降到趋于平衡时所得到的产品称为微晶纤维素( micro.crystalline cellulose,MCC)。微晶纤维素为白色或类白色、无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性,是可自由流动的纤维素晶体组成的天然聚合物,通常 MCC的粒径大小一般在20-80微米之间,它广泛用于食品、医药及其他工业领域。 关键词:微晶纤维素;MCC;制备;应用;市场前景。 Microcrystalline cellulose preparation, application and market prospect of research QuFuTianLi medicinal materials co., LTD., production technology department shandong qufu 273105 Abstract:Cellulose is the most abundant natural polymer materials in the nature。To solve the shortage of resources in the world, the problem such as environmental degradation, sustainable development is of great significance。Cellulose under certain conditions with acid hydrolysis,When the polymerization degree decline to tend to balance the resulting product is called the microcrystalline cellulose(micro.crystalline cellulose,MCC)。Microcrystalline cellulose is white or kind of white, odorless, tasteless porous micro crystalline granular or powder,With high deformability,Is the free flow of natural polymer composed of cellulose crystal,Usually the particle size of MCC generally between 20 to 80 microns,It is widely used in food, medicine and other industrial fields。 Key words: microcrystalline cellulose, MCC. Preparation; Application; Market prospect 正文:微晶纤维素[1]为白色或类白色无臭、无味的多孔性微晶状颗粒或粉末,具有高度可变形性 ,对主药具有较大的容纳性 ,可作为片剂的填充剂、干燥粘合剂 ,同时具有崩解作用 ,广泛应用于医药、食品、轻工业等国民经济各部门。 在生产微晶纤维素时国外主要采用木材为原材料[2],先收集木浆纤维素酸部分水解后的结晶部分,再经干燥粉碎而得到聚合度约200的结晶纤维素,我国棉花产量较高,成本较木材低,因此国内多以棉浆为原材料。决定微晶纤维素性能的主要因素[3]是制备方法和产品的质量控制标准。随着科技的发展,为了更大程

细菌纤维素的研究进展

细菌纤维素的研究进展 摘要:细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超精细纳米纤维网络、高抗强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。概括细菌纤维素的性质,发酵过程,改性方法以及在生物医学材料上的应用。 关键词:细菌纤维素;改性;生物医学材料;应用 0 前言 细菌合成纤维素是在1886年由Brown首次报道的,是胶膜醋酸菌A.xylium 在静置培养时于培养基表面形成的一层白色纤维状物质。后来在许多革兰氏阴性细菌,如土壤杆菌、致瘤农杆菌和革兰氏阳性菌如八叠球菌中也发现了细菌纤维素的产生。细菌纤维素与天然纤维素结构非常相似,都是由葡萄糖以β一1,4一糖苷键连接而成的高分子化合物,此外,细菌纤维素相对于传统的纤维素资源又有其优势,如加工时不用去木质素,可合成高质量的纸或者加工成任何形状的无纺织物,还可通过发酵条件的改变控制合成不同结晶度的纤维素,从而可根据需要合成不同结晶度的纤维素。 从纤维素的发现至今已有一百多年的历史,但由于无合适的实验手段以及纤维素的产量较低,因此多年来一直未受到足够重视。近十几年来随着分子生物学的发展和体外无细胞体系的应用,细菌纤维素的生物合成机制已有了很深人的研究,同时在细菌纤维素的应用方面也有了很大进展。 1.细菌纤维素的结构特点和理化特性 1.1化学特性 经过长期的研究发现,BC和植物纤维素在化学组成和结构上没有明显的区别,均可以视为是由很多D-吡喃葡萄糖苷彼此以(1-4)糖苷键连接而成的线型高分子,相邻的吡喃葡萄糖的6个碳原子不在一个平面上,而是呈稳定的椅式立体结构。

分解纤维素的微生物的分离习题

《分解纤维素的微生物的分离》 1.下列有关微生物培养与应用的说法正确的是( ) A.天然培养基是指直接取自自然界不需加工的培养基 B.接种前需对培养基、培养皿、接种环、实验操作者的双手等进行严格的灭菌处理 C.大肠杆菌的纯化培养过程包括培养基的配制和纯化大肠杆菌两个阶段 D.分离分解尿素的细菌时,尿素是培养基中唯一的氮源和碳源 2.微生物与人类生产、生活密切相关,下列相关说法不合理的是( ) A.土壤中的微生物能降解多种化合物,是大自然的清洁工 B.生活中许多发酵产品需要微生物,如酿醋需要的关键细菌是酵母菌 C.可利用能分解纤维素的微生物分解秸秆,并将其产物转化为乙醇 D.许多微生物也可导致人类患病 3.微生物(除病毒外)需要从外界吸收营养物质,并通过代谢来维持正常的生长和繁殖。下列有关微生物营养的说法正确的是( ) A.纤维素分解菌与硝化细菌所利用的碳源物质是相同的 B.许多微生物(如细菌、放线菌)为原核生物,不含线粒体,所以只进行无氧呼吸,为厌氧型生物 C.培养基中的营养物质浓度越高对微生物的生长越有利 D.生长因子通常是微生物生长必需的,而微生物本身合成这些物质的能力往往不足 4.苯酚是工业生产排放的有毒污染物质,自然界中存在着降解苯酚的微生物,某工厂产生的废水中含有苯酚,为了降解废水中的苯酚,研究人员从土壤中筛选获得了只能降解利用苯酚的细菌菌株,筛选的主要步骤如下图所示,①为土壤样品。下列相关叙述错误的是( ) A.使用平板划线法可以在⑥上获得单个菌落

B.如果要测定②中的活细菌数量,常采用稀释涂布平板法 C.图中②培养目的菌株的选择培养基中应加入苯酚作为碳源 D.微生物培养前,需对培养基和培养皿进行消毒处理 5.要将从土壤中提取的自生固氮菌与其他细菌分离开来,应将它们接种在( ) A.含五大类营养物质的培养基上B.加入某种指示剂的鉴别培养基上 C.含蛋白胨等营养物质的培养基上D.无氮的选择培养基上 6.下列关于分离纤维素分解菌的实验的叙述,错误的是( ) A.经选择培养后将样品涂布到鉴别纤维素分解菌的培养基上 B.选择培养这一步可省略,但培养纤维素分解菌少 C.经稀释培养后,用刚果红染色 D.对照组可用同样量的培养液涂布到不含纤维素的培养基上 7.鉴别培养基是根据微生物的代谢特点在培养基中加入一些物质配制而成的,这些物质是( ) A.指示剂或化学药品B.青霉素或琼脂C.高浓度食盐D.维生素或指示剂8.在加入刚果红的培养基中会出现透明圈,产生的透明圈是( ) A.刚果红与纤维素形成的复合物B.刚果红与纤维二糖形成的复合物 C.纤维素分解后形成的葡萄糖导致的D.以纤维素分解菌为中心形成的 9.在分离分解纤维素的微生物实验中,下列关于土壤取样的叙述,不正确的是( ) A.可选取深层的土壤作为样品 B.可选取树林中多年落叶的腐殖土作为样品 C.可选取树林中多年积累的枯枝败叶作为样品 D.可把滤纸埋在土壤中经过30 d左右,再选取已腐烂的滤纸作为样品 10.下列有关纤维素分解菌分离实验的说法中,不正确的是( ) A.通常采用刚果红染色法筛选纤维素分解菌

微晶纤维素的研究进展_何耀良

基金项目:广西科学基金资助项目(桂科自0991024Z);广西培养新世纪学术和技术带头人专项资金资助项目(2004224) 收稿日期:2009-06-19 综述与进展 微晶纤维素的研究进展 何耀良1,廖小新2,3,黄科林1,6,吴 睿4,王 5 ,刘宇宏1,黄尚顺1,李卫国1 (1.广西化工研究院,广西南宁 530001;2.广西大学商学院,广西南宁 530004; 3.广西桂林市建筑设计研究院,广西桂林 541002; 4.广西民族大学化学与生态工程学院,广西南宁 530006; 5.广西大学化学化工学院,广西南宁 530004; 6.广西新晶科技有限公司,广西南宁 530001) 摘 要:微晶纤维素是天然纤维素水解至极限聚合度得到的一种聚合物,广泛用于食品、医药及其他工业领域,本文综述了国内外微晶纤维素的制备研究进展。 关键词:微晶纤维素;研究进展;制备 中图分类号:T Q 352 文献标识码:A 文章编号:1671-9905(2010)01-0012-05 微晶纤维素(Microcrystalline cellulose,M CC)是天然纤维素经稀酸水解至极限聚合度(LOOP)的可自由流动的极细微的短棒状或粉末状多孔状颗粒,颜色为白色或近白色,无臭、无味,颗粒大小一般在20~80L m,极限聚合度(LODP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。 自1875年Girard 首次将纤维素稀酸水解的固体产物命名为/水解纤维素0后,100多年以来,微晶纤维素的研究,一直是纤维素高分子领域中的一个热点课题。美国粘胶纤维公司于1957年研究出微晶纤维素的生产方法,于1961年获得原始专利并工业化生产。美国FMC 公司于1961年研究开发生产微晶纤维素,目前已经是全美甚至世界上最大生产公司[1]。我国在微晶纤维素研究方面起步较晚,但从20世纪70年代开始我国在微晶纤维素方面生产已初见成效,20世纪80年代国内厂家生产的微晶纤维素逐步取代国外如西方石油公司、日本等公司的产品,到20世纪90年代我国研制的微晶纤维素质量达到国外同类产品的质量标准。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。本文主要根据国内外的有关文献报道综述了利用不同原料制备微晶纤维素的研究进展。 1 国内微晶纤维素研究进展 111 甘蔗渣微晶纤维素的制备研究 甘蔗渣纤维素的聚合度(DP)一般在500~700之间,水解后的平衡聚合度(DP)在100~200之间。甘蔗渣由于灰分高、白度低(灰分为112%~118%,白度为70%~80%),因此要用它来制备微晶纤维素必须进行增白和降低灰分处理。罗素娟[2]选择盐酸(工业级)来催化水解制备微晶纤维素,其流程见图1。其中固液比为1B 15,水解进行35min,即达到平衡聚合度。研究表明以甘蔗渣浆粕为原料生产微晶纤维素是可行的,产品质量符合标准要求,其中得率为82118%,聚合度为120,其颗粒数量分布较均匀,粒径较小,中位粒径1112L m,小于25L m 的产品占9211%,水分2142%,灰分0113%,白度90198%,经应用试验,效果良好,母液可以循环使用。生产废水经处理后达到排放要求。 第39卷 第1期2010年1月 化 工 技 术 与 开 发Technology &Development of Chemical Industry Vol 139 No 11 Jan 12010

细菌纤维素

细菌纤维素 摘要:细菌纤维素是一种新型的生物纳米材料材料,具有广泛的发展前景.本文从细菌纤维素的组成和结构入手,列举了细菌纤维素合成研究过程中的方法,并进一步对细菌纤维素在环境中的应用进行阐述,最后对未来细菌纤维素发展趋势作出了展望。 关键词:细菌纤维素,纳米材料,应用 众所周知,纤维素是自然界中最丰富且具有生物可降解性的天然高分子材料,是高分子化学诞生和发展阶段的主要研究对象之一。在当今世界面临人口、资源、环境和粮食四大问题的情况下,大力开发取之不尽用之不竭的天然高分子材料造福于人类,具有重要战略意义。 目前,人类获得纤维素的途径主要通过树木、棉花等职务光合作用合成和微生物合成。为了区别于植物来源的纤维素,称微生物合成的纤维素为微生物纤维素或者是细菌纤维素(简称BC)。细菌纤维素最初在1886年,用英国科学家Brown AJ利用化学分析方法确定。当时他发现在传统酿造液表面生成的类似凝胶半透明膜状物质为纤维素,在光学显微镜下观察到发酵生产的菌膜中存在菌体[1]。自然界中有少数细菌可以产生纤维素,其镇南关木醋菌属中的木醋杆菌(简称Ax)合成纤维素的能力最强,最具有大规模生产的能力。Ax合成细菌纤维素在纯度、抗拉强度、杨氏模量等理化性能方面均优于植物纤维素,且具有较强的生物性,在自然界中可以直接降解,是一种环境友好,性能优异型材料[2]。近年来引起了人们广泛的研究兴趣和关注。 1.细菌纤维素的结构和特性 1.1细菌纤维素的结构 经过长期的研究发现,细菌纤维素和植物纤维素在化学组成和结构上没有明显的区别,都可视为D-吡喃葡萄糖单体以糖苷键连接而成的直链多糖,直链间彼此平行,不呈螺旋结构,无分支结构,又称β-1, 4-葡聚糖。但相邻的吡喃葡萄糖的6个碳原子并不在同一平面上,而是呈稳定的椅状立体结构,数个邻近的β-1, 4-葡聚糖通过分子链内与链间的氢键作用形成稳定的不溶于水的聚合物[3]。 1.2细菌纤维素的性质 1.2.1 细菌纤维素的独特性质 细菌纤维素和植物或海藻产生的天然纤维素具有相同的分子结构单元, 但细菌纤维素纤维却有许多独特的性质。①细菌纤维素与植物纤维素相比无木质素、果胶和半纤维素等伴生产物,具有高结晶度(可达95%,植物纤维素的为65%)和高的聚合度(DP值2 000~8 000); [4]②超精细网状结构。细菌纤维素纤维是由直径3~4 纳米的微纤组合成40~60 纳米粗的

微晶纤维素

微晶纤维素是一种白色、无臭、无味、多孔、易流动粉末,不溶于水、烯酸、氢氧化钠溶液及一般有机溶剂。聚合度约220,结晶度高。为高度多孔颗粒或粉末。 一、微晶纤维素主要有三大特性: 1、吸附性:为多孔性微细粉末,可以吸附其他物质如水、油及药物等。比表面积随无定形 区比例的增大而增大。 2、分散性:微晶纤维素在水中经剧烈搅拌,易于分散生成奶油般的凝胶体。胶态微晶纤维 素因含有亲水性分散剂,在水中能形成稳定的悬浮液,程不透明的“奶油”状或凝胶状。 3、反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能。 二、微晶纤维素在国内应用领域: 1、医药卫生:①微晶纤维素分子之间存在氢键,受压时氢键缔合,故具有高度的可压性, 常被用作于粘合剂;压制的片剂遇到液体后,水分迅速进入含有微晶纤维素的片剂内部,氢键即刻断裂,因此可做为崩解剂。此外微晶纤维素的密度较低,比溶剂较大,粒度分布较宽,又常被用作稀释剂。②医药行业中MCC主要被用在两个方面,一是利用他在水中强搅拌下易于形成凝胶的特性,用于制备膏状或悬浮状类药物;二是利用其成型作用,而用于医用压片的赋形剂。目前医药行业中压片赋形剂可分为两类,一是传统方法使用淀粉赋形剂;第二类是利用新型的纤维素赋形剂。使用淀粉的工艺必须经过造粒阶段,而使用MCC则因为其流动性好,本身具有一定的粘合性直接压片,因此能工艺简化,生产效率得以提高,例外使用MCC还有服用后崩解效果好、药效快、分散好等优点,因此使用MCC在压片赋形剂上得以广泛推广应用。 2、微晶纤维素在食品工业领域的应用:

微晶纤维素作为食品添加剂的主要作用有:泡沫稳定性;高温稳定性;液体的胶化剂; 悬浮剂;乳化稳定性等。其中乳化稳定性是微晶纤维素在食品工业领域最主要的功能。 3、微晶纤维素在轻工化工领域的应用: ①陶瓷业:陶瓷厂在陶土中添加微晶纤维素,不仅能增湿坯强度,提高半成品率,而 且焙烧时烧除微晶纤维质使陶瓷具有质轻透明的特色。 ②玻璃业:微晶纤维素胶液能在玻璃表面形成极黏的膜涂层,能为玻璃纤维提供纤维 素的表层,使其能用一般的纺织机器加工。 ③涂料业:在涂料中添加微晶纤维素,能使涂料具有触变性,以控制涂料的粘度、流 动性及涂刷性能。 4、微晶纤维素在日常化学工业中的应用: ①某些等级的微晶纤维素用于化妆及皮肤护理品的制造,甚至包含尿素这样难以掺和 的配料,同起耐热稳定剂的作用。 ②微晶纤维素与细砂、高岭土等混合,可制成含磨料的卫浴、厨房及手部皮肤的清洁 剂。 ③将微晶纤维素与羧甲基纤维素钠盐、有机物及水混合,可制成服装洗涤过程的保护 性胶体。 三、医药行业中微晶纤维素用于粉末直接压片的特点: ①可以使易吸潮的药物(土霉素、食母生、酵母片等)避免湿热的阴影,克服粘冲、 劣片的现象,有利于提高片剂的质量。

细菌纤维素

改性纤维素在卫生领域的研究及应 用情况 (昆明理工大学化学工程学院轻化工程2010级肖任) 摘要: 纤维素是自然界最丰富的自然资源,在未来对于解决人类面临的能源、资源、和环境污染等问题方面有非常重要的作用,但是纤维素分子中由于高密度的氢键影响作用,使之在医疗卫生领域等方面受到了很大的限制。综述近年来通过对纤维素化学改性合成可以得到纤维素衍生物在医疗卫生方面的应用。其中,细茵纤维素是一种天然的生物高聚物,具有生物活性、生物可降解性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。概括细茵纤维素的性质、研究历史以及在生物医学材料上的应用,重点阐述细茵纤维素在组织工程支架、人工血管、人工皮肤和治疗皮肤损伤方面的应用以及当前研究现状。 关键词:纤维素、细茵纤维素、组织工程支架、人工血管、人工皮肤、化学改性、 医疗卫生 Modified cellulose in health field research and should use situation Cellulose is the most abundant natural resources of nature, in the future to solve human beings are facing with the energy, resources, and environment pollution and so on has a very important role, but cellulose molecules due to the high density of hydrogen bond effect, make in the medical and health fields was much limited. Recent advances in chemical modification of cellulose by synthesis can get cellulose derivatives in medical applications. Among them, the fine wormwood cellulose is a kind of natural biopolymer, with biological activity, biodegradable property, biological adaptability, has a unique physical, chemical and mechanical properties, such as high degree of crystallinity, high water binding capacity, ultrafine nano fiber network, a high strength and modulus of elasticity, etc., and become in recent years international new biomedical materials research hot spot. The nature of the cellulose in fine wormwood, historical study and the application of biomedical materials, the paper fine wormwood cellulose in tissue engineering scaffolds, artificial blood vessels, artificial skin and the treatment of skin damage and the application of the current research status. Keywords: cellulose, fine wormwood cellulose, tissue engineering scaffolds, artificial blood vessels, artificial skin, chemical modification, medical and health 细菌纤维素( bacterial cellulose,简称 B C) 又称为微生物纤维素( microbial cellulose ) ,不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是世界上公认的性能优异的新型生物学材料。能够产生纤维素的细菌【1】主要有A c e t o b a c t e r ,R h i z o b i u m,A g r o b a c t e r i u m和S a r c i n a等,其中研究最多、产量最高的是A c e t o b a c t e r x y l i n u m( A .x y l i n u m,木醋杆菌) 。从纤维素的分子组成看,B c和植物纤维一样都是由B - D- 葡萄糖通过B .1 ,4 精苷键结合成的直链,直链间彼此平行,不呈螺旋构象,无分支结构,又称为 B - 1 ,4.葡聚糖。但从物理、化学、

微晶纤维素2015版中国药典标准

微晶纤维素 Weijing Xianweisu Microcrystalline Cellulose C 6n H 10n+2O 5n+1 [9004-34-6] 本品系含纤维素植物的纤维浆制得的α-纤维素,在无机酸的作用下部分解聚,纯化而得。 【性状】本品为白色或类白色粉末或颗粒状粉末;无臭,无味。 本品在水、乙醇、乙醚、稀硫酸或5%氢氧化钠溶液中几乎不溶。 【鉴别】(1)取本品lO mg,置表面皿上,加氣化锌碘试液2ml,即变蓝色。 (2)取本品约1.3g ,精密称定,置具塞锥形瓶中,精密加25ml ,振摇使微晶纤维素分散并润湿,通入氮气以排除瓶中的空气,在保持通氮气的情况下,精密加lmol/L 双氢氧化乙二胺铜溶液25ml ,除去氮气管,密塞,强力振摇,使微晶纤维素溶解,作为供试品溶液;取适量,置25℃士0.1℃ :水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为 0.7?1.0mm ,选用适宜黏度计常数),照黏度测定法(通则 0633第二法),于25℃士0.1℃ 水浴中测定。记录供试品溶液流经黏度计上下两刻度时的时间A ,按下式计算供试品溶液的运动黏度ν1: ν1=t 1 × K 1 分别精密量取水和lmol/L 双氢氧化乙二胺铜溶液各25ml ,混匀,作为空白溶液,取适量,置25℃士0.1℃水浴中,约5分钟后,移至乌氏黏度计内(毛细管内径为0.5?0.6mm,黏度计常数约为0.01),照黏度测定法(通则0633第二法),于25℃士0.1℃水浴中测定。记录空白溶液流经黏度计上下两刻度时的时间按下式计算空白溶液的运动黏度v2: ν1=t 2× K 2 照下式计算微晶纤维素的相对黏度: ηrel =ν1/ν2 根据计算所得的相对黏度值(ηrel ),査附表,得〔特性黏数[>](ml/g)和浓度C(g/100ml)的乘积〕,计算聚合度(P),应不得过350。 式中m 为供试品取样量,g ,以干燥品计算。

微晶纤维素的研究进展

微晶纤维素的研究进展

微晶纤维素的研究进展 高分子材料2班刘卓君 20080402B020 摘要:微晶纤维素是可自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经稀酸水解并经一系列处理后得到的极限聚合度的产物。广泛用于食品、医药及其他工业领域,本文综述了微晶纤维素的特性、理化性质、制备方法以及国内外微晶纤维素的研究进展。 关键词:微晶纤维素;结晶度;聚合度;可压性;流动性;制备;研究进展 正文:微晶纤维素(MCC)是由天然纤维素经稀无机酸水解达到极限聚合度的极细微的白色短棒状或无定形结晶粉末,无臭、无味。颗粒大小一般在20-80微米,极限聚合度(L0DP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。

微晶纤维素有两种主要形式:细粉末和胶体状。前者用于吸附剂或粘合剂,后者作为液体中的分散剂。粉末状微晶纤维素的应用范围是作为抗结块剂,它有防结块和帮助流动的作用。另外,微晶纤维素还是食品中非营养部分,用作健康食品中的食用纤维。作为功能食用纤维,微晶纤维素可起到诸多保健作用。微晶纤维素有吸油特性,所以粉末化的微晶纤维素还被用作香精和香料油的载体。另外,它常被用于某些挤出食品的助流剂。胶体状微晶纤维素的多功能性表现在:乳化和泡沫稳定性;高温下稳定性;非营养性填充物和增稠剂;液体的稳定和胶化剂;改善食品结构;悬浮剂;冷冻甜食中控制冰晶形成。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。 1.微晶纤维素的理化性质 MCC 的用途广泛,用以描述的指标很多,主要有聚合度、结晶度、粒度、吸水值、润湿热、比表面积、填积密度、过滤指数和特性粘数等。

【人教版】生物选修一:2.3分解纤维素的微生物的分离教案设计

专题2 微生物的培养与应用 课题2.3 分解纤维素的微生物的分离 一、【课题目标】 (一)知识与技能 简述纤维素酶的种类及作用,从土壤中分离出分解纤维素的微生物;掌握从土壤中分离某种特定微生物的操作技术 (二)过程与方法 分析分离分解纤维素的微生物的实验流程,弄懂实验操作的原理 (三)情感、态度与价值观 领悟科学探究的方法,发展科学思维和创新能力 二、【课题重点】 从土壤中分离分解纤维素的微生物 三、【课题难点】 从土壤中分离分解纤维素的微生物 四、【教学方法】 启发式教学 五、【教学工具】 多媒体课件 六、【教学过程】 (一)引入新课 上节课我们探讨学习了土壤中尿素分解菌的分离与计数,这节课我们以纤维素分解菌的分离与纯化为例,巩固加深对这方面技术的理解和掌握。 (二)进行新课 1.基础知识 活动1:阅读“纤维素与纤维素酶”,回答下列问题: 1.1纤维素是一种由葡萄糖首尾相连而成的高分子化合物,是含量最丰富的多糖类物质。纤维素能被土壤中某些微生物分解利用,这是因为它们能够产生纤维素酶。 延伸:草食性动物是怎样消化食物中纤维素的?肠胃中的共生物生物。 1.2棉花是自然界中纤维素含量最高的天然产物。纤维素的分解需要在纤维素酶的催化作用下完成,请完成下列过程: 〖思考1〗实验分析:P27的小实验是如何构成对照的? 在一支试管中添加纤维素酶,另一支试管不添加纤维素酶;尽管醋酸-醋酸钠缓冲液用量不同,但都能维持相同的pH。 〖思考2〗1个酶活力单位是指在温度为 25 ℃,其它反应条件最适宜情况下,在 1 min内转化 1mmol 的底物所需要的酶量。 活动2:阅读“纤维素分解菌的筛选”,回答下列问题: 1.3筛选纤维素分解菌的方法是刚果红染色法。该方法可以通过颜色反应直接筛选。 2.4其原理是:刚果红可以与纤维素形成红色复合物,当纤维素被纤维素酶分解后,红色复合物无法形成,出现以纤维素分解菌为中心的透明圈,我们可以通过是否产生透明圈来筛选纤维素分解菌。 2.实验设计 活动3:完成实验方案流程图,讨论回答问题:

微晶纤维素简介

片剂常用辅料——微晶纤维素(MCC)简介 北京大学药学院微晶纤维素( Microcrystalline cellulose, MCC) 是天然纤维素经稀酸水解至极限聚合度( LOOP) 的可自由流动的极细微的短棒状或粉末状多孔状颗粒,颜色为白色或近白色, 无臭、无味, 颗粒大小一般在20~ 80 L m, 极限聚合度( LODP) 在15~ 375; 不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂, 在稀碱溶液中部分溶解、润涨, 在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质, 微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。1 评价微晶纤维素性质的物化指标有很多。常用的主要有结晶度、聚合度、结晶形态、吸水值、润湿热、粒度、容重、比表值、流动性、凝胶性能、反应性能、学成分等。2在制药工业中,微晶纤维素常用作吸附剂、助悬剂、稀释剂、崩解剂。微晶纤维素广泛应用于药物制剂,主要在口服片剂和胶囊中用作稀释剂和粘合剂,不仅可用于湿法制粒也可用于干法直接压片。还有一定的润滑和崩解作用,在片剂制备中非常有用。 由于微晶纤维素分子之间存在氢键,受压时氢键缔合,故具有高度的可压性,,常被用作于黏合剂;压制的片剂遇到液体后,,水分迅速进入含有微晶纤维素的片剂内部, 氢键即刻断裂, 所以可作为崩解剂。因此, 它是片剂生产中广泛使用的一种辅料, 能够提高片剂的硬度。例如,在制备利福平药片中可用MCC与淀粉(6.25:1质量比) 和各种原料混合均匀后直接压片, 产品在lm in 内崩散成雾状. 而且在有效期内含量不变,并能很好地提高药物稳定性。又如, 由于加人微晶纤维素, 醋酸泼尼松与醋酸黄连素(盐酸小劈碱) 片剂的溶出度提高到80% 以上。用微晶纤维素做辅料压片时不需经过传统的造粒过程, 例如在制备咳必清药片中由于加人了MCC , 解决了咳必清湿法造粒压片易吸潮而出现的严重黏冲现象, 并且崩解迅速。 微晶纤维素也可用作药品的缓释剂。缓释过程是由活性物质进人载体的多孔结构. 活性物质被分子间氢键包含, 干燥后活性物质被固定。活性物质释放时由于水在聚合物载体的毛细管系统内扩散引起润胀, 载体经基和被固定的活性物质之间的化合键被破坏, 活性物质缓慢地释放出来。 微晶纤维素粉末在水中能形成稳定的分散体系, 将其与药物配合可制成奶油状或悬浮状的药液, 同时还可用作胶囊剂。微晶纤维素在水中经强力搅拌生成凝胶,也可用于制造膏 1何耀良,廖小新,黄科林,吴睿等微晶纤维素的研究进展化工技术与开发2010 年1 月 2曹永梅,黄科林等微晶纤维素的性质、应用及市场前景企业科技与发展2009年第12 期

微晶纤维素的研究进展思路

微晶纤维素的研究进展 高分子材料2班刘卓君 20080402B020 摘要:微晶纤维素是可自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经稀酸水解并经一系列处理后得到的极限聚合度的产物。广泛用于食品、医药及其他工业领域,本文综述了微晶纤维素的特性、理化性质、制备方法以及国内外微晶纤维素的研究进展。 关键词:微晶纤维素;结晶度;聚合度;可压性;流动性;制备;研究进展 正文:微晶纤维素(MCC)是由天然纤维素经稀无机酸水解达到极限聚合度的极细微的白色短棒状或无定形结晶粉末,无臭、无味。颗粒大小一般在20-80微米,极限聚合度(L0DP)在15~375;不具纤维性而流动性极强。不溶于水、稀酸、有机溶剂和油脂,在稀碱溶液中部分溶解、润涨,在羧甲基化、乙酰化、酯化过程中具有较高的反应性能。由于具有较低聚合度和较大的比表面积等特殊性质,微晶纤维素被广泛应用于医药、食品、化妆品以及轻化工行业。 微晶纤维素有两种主要形式:细粉末和胶体状。前者用于吸附剂或粘合剂,后者作为液体中的分散剂。粉末状微晶纤维素的应用范围是作为抗结块剂,它有防结块和帮助流动的作用。另外,微晶纤维素还是食品中非营养部分,用作健康食品中的食用纤维。作为功能食用纤维,微晶纤维素可起到诸多保健作用。微晶纤维素有吸油特性,所以粉末化的微晶纤维素还被用作香精和香料油的载体。另外,它常被用于某些挤出食品的助流剂。胶体状微晶纤维素的多功能性表现在:乳化和泡沫稳定性;高温下稳定性;非营养性填充物和增稠剂;液体的稳定和胶化剂;改善食品结构;悬浮剂;冷冻甜食中控制冰晶形成。 随着科技的发展,为了更大程度降低成本,有效利用资源和加强环保,人们也在不断研究采用更好的原料和更好的方法来生产微晶纤维素,并进一步探究其可能的用途。 1.微晶纤维素的理化性质 MCC 的用途广泛,用以描述的指标很多,主要有聚合度、结晶度、粒度、吸水值、润湿热、比表面积、填积密度、过滤指数和特性粘数等。 1. 1 结晶度 结晶度是指结晶区占纤维素整体的百分率。结晶度的大小对纤维素纤维的尺寸稳定性和密度等都有影响,常规测量方法X2射线衍射法和红外光谱法。通过分析后表明,MCC 都保留有纤维素I 的结晶,结晶度与晶体大小都比纤维原料的要大,结晶度Kp 一般都在0. 60 以上。 1. 2 聚合度 聚合度是指纤维素中重复的葡萄糖结构单元的数目。不同原料得到的MCC 的聚合度差别较大,如表1所示。MCC 的分散性越小, 说明MCC 的分布均一。从理论上讲,纤维素原料都可以生产不同聚合度范围的MCC 产品。 1. 3 比表面积

分解纤维素的微生物的分离教案

专题2课题3:分解纤维素的微生物的分离 【课程标准】 1.简述纤维素酶的种类及作用 2.从土壤中分离出分解纤维素的微生物 3.讨论分解纤维素的微生物的应用价值。 【课题重点】 从土壤中分离分解纤维素的微生物。 【课题难点】 从土壤中分离分解纤维素的微生物。 【基础知识】 1.是纤维素含量最高的天然产物。 2.纤维素酶是一种酶,它至少包括三种组分,即,,。前两种酶使纤维素分解为,第三种酶将纤维素分解为。 3。纤维素分解菌的筛选方法是利用。 4。刚果红染色法的原理是。 5.分解纤维素的微生物的分离的试验流程是、、、、6.鉴别培养基用于菌种的鉴别,其中加入可以鉴别出 出现的现象是。 7.选择培养的操作方法是 。 8.常用的刚果红染色法有两种即 。 9.分解纤维素的微生物的分离实验完成后为确定得到的是纤维素分解菌,还需要进行实验,纤维素酶的发酵方法有两种即、。 10.分解纤维素的微生物的分离实验中要选择样品进行分离纤维素分解菌,该样品的特点是、。作出这种选择的理由是。 11.选择培养能够浓缩所需微生物,原因是。 12.分解纤维素的微生物的分离与土壤中分解尿素的细菌的分离流程有何区别? 13.刚果红染色法有两种,这两种的主要优缺点是什么?

【跟踪练习】 1.下列生物能分解纤维素的是() (1)人(2)兔(3)牛(4)蘑菇(5)纤维杆菌 A(1)(2)(3)(4)(5)B(2)(3)(5) C (2)(3)(4)(5)D(3)(5) 2.纤维素分解菌的培养基中胶木膏能提供的主要营养物质是() (1)碳源(2)氮源(3)生长因子(4)无机盐 A(3)B(1)(2)C(1)(2)(3)D(1)(2)(3)(4) 3.从土壤中筛选蛋白酶产生菌时,所用培养基为() A加富培养基 B 选择培养基 C 基础培养基D鉴别培养基 4.分离土壤中纤维素分解菌用到的方法是() (1)稀释倒平板法(2)涂布平板法(3)单细胞挑取法(4)选择培养分离A(1)(2)B(2)(3)(4)C(2)(3)D(1)(3)(4) 5.鉴别纤维素分解菌的培养基中碳源为() A CMC-Na B 木聚糖 C 纤维素 D 裂解酶 6.在酸性贫瘠的土壤中分解纤维素占优势的菌为() A真菌 B 细菌 C 兼性厌氧细菌和真菌 D 放线菌 7.CX 酶能水解() A纤维素和CMC-Na B纤维素和果胶 C纤维二糖和微晶纤维D麦芽糖和蔗糖 8.在加入刚果红的培养基中出现透明圈的菌落是() A分解尿素的细菌 B 消化细菌 C 分解纤维素的细菌 D 乳酸菌 9.在对纤维素分解菌进行培养时,培养基中酵母膏的主要作用是() A提供碳源 B 提供氮源 C 提供微生素 D 凝固剂 10.要将能分解纤维素的细菌从土壤中分离出来,应将它们接种在( ) A 加入指示剂的鉴别培养基上 B 含有蛋白胨的固体培养基上 C 只含纤维素粉无其他碳源的选择培养基上 D 含四大营养素的培养基上 11.纤维素分解菌选择培养基的选择作用原因在于() A 硝酸钠 B 氯化钾 C 酵母膏 D 纤维素粉 12.选择培养的结果,培养液变() A 清澈 B 浑浊 C 红色 D 产生透明圈 13.在对纤维素分解菌进行选择培养时用液体培养基的目的是() A 可获得大量菌体 B 纤维素分解菌适宜在液体培养基上生长 C 可以充分利用培养基中的营养物质 D 可获得高纯度的纤维素分解菌

微晶纤维素的研究现状及发展趋势

微晶纤维素的研究现状及发展趋势 摘要:微晶纤维素(MCC)是可以自由流动的纤维素晶体组成的天然聚合物,它是天然纤维素经过稀酸水解并且经一系列处理后得到的极限聚合度产物。微晶纤维素作为天然植物纤维原料在化工、轻工、日用化学品等领域得到广泛的应用。本文论述了微晶纤维素的性质、研究现状、应用及其市场前景,较为全面地介绍了微晶纤维素。 关键词:微晶纤维素(MCC) 性质制备市场前景 微晶纤维素(Microcrystal1ine cellulose,MCC)是由可自由流动的纤维素晶体组成的天然聚合物,它是纤维原料经稀酸水解并且经一系列处理后得到的极限聚合度的产物[1]。自1875年Girard第一次将纤维素稀酸水解的固体产物命名为“水解纤维素”后,一百多年来,微晶纤维素的研究,一直是纤维素高分子领域中一个热点课题。随着科学技术不断进步,这一曾被视为无法利用的产品,如今却在生产与应用方面取得了迅速发展。人们对它的制备方法、结构、性质进行了不断深入的研究,并将其广泛应用于食品、医药、化妆品以及轻化工部门。由于纤维素广泛地存在于自然界,根据专家估计,全球每年可生产数千亿吨的纤维素,是石油无法比拟的可再生重大资源。 1 微晶纤维素的性质 微晶纤维素主要有三个基本的特征:①平均聚合度达极限聚合度值;②具有纤维素I的晶格特征(晶胞中:心与四角子链按同一方向平行排列),且结晶度高于原纤维素;③具有极强吸水性,且在水介质中经强力剪切作用后有生成凝胶体的能力。通常所说的水解纤维素是各类降解纤维素混合产物的总称,而微晶纤维素仅限于具有上述三个特征的水解纤维素。这个特征是衡量与检验是否是微晶纤维素的唯一标准,也是区分微晶纤维素与水解纤维素的主要的标准。 表明微晶纤维素性质的物化指标有很多,主要有结晶度、聚合度、结晶形态、吸水值、润湿热、容重、粒度、比表值、流动性、反应性能、凝胶性能、化学成

相关文档