文档库 最新最全的文档下载
当前位置:文档库 › 一维六方准晶压电材料中Ⅲ型椭圆孔口带不对称裂纹的解析解

一维六方准晶压电材料中Ⅲ型椭圆孔口带不对称裂纹的解析解

一维六方准晶压电材料中Ⅲ型椭圆孔口带不对称裂纹的解析解
一维六方准晶压电材料中Ⅲ型椭圆孔口带不对称裂纹的解析解

七大晶系图解

晶体的七大晶系是十分专业的问题,它有时是鉴别晶体的关键,鉴藏矿晶的人多少应该知道一些。 概论 已知晶体形态超过四万种,它们都是按七种结晶模式发育生长, 即七大晶系。晶体是以三维方向发育的几何体,为了表示三维空间,分别用三、四根假想的轴通过晶体的长、宽、高中心,这几根轴的交角、长短不同而构成七种不同对称、不同外观的晶系模式:等轴晶系, 四方晶系,三方晶系,六方晶系,斜方晶系,单斜晶系,三斜晶系 上图是七大晶系的理论模型,在同一水平面上,请大家仔细分辨它们的区 别。面向观众的轴称x 轴,与画面平行的横轴称y 轴,竖直的 轴称z 轴,也可叫“主轴” 请看图

一,等轴晶系简介 等轴晶系的三个轴长度一样,且相互垂直,对称性最强。这个晶系的晶体通俗地说就是方块状、几何球状,从不同的角度看高低宽窄差不多。如正方体、八面体、四面体、菱形十二面体等,它们的相对晶面和相邻晶面都相似,这种晶体的横截面和竖截面一样。此晶系的矿物有黄铁矿、萤石、闪锌矿、石榴石,方铅矿等。请看这种晶系的几种常见晶体的理论形态:

等轴晶系的三个晶轴(x 轴y 轴z 轴)一样长, 互相垂直

常见的等轴晶系的晶体模型图 金刚石晶体

八面体和立方体的聚形的方铅矿 黄铁矿 四方晶系简介

四方晶系的三个晶轴相互垂直,其中两个水平轴(x 轴、y 轴)长度一样,但z 轴的长度可长可短。通俗地说,四方晶系的晶体大都是四棱的柱状体,(晶体横截面为正方形,但有时四个角会发育成小柱面,称“复四方”),有的是长柱体,有的是短柱体。再,四方晶系四个柱面是对称的,即相邻和相对的柱面都一样,但和顶端不对称(不同形);所有主晶面交角都是九十度交角。请看模型图: 四方晶系的晶体如果z 轴发育,它就是长柱状甚至针状;如果两个横轴(x 、y)发育大于竖轴z 轴,那么该晶体就是四方板状,最有代表性的就是钼铅矿。请看常见的一些四方晶系的晶体模型:

六方晶系四指数推导

1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法 图2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P(x1,y1,z1)和Q(x2,y2,z2),然后将(x1-x2),(y1-y2),

(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。 图4 晶面指数的确定 (1)建立一组以晶轴a ,b ,c 为坐标轴的坐标系,令坐标原点不在待标晶面上,各轴上的坐标长度单位分别是晶胞边长a ,b ,c 。 (2)求出待标晶面在a ,b ,c 轴上的截距xa ,yb ,zc 。如该晶面与某轴平行,则截距为∞。 (3)取截距的倒数1/xa ,1/yb ,1/zc 。 (4)将这些倒数化成最小的简单整数比h ,k ,l ,使h ∶k ∶l = 1/xa ∶1/yb ∶1/zc 。 (5)如有某一数为负值,则将负号标注在该数字的上方,将h ,k ,l 置于圆括号内,写成(hkl ),则(hkl )就是待标晶面的晶面指数。 说明:晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。 a 指数意义:代表一组平行的晶面;

断口分析

故障件的断口分析 在形形色色的故障分析过程中,人们常会瞧到一些损坏零件的断口,但就是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助! 对于汽车常用碳素钢与合金钢而言,其常见断口有: 1.韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽瞧不到颗粒状形貌,断口上有相当大的延伸边缘。 2.疲劳弯曲断口: 2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下面将详 述)。 2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。其断口特征:沿弯 曲方向上下呈灰褐色无金属光泽的断层;而内层呈银 灰色白亮条状新断口(见图1)。

图1 3.典型的金属疲劳断口 典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。断口具有典型的“贝壳状”或称“海滩状”。

3-1 疲劳裂纹源区:就是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦而形成的。它所占有的面积较其她两个区要小很多。疲劳裂纹大多就是因受交变载荷的机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应力集中而引起的。疲劳裂纹点在同一个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断口。 3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。它就是判断疲劳断裂的最重要的特征区。它以疲劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。疲劳

三方晶系和六方晶系

关于我对三方晶系、六方晶系以及将六方晶系 转化成三方晶系的一点认识 关键词:三方晶系.六方晶系、转化。 摘要:本文详细阐述了三方晶系、六方晶系,七大晶系和六大晶系的相关知识以及它们之间的区别和联系。通过对三方晶系和六方晶系的晶格常熟、三方点阵和六方点阵的形成以及它们的对称性关系进行讨论,进一步阐明了三方晶系之所以能归入六方晶系的理论基础,解释了六方晶系转化成三方晶系的方法。 三方晶系(trigonal SyStem ):

三方晶系 属中级晶族。特征对称元素为三重对称轴。可划分出六方晶胞的菱面体晶胞。 在晶体外形或去观物性中能呈现出具有唯一高次三重轴或三重反轴特征对称元素的晶 体归属于三方晶系。 三次轴 三方晶系一类正当晶格单位有两种选取模式:一种是取菱形六面体的三方素晶格R,其 晶格参数具有a=b=c, α = β = γ<120o ≠90o 的特征;另一种是取体积为素晶格R 三倍的 三方H 格子,此中晶体学界常用的轴系变换方式是三方H 格子具有a=b≠c, α=β=90o , Y=I20。的特征。代表矿物:??,红宝石、蓝宝石 (即 刚玉)。 六方晶系(hexagonal CryStaI system):三方晶系碳酸盐

六方晶系晶轴 在唯一具有高次轴的C 轴主轴方向存在六重轴或六重反轴特征对称元素的晶体归属六 方晶系。 六次轴 六方晶系特征对称性决定了六方晶系晶胞对应的基向量特点是:副轴和均与主轴垂直, 二个副轴基向量的大小相等,副轴间的夹角为120° ,即其晶胞参数具有a=b≠c, α=β =90° , Y =120°的关系。六方晶系(hexagonal SyStem ) >有一个6次对称轴或者6次倒转 轴,该轴是晶体的直立结晶轴C 轴。另外三个水平结晶轴正端互成120° .夹角。轴角α = β =90o , Y =120° ,轴单位a=b≠c o 六方晶系晶体常见有六棱柱状、六方板(片)状以及它 们的各种聚形,偶然会出现十二棱柱体(复六方柱)。代表矿物:祖母绿emerald,含钻的 翠绿色绿柱石。化学组成为Be3Λ12[Si6018]o 六方晶系,晶体呈六方柱状,柱面有纵向条纹。玻璃光泽,硬度7.5。性质稳定,不易 受腐蚀,是一种贵重宝石,以其透明的绿色为主要鉴定特征。其颜色的鲜艳程度和亮度主 要取决于氧化钻和氧化铁的含呈。含氧化铁愈多,则颜色变为深暗,质量下降。世界90% 的优质祖母绿产于哥伦比亚,碧绿清澈,晶莹凝透,以稍带蓝色的翠绿色质量最佳,和翡翠 一样是宝石中的六方晶系 六方晶系祖母绿

6.晶体中原子堆垛方式

()四晶体中的原子堆垛方式 因此面心立方晶格和密排六方晶格均属于最紧密排列的结构 对各类晶体的配位数和致密度进行分析计算的结果表明,配位数以12为最大,致密度以0.74为最高 为什么两者的晶体结构不同而却会有相同的密排程度 为了回答这一向题需要了解晶体中的原子堆垛方式 图1-10a为在一个平面上原子最紧密排列的情况原子之间彼此紧密接触 这个原子最紧密排列的平面即密排面,对于密排六方品格而言是其底面,对于面心立方品格而言,则为垂直于立方体空间对角线的对角面 密排面的六边形模型: 可以把密排面的原子中心连结成六边形网格,该六边形网格又可分为六个等边三角形,而这六个三角形的中心又与原子的六个空隙中心相重合。从图1.10可以看出,这六个空隙可分为b、c组,每组分别构成一个等边三角形。 第二层密排面的排列原则如图1.11所示: 为了获得最紧密的排列,第二层密排面()层 B的每个原子应当正好坐落在下面一层()层 A密排面的b组空隙()组 或c上 关键是第三层密排面它有两种堆垛方式: 1.第一种是第三层密排面的每个原子中心正好对应第一层()层 A密排面的原子中心,第四层密排面又与第二层重复,以下依次类推。因此,密排面的堆垛顺序是ABABAB,按照这种堆垛方式,即构成密排六方晶格,如图1.12所示 C的每个原子中心不与第一层密排面的2.第二种堆垛方式是第三层密排而()层 原子中心重复,而是位于既是第二层原子的空隙中心,又是第一层原子的空

隙中心处。之后,第四层的原子中心与第一层的原子中心重复,第五层的又与第二层的重复,照此类推,它的堆垛方式为ABCABCABC,这就构成了面心立方晶格,如图1.13所示 体心立方晶格的原子堆垛方式: 1.密排面是哪个:在体心立方晶胞中,除位于体心的原子与位于顶角的八个原 子相切外,八个顶角上的原了彼此间并不相互接触。显然,原子排列较为紧密的面相当于连结晶胞立方体的两个斜对角线所组成的面。 2.密排面模型:若将该面取出并向四周扩展,则可画成如图1.14所示的形式。 3.密排面比较:由图可以看出,这层原子面的空隙是由四个原子所构成,而密 排六方品格和面心立方晶格密排面的空隙由三个原子所构成,显然,前者的空隙较后者大,原子排列的紧密程度较差,通常称其为次密排面。 4.原子堆垛方式:为了获得较为紧密的排列,第二层次密排面()层 B的每个原子应坐落在第一层()层 A的空隙中心上,第三层的原子位于第二层的原子空隙处并与第一层的原子中心相重复,依此类推。因而它的堆垛方式为 ABABAB,由此构成体心立方晶格,如图1.14所示

(完整版)七大晶系详细图解

七大晶系详细图解 已知晶体的形态已经超过了四万种,但是万物都会有规律,晶体自然也是有的。它们都是按七种结晶方式模式发育的,即七大晶系。晶体即是一种以三维方向发育的的几何体,为了表示三维空间,分别用三、四跟人为添加的轴来表示晶体的长宽高以及中心。三条轴分别用X、Y、Z(U)(Z轴也可叫做“主轴”)来表示,而为了更好表示轴之间的度数,我们用α、β、γ来表示轴角。就这样出现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。其中又按照对称程度又分为高级晶族、中级晶族、低级晶族。高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。 一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的

晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。 常见立方晶系晶体模型图: 晶体实物图:

二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。 常见的立方晶系的晶体模型图: 注:柱体的棱角发育成窄小晶面,此种晶体又叫“复四方”——四个主柱面,四个小柱面。 晶体实物图:

第二章 晶体结构

晶体结构分类方法

(B) 2.1 符号中的第一个大写字母表示结构的类型,后面的数字为第个大写字母表示结构的类型后面的数字为顺序号,不同的顺序号表示不同的结构,例如A1是铜型结 结构等。 构,B2是CsCl型结构等,C3是FeS 2

Pearson符号 它所属的布喇菲点阵类型(例如P、I、F、C等),第三个数 等) 字表示单胞中的原子数。 2.2 金属单质的晶体结构 在元素周期表中,共有70多种金属元素。

由于金属键不具有饱和性和方向性,使金属的晶体结构倾向配位数(

将用原子刚性球模型讨论每个单胞所含的原子数以及这些构中的间隙等。 2.2.1 面心立方结构 结构符号是A1,Pearson 符号是c F4。 原子坐标为0 0 0,0 1/2 1/2,1/2 0 1/2和1/2 1/2 0 每个晶胞含4个原子 最紧密排列面是{111},密排方向 是<110>。原子直径是a/2<110>的 长度,即 面心立方结构的晶胞体积为a 3, 晶胞内含4个原子,所以它的致密 度η为4 2a r =423443443 3 33? ??? ????×=×=ππηa r 每个原子有个最近邻原子,它的 配位数(CN )是12。 74 .062 ==πa a

面心立方结构的最密 排面是{111},面心立 方结构是以{111}最密 排面按一定的次序堆 垛起来的。 第一层{111}面上有两个 可堆放的位置:▲和▼位 可堆放的位置▲和▼位 置,在第二层只能放在一 种位置,在面上每个球和 下层3个球相切,也和上 层3个球相切。 第一层为A,第 二放在B 位置, 第三层放在C 位 置,第四层在 置第四层在 放回A位置。 {111}面 按…abcabc… 顺序排列,这 就形成面心立 方结构。

金属断裂机理完整版

金属断裂机理 1 金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。 根据断裂面取向又可将断裂分为正断型或切断型两类。若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。

标注六方晶系晶向指数的平行投影修正系数法

用平行投影修正系数法标注六方晶系晶向指数 桂进秋席生岐※张建勋范群成 西安交通大学材料科学与工程学院 摘要:介绍了采用平行投影修正系数法标注六方晶系晶向指数的新方法,并对其原理进行了论证。 关键词:六方晶系晶向指数Miller-Bravais指数平行投影 0前言 众所周知,金属中常见的3种晶体结构为体心立方、面心立方和密排六方,其中密排六方结构属于六方晶系。由于其对称性特点,在晶体学中惯用四轴坐标表示六方晶系的晶面和晶向,称为Miller-Bravais 指数[1]。在这种体系中对晶面指数的标注并未有什么不便,但是对晶向指数的标注却比较麻烦,容易出错。正如范群成[2]所指出,晶向[1213]在文献[3]中被误标为[1212],而在文献[4]中又被误标为[1211]。 在一般的教科书[1,4,5,6]中,六方晶系Miller-Bravais晶向指数[uvtw]有2种主要的标注方法。一种是所谓的移步法[4],选择合适的路径沿4个晶轴方向从待定晶向上的一点(通常是坐标原点)依次移动到另一点,而合适的路径要求满足u+v=-t约束条件。由于这一约束条件的限制,移动路径及距离的选取决定相当困难,不易寻找。另一种是公式法[1,4,6],即先在三轴坐标系中标出[UVW],再利用公式:u=(2U-V)/3, v=(2V-U)/3, t= -(u+v), w=W 换算成[uvtw]。该方法不但麻烦,完全依赖于对换算公式的记忆,而且不直观,不便于对晶向的理解和把握。 为更直观地从晶胞结构图中直接计算来标出六方晶系中的晶向指数,范群成曾提出了正射投影修正系数法[2]。如图1所示,这种方法是由待标晶向上任一点(常取特殊点)分别向a1,a2,a3和c轴作垂直投影,求出以晶格常数为单位的投影值,并给c轴的投影值乘以修正系数3/2,然后化为最小简单整数。这种方法在一个晶胞中通过垂直投影来计算出晶向指数,和晶胞结合,直观性有改进,和移步法的结果有一致性,比移步法容易操作。 受正射投影法的启示,在《材料科学基础》课堂讨论的过程中,我们提出了另一种也较为简便易行的来标定六方晶系Miller-Bravais晶向指数的方法——平行投影修正系数法。本文就对这种新方法做一详细介绍。

金属断口分析

名词解释 延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。 蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。 准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口 沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。 解理断裂:在正应力作用下沿解理面发生的穿晶脆断。 应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断 疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。 冲击韧性:冲击过程中材料吸收的功除以断的面积。 位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断 裂机理或断裂过程。 河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。其形状类似地图上的河 流。 断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些 质点的晶体结构。 氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。 卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。 等轴韧窝:拉伸正应力作用下形成的圆形微坑。 均匀分布于断口表面,显微洞孔沿空间三 维方向均匀长大。 第一章 断裂的分类及特点 1.根据宏观现象分:脆性断裂和延伸断裂。 脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45o . 2.根据断裂扩展途分:穿晶断裂与沿晶断裂。 穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。应力腐蚀断口,氢脆断口。 3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45o交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系 Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则 相似) a Y K c c πσ?=1

金属断口分析

《金属断口分析》 第一章金属的断裂 第一节断裂分类 失效形式:过大的弹性变形;塑性形变;断裂;材料变化。其中危害最大的是破裂特别是断裂。通过对断口形貌特征进行分析从而获得金属断裂机理。一,宏观脆性断裂与延伸断裂 从宏观上看,断裂分为脆性断裂和延性断裂 脆性断裂指以材料表面、内部的缺陷或是微裂纹为源,在较低的应力水平下(一般不超过材料的屈服强度),在无塑性变形或只有微小塑性变形下裂纹急速扩展。在多晶体中,断裂时沿着各个晶体的内部解理面产生,由于材料的各个晶体及解理面方向是变化的,因此断裂表面在外观上呈现粒状。脆性断裂主要沿着晶界产生,称为晶间断裂。其断口平齐。 延性断裂是在较大的塑性变形产生的断裂。它是由于断裂缓慢扩展而造成的。其断口表面为无光泽的纤维状。延性断裂经过局部的颈缩,颈缩部位产生分散的空穴,小空穴不断增加和扩大聚合成微裂纹。 二,穿晶断裂和沿晶断裂 依据裂纹扩展途径不同,断裂分为穿晶断裂和沿晶断裂,或二者兼有。 穿晶断裂是指裂纹穿过晶体内部的途径发生的;穿晶断裂可能是延性的,也可能是脆性的。若断裂是穿过晶体沿解理面断开,但无明显塑性变形为脆性断裂。若穿晶断裂时出现塑性变形则为延性断裂。 沿晶断裂指以裂纹沿着晶界扩展的方式进行。沿晶断裂多为脆性断裂,,但也有延性的。应力腐蚀断口,氢脆断口都是沿晶断裂的脆性断裂。三,韧窝、解理、准解理、沿晶和疲劳断裂 这主要是根据微观断裂机制上而言 四,正断和切断 根据断面的宏观取向与最大正应力交角,断裂方式分为正断和切断 正断性断裂是指宏观断面的取向与最大正应力相垂直,如解理断裂 切断性断裂指宏观断面的取向与最大切应力方向相一致,而与最大正应力成45度

三方晶系和六方晶系

矿物晶体七大晶系图解矿物晶体七大晶系图解——————三方晶系和六方晶系三方晶系和六方晶系三方晶系和六方晶系((一) 三方晶系和六方晶系有许多相似之处,一些矿物专著和科普书刊往往将二者合并在一起,或干脆就称晶体有六大晶系。 与前面讲的五个晶系最大的不同是三方/六方晶系的晶轴有四根,即一根竖直轴(z 轴)三根水平横轴(x、y、u 轴)。竖轴与三根横轴的交角皆为90度垂直,三根横轴间的夹角为120度(六方晶系为60度,也可说成三横轴前端交角120度。)。如果围绕z 轴旋转一周,三方晶系晶体的横轴可以重合三次,六方晶系晶体的横轴则重合六次,故,三方/六方晶系晶体的对称度都高,z 轴是高次轴,也就是主轴。 三方晶系常见的晶体有三棱柱状、三角片状等,有时呈六棱柱、六角片状(复三方、复三角面)及它们的各种聚形;六方晶系晶体常见有六棱柱状、六方板(片)状以及它们的各种聚形,偶然会出现十二棱柱体(复六方柱)。有时候三方/六方晶系会出现菱形六面体晶型,较容易同三斜晶系的晶体混同。 三方晶系和六方晶系以严格的矿物学理论而言是不应该混淆的,但作为非矿物学家的我们,没有必要去探究那些高深的理论或从专业研究角度去区分它们的理论差异,那没有太大的实际用途。如果一定要我用一句通俗的话来描述三方和六方的区别,可以这样说:三方晶系的矿物既能长成三棱柱、三角板片的晶型,也能长成六棱柱、六角板片的晶型与六方晶系晶体混淆,但六方晶系的矿物通常不会长成三棱柱或三角板片等与三方晶系混淆(仅有一个三方双锥例外)。

一般说来,三方/六方晶系的晶体外观比较好认。常见的矿物有水晶、方解石、电气石、绿柱石、刚玉、辰砂、赤铁矿、磷灰石等。请看实际晶体: 六方晶系的高温β石英石英,,又叫无腰水晶又叫无腰水晶 三方晶系的α α 石英石英石英,,即低温水晶即低温水晶,,最为普遍常见最为普遍常见

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法 断口分析通常是一个从宏观到微观,从定性到定量的分析过程,并且是应用多种仪器联合测试检验的结果,是综合性很强的技术分析工作。因此需要严格的科学态度,精心地、有步骤地进行研究分析。 断口分析步骤: (1)所有试样的选择、鉴定、保存以及清洗; (2)宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象); (3)微观检验和分析; (4)金相剖面的检验和分析以及化学分析; (5)断口定量分析(断裂力学方法); (6)模拟试验。 1 断裂构件的处理及断口的保存 在确定了断裂的金属构件后,就要采取措施把断口保存好,尽快制定分析计划。通常金属构件的断裂不止一个断口,有时要立即判断主断口有困难,此时应该把所有断件收集好,在收集过程中切勿把断口碰伤或对接,也不要在断口上使用防蚀涂层。保护和清理断口是断口分析的一个重要前提。对断口和裂纹轨迹进行充分检查后方可进行清洗。 对于不同情况下的断口应该用不同方法处理: (1)大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗。 (2)对于带有油污的断口,首先用汽油,然后用丙酮、三氯甲烷、石油醚及苯等有机溶剂溶去油污,最后用无水乙醇清洗吹干。当浸没处理还不能去除油污时,可使用蒸汽或超声波方法进一步去除。 (3)在腐蚀环境下发生断裂的断口,通常在断口上覆盖一层腐蚀产物,这层产物对于分析断裂原因是非常有用的,但对断口形貌观察常常带来很大的麻烦。在这种情况下,需要用综合分析的方法来考虑。因为有许多腐蚀产物容易水解或分解,因此进行产物分析要抓紧时间,同时不要进行任何清洗和处理。通常把带

有腐蚀产物的断口试样,先用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后去掉产物再观察断口形貌。 去掉腐蚀产物有时可采用干剥法。用醋酸纤维纸(称AC纸,由7%的醋酸纤维素、丙酮溶液制成厚度0.1~1mm的均匀薄膜)复型进行清理是最有效的方法之一,尤其是断口表面已经受到腐蚀的时候。将一条厚约1mm合适的AC纸,放在丙酮中泡软,然后拿起来放在断口表面上,在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上,干燥后用小镊子把干复型从断口上揭下来。如果断口玷污得很厉害,可将复型操作重复进行,直到获得一个洁净无污染的复型为止。这种方法的一个优点,就是能将从断口上除去的碎屑保存下来,供以后鉴定碎屑使用。还可以用复型法达到长期保存断口的目的。 (4)断口表面不能用酸溶液清洗,以免影响断口分析的准确性。 (5)在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。若用一般有机溶液、超声波洗涤和复型都不能洁净断口表面时,可采用化学清洗。根据不同的金属材料及氧化层情况可采用不同的化学清洗液。 2 断口的宏观分析 用肉眼、放大镜和实体显微镜对断裂零件进行直接观察与分析的方法,称为宏观分析,其放大倍数通常为100倍以下。 宏观分析的优点是:(1)简便、迅速,试样尺寸不十分受限制,不必破坏断裂零件;(2)观察范围大,能够观察与分析断裂全貌,即裂缝和零件形状的关系、断口与变形方向的关系、断口与受力状态(主应力或切应力)的关系;(3)能够初步判断裂起源位置、断裂性质与原因,缩小进一步分析研究的范围,可为确定进一步分析的取样部位和数量提供线索和依据。因此宏观分析是断裂故障分析中最方便、最常用、最主要的不可缺少的步骤和方法,是整个断裂故障分析的基础。 断裂分析的一个主要内容,就是要确定断裂源的位置及裂纹的扩展方向。金属零件若已断裂成多块,则应把所有断块按原来形状拼起来,但要特别小心不能碰合,然后看其密合程度,密合得最差的为最早断裂,即主断口。分析断裂原因时,只需对主断口进行分析。

七大晶系详细图解

. 七大晶系详细图解 已知晶体的形态已经超过了四万种,但是万物都会有规律,晶体自然也是有的。它们都是按七种结晶方式模式发育的,即七大晶系。晶体即是一种以三维方向发育的的几何体,为了表示三维空间,分别用三、四跟人为添加的轴来表示晶体的长宽高以及中心。三条轴分别用X、Y、Z(U)(Z轴也可叫做“主轴”)来表示,而为了更好表示轴之间的度数,我们用α、β、γ来表示轴角。就这样出现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。其中又按照对称程度又分为高级晶族、中级晶族、低级晶族。高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。 一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的. . 晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。

常见立方晶系晶体模型图: 晶体实物图:

. . 二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。 常见的立方晶系的晶体模型图:

六方晶系四指数推导知识讲解

六方晶系四指数推导

1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。 图1 晶向指数的确定方法 图2 不同的晶向及其指数

当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P (x 1,y 1,z 1)和Q (x 2,y 2,z 2),然后将(x 1-x 2),(y 1-y 2),(z 1-z 2)三个数化成最小的简单整数u ,v , w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100] <111>:[111] [111] [111] [111] [111] [111] [111] [111] 图3 正交点阵中的几个晶向指数 2 晶面指数的确定 国际上通用的是密勒指数,即用三个数字来表示晶面指数(h k l )。图4中的红色晶面为待确定的晶面,其确定方法如下。

晶体的对称性与晶系

晶体的对称性与晶系 自然界不论是宏观物体还是微观粒子,普遍存在着对称性。晶莹的雪花、美丽的花朵、艳丽的蝴蝶都具有对称性,人体也具有对称性。地下的矿物,如水晶、钻石、闪锌矿……也都具有对称性。微观粒子如水分子、苯分子以及所有分子都具有对称性。对称性显示出物体的匀称和完美,为人们所喜爱和追求,因而设计师设计的宏伟建筑如天安门、人民大会堂、长江大桥……都呈现出对称性。 本文主要介绍晶体的宏观对称性,包括旋转轴、对称面和对称中心等,以及晶体宏观对称性与晶系的关系。 晶体的宏观对称性 晶体宏观对称性有旋转轴(也称对称轴)、对称面(也称镜面)和对称中心,分别介绍如下。 旋转轴 旋转轴是对称元素,绕旋转轴可做旋转操作。n 次旋转轴记为n ,απ 2=n ,α 称为基转角。例如NaCl 晶体的外形是立方体,立方体对应面中心联线方向有4次旋转轴,绕此轴每旋转90°后,晶体形状不变;立方体对角线联线方向有3次旋转轴,绕此轴每旋转120°后,晶体形状不变;立方体对应棱边中心联线方向有2次旋转轴,绕此轴每旋转180°,晶体形状不变。图6-4示出这3种旋转轴。可以证明在晶体宏观外形中存在的旋转轴有1,2,3,4和6次旋转轴5种,不存在5次轴和大于6次的旋转轴。 对称面 对称面是对称元素,对称面也称镜面,常用m 表示。凭借对称面可以做反映操作,如同物体与镜子中的像是反映关系。人的双手手心相对,平行放置,左右手就互为镜象。许多晶体中存在对称面,NaCl 晶体有9个对称面。 对称中心 对称中心也是对称元素,常用i 表示。通过对称中心可以做倒反操作。例如人的双手手心相对,逆平行放置,此时左右手构成倒反关系。NaCl 晶胞中,在体心位置存在对称中心。因此晶胞中任意一个原子与对称中心相连,在反方向等距离处必存在同样的原子。晶体有无对称中心对晶体的性质有较大的影响。 凭借上述三种对称元素所做的对称操作都是简单操作,如果连续做两个简单操作就成为复合操作。旋转倒反操作是复合操作,与它对应的对称元素称为反轴,记为n 。与旋转轴一

金属材料的断裂

金属材料的断裂 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。 4. 断口分析 断口分析是金属材料断裂失效分析的重要方法。记录了断裂产生原因,扩散的途径,扩散过程及影响裂纹扩散的各内外因素。所以通过断口分析可以找出断裂的原因及其影响因素,为改进构件设计、提高材料性能、改善制作工艺提供依据。断口分析可分为宏观断口分析和微观断口分析。 (1)宏观断口分析 断口三要素:纤维区,放射区,剪切唇。纤维区:呈暗灰色,无金属光泽,表面粗糙,呈纤维状,位于断口中心,是裂纹源。放射区:宏观特征是表面呈结晶状,有金属光泽,并具有放射状纹路,纹路的放射方向与裂纹扩散方向平行,而且这些纹路逆指向裂源。剪切唇:宏观特征是表面光滑,断面与外力呈45°,位于试样断口的边缘部位。 (2)微观断口分析(需要深入研究) 5. 脆性破坏事故分析

《材料科学基础》课后答案(1-7章)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、[1101]晶向和(1012)晶面,并 确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题: (1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。 (2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。 6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。 解:1、体心立方 密排面:{110}21 14 1.414a -+? = 密排方向:<111> 11.15a -= 2、面心立方

7大晶系

一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系 的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。 二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。

三、斜方晶系 斜方晶系的晶体中三个轴的长短完全不相等,它们的交角仍然是互为90度垂直。即X≠Y≠Z。Z轴和Y轴相互垂直90°。X轴与Y轴垂直,但是不与Z轴垂直,即α=γ=90,β>90°与正方晶系直观相比,区别就是:x轴、y轴长短不一样。如果围绕z轴旋转,四方晶系旋转九十度即可使x轴y轴重合,旋转一周使x轴y轴重合四次(使另两轴重合的次数多于两次,该轴称“高次轴”),四方晶系有一个高次轴,也叫“主轴”。斜方晶系围绕z 轴旋转,需180度才可使x轴y轴重合,旋转一周只重合两次,属低次轴。也就是说,斜方晶系的对称性比四方晶系要低。特征对称元素是二重对称轴或对称面。其实,斜方晶系的晶体如果围绕x轴或y轴旋转,情况与围绕z轴旋转相同。换句话说,斜方晶系没有高次轴,或曰没有理论上的主轴。从模型上看,四方晶系的x轴和y轴所指向的晶面完全都是对称相同的,斜方晶系的x轴和y轴所指向的晶面却是各自对称相等的。

相关文档