文档库 最新最全的文档下载
当前位置:文档库 › 变频器节能效率计算

变频器节能效率计算

变频器节能效率计算
变频器节能效率计算

变频器节能效率计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

概述

在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。

1变频调速原理

三相异步电动机转速公式为:

n=

60f p(1?s)

式中:n-电动机转速,r/min;

f-电源频率,Hz;

p-电动机对数

s-转差率,

从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。

变频工作原理

异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz。电机定子绕组内部感应电动势为

U1≈E1=4.44f1Nk1?1

式中E1-定子绕组感应电动势,V;

?1-气隙磁通,Wb;

N-定子每相绕组匝数;

f 1-基波绕组系数。

在变频调速时,如果只降低定子频率f 1,而定子每相电压保持不变,则必然会造成?1增大。由于电机制造时,为提高效率减少损耗,通常在U 1=U n ,f 1=f n 时,电动机主磁路接近饱和,增大?1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。

若在降低频率的同时降低电压使E 1f 1?保持不变则可保持?1不变从而避免了主磁路过饱和现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为

T =

m 1pf 12π(r 2s +sx 22r 2)(

E 1f 1

)2

式中T -电动机转矩,;

m 1—电源极对数;

p —磁极对数;

s —转差率;

r 2—转子电阻;

x 2—转子电抗;

由于转差率s 较小,(r 2s ?)2?x 22则有

T ≈m 1pf 12πr 2s (E 1f 1)2

=kf 1s

其中k =m 1p 2πr 2(E 1f 1)2

由此可知:若频率f 1保持不变则T ∝s ;若转矩T 不变则s ∝1f 1?; 电动机临界转差率s m ≈r 2x 2=r 22πf 1L 2=C f 1 其中C =r 2

2πL 2

电动机最大转矩T m =m 1pf 14π1

2πf 1L 2(E 1f 1)2=常数

最大转速降?n m =s m n 1=C f 160f 1p =60

p =常数

由此可知:保持E 1f 1=?常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关。因此不同频率的各条机械特性曲线是平行的,硬度相同。

风机、泵负载特性

以风机、泵类为代表的二次方减转矩负载即转矩与转速平方成正比。如图所示,在低转速下负载转矩非常小。

风机、水泵的负载特性如下

n 1n 2?=Q 1Q 2?

(n 1n 2?)2=H 1H 2?=T 1T 2?

(n 1n 2?)3=P 1P 2?

式中Q 1Q 2?—风量、流量,m 3s ?;

H 1H 2?—风压,Pa ;

T 1T 2?—轴功率,kW ;

P 1P 2?—负载转矩,;

n 1n 2?—转速,r min ?。 从上式可知,风机风量、泵的流量与转速成正比;风机风压、泵的杨程与转速的二次方成正比;风机、泵的轴功率与转速、风机风量、泵流量的三次方程正比;风机、泵的轴功率在速度不变时与风机风压、泵杨程成正比。

按离心式泵功率选择电动机 P=kγQ(H+?H)/ηηc ×10?3

式中P —离心式泵电动机功率,kW ;

γ—液体密度,kg/m 3;

Q —泵的出水量,m 3s ?;

H —水头,m ;

?H —主管损失的水头,m ;

η—水泵效率,约为~ ηc —传动效率,与电动机直连时取ηc =1;

K—裕量系数,与功率有关。当管道长、流速高、弯头与阀门数量多时,裕量系数适当增大。

由于风机、泵的容量是按最大风量及风压、流量及杨程确定的,与实际需要存在较大的可调整空间,按照风量、风压、流量、杨程等调节电动机的转速,从而改变电动机的输出功率和输出转矩达到节能效果。

如下图,曲线1是阀门全部打开时供水系统的阻力特性,曲线2是额定转速时泵的杨程特性;此时供水系统的工作点位A,流量为Q a,杨程为H a;电动机的轴功率与O-Q a-A-H a-O面积成正比。如果要将流量减少为主要的调节方式有两种:

1)传统的方法是保持电动机转速不变,将阀门关小,此时阻力特性曲线如图3所示,工作点移至B点,流量为Q b,杨程为H b;电动机的轴功率与面积O-Q b-B-H b-O成正比。

2)阀门的开度不变,降低电动机的转速,此时杨程特性如曲线4所示,工作点移至C点,流量仍为Q b,但杨程为H C;电动机的轴功率为O-Q b-C-H C-O成正比。

由此可见当需求量下降时,调节转速可以节约大量能源。

之所以变频比变阀门开度节能,因为在改变流量的同时对压力没有要求,也就是说改变流量的同时允许改变压力。

变频调速改变流量的同时,压力也在改变。流量减少,压力也在减小,功率等于压力与流量的乘积,功率在双倍减小;而改变阀门开度的同时,流量减少,压力基本没有变,甚至增加。功率在单倍减小,因此变频比变阀门开度消耗的功率少,节省能量。

2变频器的选型和应用

变频器分为通用型(G)和风机、水泵专用型(P),应根据负载进行选择。

通常变频器以适用的电机容量(kW)、输出容量(kVA)、额定输出电流(A)表示。其中额定电流为变频器允许的最大连续输出电流的方均根值,不能长期超出此连续电流值。不同厂家的电动机、不同系列的电动机、不同极数的电动机,即

使同一容量等级,其额定电流也不尽相同。由于变频器输出中包含谐波成分,其电流有所增加,应适当考虑加大容量。

一般风机、泵类负载不宜在低于15Hz以下运行,如果确实需要在15Hz以下长期运行,需要考电动机的允许温升,必要时采用外置强迫风冷措施。如果电动机的启

?模式,以获得较大的节能效果。

动转矩能满足要求,宜选用变频器的降低转矩U f

用变频器传动电动机与用正弦波传动的电动机相比,由于变频器输出波形中含有高次的影响,电动机的功率因素,效率均将恶化,温度升高。另一方面,变频传动要得到与工频传动同样的转矩,变频器输出电流的基波方均根值通常要等于工频电源的方均根值。变频器输出电流由基波电流与高次谐波电流叠加合成。因此,变频器传动时的基本特性将不同于工频传动。

利用电机的等值电路可求得空载电流为

I0=√I012+∑I0?2

式中I0—空载电流,A;

I1—定子空载基波电流,A;

I0?—定子空载h次谐波电流,A。

上式表明,变频传动比工频传动的空载电流要大,其中,定子、转子铜损和与载波率有关的铁损是高次谐波引起铁损耗增大的主要原因。高次谐波引起的损耗与负载的大小无关,大体上与空载一致,基本为一定值。因此,负载越轻,谐波损耗增加的影响越大,以功率因素降低,效率下降,温升升高。

通常电动机额定运行(输出额定电流、频率及功率)时,变频器供电的电动机电流比工频供电的电动机电流增加约5%~10%,温升增加20%。因此变频器供电时普通电动机不宜在额定频率下满载运行。

3结束

综上所诉,变频调速在实际生产中有着无可比拟的先天优势。变频调速有以下的的优点:

1、调速效率高。这是由于在频率变化后,电动机仍在同步转速附近运行,基本保持额定转差。

2、调速范围宽。一般可达20:1,并在整个调速范围内具有高的调速效率。所以变频调速适用于调速范围宽,且经常处于低负荷状态下运行的场合。

3、机械特性较硬。在无自动控制时,转速变化率在5%以下;当采用自动控制时,能做高精度运行,把转速波动率控制在%|~1%左右。

4、能兼作启动设备。即通过变频电源将电动机启动到某一转速,再断开变频电源,电动机可直接接到工频电源使泵或风机加速到全速。

5、兼做电机保护设备。变频器对电机的保护主要有以下几方面:过电压保护、欠电压保护、过电流保护、缺相保护、反相保护、过负荷保护、接地保护、短路保护、超频保护和失速保护。

在使用中需注意不宜在过低频率(<15Hz)和工频(50Hz)情况下运行。避免电机温升发热。

热力站变频调速节能分析和运行

第一供暖分公司

籍晋鹏

2017年9月

变频器节能计算

变频不是到处可以省电,有不少场合用变频并不一定能省电。作为电子电路,变频器本身也要耗电(约额定功率的3-5%)。一台1.5匹的空调自身耗电算下来也有20-30W,相当于一盏长明灯. 变频器在工频下运行,具有节电功能,是事实。但是他的前提条件是:第一,大功率并且为风机/泵类负载;第二,装置本身具有节电功能(软件支持);第三,长期连续运行。这是体现节电效果的三个条件。除此之外,无所谓节不节电,没有什么意义。 变频节能 什么是变频器 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 PWM和PAM的不同点是什么 PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。 PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 电压型与电流型有什么不同 变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。 为什么变频器的电压与电流成比例的改变 异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。

最新变频器节电率的计算整理

几种典型负载的节电率计算方法 (1)各种风机、泵类因为P∝n的三次方,节电效果显著,应首先应用变频器,具体值见表1。表1 应用变频器节电效果 计算时可用

式中P%——实际消耗功率百分值; s——实际转速百分值; K——系数,K=0.0001。 节电率N%=1-P% 举例,转速n为90%时,相应频率值为45Hz,则P%=0.0001×(90)3=73%。所以N%=1 -73%=27%。一般风机、泵类节电率在30%以上。 (2)空压机、挤出机、搅拌机因为P∝n,所以节电率与允许减速范围成正比,N%=n%。 (3)波动负载如破碎机、粉碎机、冲床、落料机、剪切机等9这种负载具有周期波动性,且波动功率较大,控制方式以闭环为好,相对节电率也大些,功率波动负载如图所示。

(4)阶梯负载如间歇工作有储气罐的空压机、定容积水箱、水池、水塔等,工作时间t1是满负载PH,一定压力后自动卸载,电动机空载Po时间为t1,采用降速降流量,用适当延长工作时间t1、缩短空载时间t2的方法来实现节电。经实际运行,约有15%~20%的节电率。而且t2

(5)间歇负载如高位水箱、水池、水塔等。工作时间t1为满负载,不工作时间为t2,且t2≥t1,现采用降速降流量,延长工作时间t1,缩短不工作时间t2,这样改变后节电效果也明显,约有20%~30%的节电率。间歇工作负载的功率变化情况(Po=0)如图所示。

(6)人为的负载转移来实现节电这种情况往往发生在中央空调系统的冷却泵、冷冻泵或其他同类地方。平常开一台泵,电动机 处于满负载或超负载,而且压力、流量也无富余度,使用变频器后没办法实现节电。但各用泵较多,一般是1:1(五星级宾馆大都如此),这时只有采用人为的负载转移方法来实现节电,见表2。

变频器节能效率计算

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: n= 60f p(1?s) 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。 1.1变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz。电机定子绕组内部感应电动势为 U1≈E1=4.44f1Nk1?1 式中E1-定子绕组感应电动势,V; ?1-气隙磁通,Wb; N-定子每相绕组匝数; f1-基波绕组系数。 在变频调速时,如果只降低定子频率f1,而定子每相电压保持不变,则必然会造成?1增大。由于电机制造时,为提高效率减少损耗,通常在U1=U n,f1=f n时,电动机主磁路接近饱和,增大?1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。

若在降低频率的同时降低电压使E 1f 1?保持不变则可保持?1不变从而避免了主磁路过饱和 现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 T =m 1pf 12π(r 2s +sx 22r 2)(E 1f 1 )2 式中T -电动机转矩,N.m ; m 1—电源极对数; p —磁极对数; s —转差率; r 2—转子电阻; x 2—转子电抗; 由于转差率s 较小,(r 2s ?)2?x 22则有 T ≈m 1pf 12πr 2s (E 1f 1)2 =kf 1s 其中k =m 1p 2πr 2(E 1f 1)2 由此可知:若频率f 1保持不变则T ∝s ;若转矩T 不变则s ∝1f 1?; 电动机临界转差率s m ≈r 2x 2=r 2 2πf 1L 2=C f 1 其中C =r 22πL 2 电动机最大转矩T m =m 1pf 1 4π12πf 1L 2(E 1f 1)2=常数 最大转速降?n m =s m n 1=C f 160f 1 p =60p =常数 由此可知:保持E 1f 1=?常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关。因此不同频率的各条机械特性曲线是平行的,硬度相同。 1.2风机、泵负载特性 以风机、泵类为代表的二次方减转矩负载即转矩与转速平方成正比。如图所示,在低转速下负载转矩非常小。 风机、水泵的负载特性如下 n 1n 2?=Q 1Q 2? (n 1n 2?)2=H 1H 2?=T 1T 2? (n 1n 2?)3=P 1P 2? 式中Q 1Q 2?—风量、流量,m 3s ?; H 1H 2?—风压,Pa ;

变频调速的计算

一、变频调速与节流调节的计算 流量q v 与转速成正比,即q v2/q v1=n 2/n 1;扬程H 与转速的平方成正比,即H 1/H 2=(n 2/n 1)2;功率与转速的立方成正比功率。如(1)式所述。 31 23 1212)()(v v v q q n n p p q P ===存在的关系与流量泵与风机的功率 (1) 根据v q 、H 值可以计算泵与风机的功率,即:η ρ102H q P V = (2) 式中P ─功率,kW ;v q ─流量,m 3/s ;H ─扬程,m ;ρ─密度,kg/m 3;η─使用工况效率%; 泵与风机的变频节能计算 (1) 变频调速调节与节流调节 对风机、水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大,如果对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即对风机、泵类、采用挡板调节流量对应电机输入功率P L 与流量q v 的关系: )(])( 55.045.0[2 kW p q q P e ve V L += (3) 式中 P L ─额定流量时电机输入功率,kW ;q ve ─额定流量,m 3/s ; 若流量的调节范围(0.5~1)q ve ,由上面的公式及下面的公式可得电机调速调节流量相比节流调节流量所要节约的节电率(Ki )为: ] )(55.045.0[)( 1/)( 23 3 ve v b ve v L b ve v e L L q q q q P q q P P p p Ki +- =-=?= ηη (4) 式中Ki ─节电率;ηb ─调速机构效率。 从上式分析,节流调速时由于q v /q ve <1,平方后更小于1,乘以0.55再加上0.45仍小于1,却节流后电机的负载变小了,消耗的功率也比额定功率小。当挡板或阀门全关时,泵与风景空载运行,消耗的功率最少,等于0.45Pc 。由(1)式可知采用电机变速调节后,电机消耗的功率与实际流量和额定流量比值的三次方成正比,由于变频调速效率高,本身的损耗相比很小,在变频器内部,逆变器功率器件的开关损耗最大,其余是电子元器件的热损耗和风机损耗,变频器的效率一般为95%~98%。采用变频调速,泵与风机的效率几乎不变,其特性近似满足相似定律,即满足(1)式的关系。因此(4)式能较准确地计算泵与风机电机变频调速调节相比节流调节所要节约的节电率。 例5.1 某厂离心风机125kW ,实际用风量为0.7,年工作4800h ,准备投资15万元改造为变频器驱动,变频器的效率为96%,估算节电率和投资回收期。 解:由题意知q v /q ve =0.7,由式(4)得节电率为 5.0) 7.055.045.0(96.07.012 3 =?+?-=Ki 由式(3)得:P L =(0.45+0.55×0.72 )×125=90(kW)

变频器调速节能的计算方法

变频器调速节能的计算方法 一﹑概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。 在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: 对风机、泵类,采用挡板调节流量对应电机输入功率PL与流量Q的关系的三次方成正比,即,再与采用挡板调节流量对应电机输入功率PL相减后再除以节省的功率与系统调速前后的速差成正比,速差越大,节能越显著。 恒转矩负载变频调速一般都用于满足工艺需要的调速,不用变频调速就得采用其他方式调速,如调压调速﹑电磁调速﹑绕线式电机转子串电阻调速等。由于这些调速是耗能的低效调速方式,使用高效调速方式的变频调速后,可节省因调速消耗的转差功率,节能率也是很可观的。 3、电磁调速系统 电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。转差离合器的本身的损耗是由主动部分的风阻?磨擦损耗及从动部分的机械磨擦损所产生的。如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入?输出功率可由下式计算: 电动机轴输出功率式中:T2—转差离合器的输出转矩 n2 –-转差离合器的输出轴转速 电动机的输出功率,即为转差离合器的输入功率。对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率:电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不

变频器节能效率计算精编版

变频器节能效率计算公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: 60f n= 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。

变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz 。电机定子绕组内部感应电动势为 U 1≈U 1=4.44U 1UU 1 1 式中U 1-定子绕组感应电动势,V ; 1-气隙磁通,Wb ; U -定子每相绕组匝数; U 1-基波绕组系数。 在变频调速时,如果只降低定子频率U 1,而定子每相电压保持不变,则必然会造成1增大。由于电机制造时,为提高效率减少损耗,通常在U 1=U U ,U 1=U U 时,电动机主磁路接近饱和,增大1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。 若在降低频率的同时降低电压使U 1U 1?保持不变则可保持1不变从而避免了主磁路过饱和现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 T =U 1UU 12π(U 2U +UU 22U 2)(U 1U 1)2 式中T -电动机转矩,; U 1—电源极对数; U —磁极对数; U —转差率; U 2—转子电阻; U 2—转子电抗;

压缩机变频节能改造及节能量计算

压缩机变频节能改造及节能量分析 冯东升 (上海电机系统节能工程技术研究中心有限公司,上海 200063) 摘要:本文从压缩机的变频调速原理出发,介绍了压缩机系统的变频改造方案,并主要阐述了变频改造后的节能量计算方法,最后通过实例进行了节能效果分析,结果表明该技术节能效果显著,值得推广。 关键词: 压缩机 变频改造 节能 The Analysis of Frequency Conversion Energy Saving In Compressor Feng dong-sheng (Shanghai Engineering Research Center of Motor System EnergySaving Co.,Ltd., Shanghai 200063,China) Abstract: This paper start with the frequency control of compressor, mainly introduces the project of frequency conversion and method of calculating energy saving in compressor. Results show that , the technology is advanced and worth promoting. Key words: compressor;frequency conversion; energy-saving 1 概述 压缩机作为基础工业装备,广泛的应用于机械制造、冶金、石油化工、矿山、纺织等工业生产的各个领域中。空压机的种类有很多,常见的主要有活塞式、螺杆式、离心式等几种。由于压缩机通常是长期连续的运转方式,因此在各种工矿企业内属于耗电量较多的重点用电设备之一。 在国民经济可持续发展的战略之下,能源作为国家的重要物质基础,节能和绿色生产已成为国家十二五规划的重点,工业企业在保证正常的生产条件下,如何实现节能已势在必行,空压机作为重点耗能设备,已经成为了关键词。

变频器节能计算方法

变频调速节能量的计算方法 一、概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行, 采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的 运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩、恒转矩和恒功率等几类机械 特性,本文仅对平方转矩、恒转矩负载的节能进行估算。所谓估算,即在 变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一 旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统 在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%风压裕度为10°%^ 10%~15%设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30的比较常见。生产中实际操作时,对于离心风机、泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器、液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1、风机、泵类平方转矩负载的变频调速节能风机、泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%采用电动机变频调速来调节流量,比用挡板、阀门之类来调节,可节电20%~50%如果平均按30%+算,节省的电量为全国总用电量的9%这将产生巨大的社会效益和经济效益。生产中,对风机、水泵常用阀门、挡板进行节流调节,增加 了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变 频器对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可 用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: 能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:

高压变频器节能计算

摘要:降低厂用电率,降低发电成本,提高上网电能的竞争力,已成为各火电厂努力追求的经济目标。近几年电网的负荷峰谷差越来越大,频繁的调峰任务使部分辅机仍然运行在工频状态下,造成大量电能流失。本文着重介绍了高压变频器的工作原理及实际运行情况的详细节能分析,使我们对其节能效果以及典型风机水泵节能计算有了更进一步认识。因此得出结论高压变频调速技术的日趋成熟,在电力系统中广泛应用,节能效果明显。 关键词:调速高压变频器功率单元IGBT 节电率 一、引言 众所周知,高压电动机的应用极为广泛,它是工矿企业中的主要动力,在冶金、钢铁、化工、电力、水处理等行业的大、中型厂矿中,用于拖动风机、泵类、压缩机及各种大型机械。其消耗的能源占电动机总能耗的70%以上,而且绝大部分都有调速的要求,由于高压电机调速方法落后,浪费大量能源而且机械寿命降低。上世纪90年代,由于变频调速技术在低压电动机应用得非常成功,人们开始研究高压电动机变频技术的应用,设计了高-高电压源型变频技术方案。该方案采用多电平电路型式(CMSL),由若干个低压PWM 变频功率单元,以输出电压串联方式(功率单元为三相输入、单相输出)来实现直接高压输出的方法。经过我厂多方调研、比较,最后选择同利德华福电气技术合作。本文将从HARSVERT-A系列高压变频器的工作原理及实际运行状况两方面分析豫新发电厂引风机、凝结水泵的节能情况。 二、高压变频器的工作原理 (一)变频器的结构:现以6kV五级单元串联多电平的高压变频器为例。 1.系统主回路:部是由十五个相同的功率单元模块构成,每五个模块为一组,分别对应高压回路的三相,单元供电由干式移相变压器进行供电,原理如图1。 图1:变频器的结构 2.功率单元构成:功率单元是一种单相桥式变换器,由输入干式变压器的副边绕组供电。经整流、滤波后由4个IGBT以PWM方法进行控制(如图2所示),产生设定的

节能原理及节能计算

节能原理及计算方法 一、节能原理 风机和水泵,前者工作介质为液体,均属于流体机械设备。下面以风机为例说明它们的工作特性。特别是离心式风机及水泵,工作特性基本相同。以下就以风机为例说明他们的调速工作原理。 风机的工作特性图如下: 风机的工作特性图 由上图可以看出,风机工作的位置,即风机的风量是由风机特性曲线(风压特性)和管网特性曲线(风阻特性)决定的,无论是改变风机的特性曲线,或者是改变管网特性曲线,都可以达到改变风量的目的。 图中:风机特性曲线 H A =kQ 1 2 K——风机特性系数; 管网特性曲线 H A =Hc-λQ 1 2 λ——管网特性系数。 (一)工频工作方式 工频工作方式是指泵的特性曲线保持不变,而改变管网特性曲线。通常采取的方式是保持风机的特性曲线不变,即不改变风机的转速,而用调节挡板改变出

风口的大小,达到改变风量的目的。如下图所示: 工频工作方式时风机的工作特性图 从图中可以看出,风机工作在A点时,风量为Q 1,风压为H 1 。保持风机的转 速不变,用挡板将风量调节为Q 2时,风压将上升到H 2 ,风机工作点变为B点。 由于挡板的节流作用,风道的阻力曲线变为OB。 风机工作在A点时,其功率为P A =H 1 ×Q 1 /102; 风机工作在B点时,其功率为P B =H 2 ×Q 2 /102。 虽然Q 2H 1 ,所以P A 与为P B 的值变化不大,说明采用工频工作方式 时,改变风机的风量,风机的轴功率减小有限。 (二)变频工作方式 变频工作方式是指管网特性曲线保持不变,而改变风机的特性曲线。通常采取的方式是保持管网特性曲线不变,即不改变风机出口的大小,而改变风机的特性曲线,即改变风机的转速,达到改变风量的目的。如下图所示: 风机工作在A点时,其功率为P A =H 1 ×Q 1 /102; 风机工作在B点时,其功率为P B =H 2 ×Q 2 /102。 Q 2H 1 ,所以P A 与为P B 的值变化较大,说明采用变工频工作方式 时,改变风机的风量,风机的轴功率减小很大,节能效果显著。

变频器节能效率计算完整版

变频器节能效率计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: 60f n= 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。

变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz 。电机定子绕组内部感应电动势为 U 1≈U 1=4.44U 1UU 1 1 式中U 1-定子绕组感应电动势,V ; 1-气隙磁通,Wb ; U -定子每相绕组匝数; U 1-基波绕组系数。 在变频调速时,如果只降低定子频率U 1,而定子每相电压保持不变,则必然会造成1增大。由于电机制造时,为提高效率减少损耗,通常在U 1=U U ,U 1=U U 时,电动机主磁路接近饱和,增大 1势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增 加,功率因素降低。 若在降低频率的同时降低电压使U 1U 1?保持不变则可保持1不变从而避免了主磁路过饱和现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 T =U 1UU 12π(U 2U +UU 22 U 2)(U 1U 1)2 式中T -电动机转矩,; U 1—电源极对数;

节能计算方法

节能计算 一﹑概述据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。 在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负

载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:对风机、泵类,采用挡板调节流量对应电机输入功率PL与流量Q的关系的三次方成正比,即,再与采用挡板调节流量对应电机输入功率PL相减后再除以 节省的功率与系统调速前后的速差成正比,速差越大,节能越显著。 恒转矩负载变频调速一般都用于满足工艺需要的调速,不用变频调速就得采用其他调速,如调压调速﹑电磁调速﹑绕线式电机转子串电阻调速等。由于这些调速是耗能的低效调速方式,使用高效调速方

变频器功率计算

3、电磁调速系统 电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。转差离合器的本身的损耗是由主动部分的风阻?磨擦损耗及从动部分的机械磨擦损所产生的。如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入?输出功率可由下式计算: 电动机轴输出功率 式中:T2—转差离合器的输出转矩 n2 –-转差离合器的输出轴转速 电动机的输出功率,即为转差离合器的输入功率。对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率: 电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不变。损耗以有功的形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上的风叶散发出去。 由损耗功率公式(10)可以清楚看到,电磁调速电机的转速越低,浪费能源越大,然而生产机械的转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度的方法,是不耗能的高效调速方式,因此改用变频调速的方式会有非常好的节能效果,节省的能量直接可用(10)式计算。 4?液力偶合器调速系统 液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载。液力偶合器有调速型和限矩型之分,前者用于电气传动的调速,后者用于电机的起动,系统中的液力偶合器在电机起动时起缓冲作用。由于液力偶合器的结构与电磁转差离合器类似,仿照电磁调速器效率的计算方法,可得: 同样,用(12)式可计算将液力耦合器调速改造为变频调速后的节能量。 5?绕线式电机串电阻调速系统 绕线式电机最常用改变转子电路的串接电阻的方法调速,随着转子串接电阻的增大,不但可以方便地改变电机的正向转速,在位能负载时,还可使电机反向旋转和改变电机的反向转速,因此这种调速方式在起重﹑冶金行业应用较多。 对于绕线式电机,无论在起动?制动还是调速中,采用转子串电阻方式均会带来电能损耗。这种损耗随着转速的降低,转差率S的增大而增大,另外,随着串接电阻的增大,机械特性变软,难以达到调速的静态指标。

变频器的节能计算方法

现有一台250KW风机,现采用星--三角起动运行,工作电流太约在360A左右,如果改成变频器, 一个小时能节多少电,太概多长时间能收回成本. 变频器节能计算方法 例如:当从50Hz降至45Hz得 公式:P45/P50=45(3次方)/50(3次方) P45=0.729P50 (2)当从50Hz降至45Hz得 已知:单台冷却器在工频耗电功率为250KW/h。 (3)∵P45=0.729P50=0.729×250=182.28 KW/h (4)单台电机节能:250-182.25=67.75 KW/h;为原耗电量节约为67.75/250×100%=27.1% (5)年节能:250kw×24h×30d×12m×27.1%=585360KW;按1KW/h电费0.45元计算年节约共计585360×0.45=263412元。 2. 公式:P45/P50=45(3次方)/50(3次方) P45=0.729P50 我想知道这个叫什么公式,这个公式怎么来的? 公式:P45/P50=45(3次方)/50(3次方) 这个公式是由风机工作特性决定的,由于风机是二次方负载,轴功率与转速的三次方成正比。 风机水泵类负载使用高压变频器节能计算 风机水泵工作特性 风机水泵特性:H=H0-(H0-1)*Q2 H-扬程 Q-流量 H0-流量为0 时的扬程 管网阻力:R=KQ2 R-管网阻力 K-管网阻尼系数 Q-流量 注:上述变量均采用标么值,以额定值为基准,数值为1 表示实际值等于额定值 风机水泵轴功率P:P= KpQH/ηb P-轴功率 Q-流量; H-压力; ηb-风机水泵效率; Kp-计算常数; 流量、压力、功率与转速的关系: Q1/Q2 = n1/n2; H1/H2 =(n1/n2)2; P1/P2 =(n1/n2)3 ■变阀控制 变阀调节就是利用改变管道阀门的开度,来调节泵与风机的流量。变阀调节时,泵或风机的功率基本不变,泵或风机的性能曲线不变,而管道阻力特性曲线发生变化,泵或风机的性能曲线与新的管道阻力特性曲线的交点处就是新的工作点。 ■变频控制 变频调节就是利用改变性能曲线方法来改变工作点,变速调节中没有附加阻力,是比较理想的一种调节方法。通过变频器改变电源的工作频率,从而实现对交流

变频器节能计算方法

变频调速节能量的计算方法 一﹑概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。 在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1﹑风机﹑泵类平方转矩负载的变频调速节能风机﹑泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电 20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。生产中,对风机﹑水泵常用阀门、挡板进行节流调节,增加了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变频器对风机﹑泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: 能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:

变频调速节能量的计算方法

变频调速节能量的计算方法 时间:2009-12-16 09:26:19 来源:工控网作者:杜俊明 一、概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行,采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩﹑恒转矩和恒功率等几类机械特性,本文仅对平方转矩﹑恒转矩负载的节能进行估算。所谓估算,即在变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%。 在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%,风压裕度为10%和10%~15%,设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30%的比较常见。生产中实际操作时,对于离心风机﹑泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器﹑液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1、风机、泵类平方转矩负载的变频调速节能风机、泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%。采用电动机变频调速来调节流量,比用挡板﹑阀门之类来调节,可节电20%~50%,如果平均按30%计算,节省的电量为全国总用电量的9%,这将产生巨大的社会效益和经济效益。生产中,

变频器节能效率计算

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 变频器节能效率计算 概述在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。 与实际的工况存在较大的可调整空间。 在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。 同时分析变频器在选型、应用中的注意事项。 1 变频调速原理三相异步电动机转速公式为: = 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。 变频器效率维持在 94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。 1.1 变频工作原理异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz。 电机定子绕组内部感应电动势为1 ≈ 1 = 4.441 1 ?1 式中1 -定子绕组感应电动势,V; ?1 -气隙磁通,Wb; -定子每相绕组匝数; 1/ 10

60 (1 ? )

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 1 -基波绕组系数。 在变频调速时,如果只降低定子频率1 ,而定子每相电压保持不变,则必然会造成?1 增大。 由于电机制造时,为提高效率减少损耗,通常在 1 = , 1 = 时,电动机主磁路接近饱和,增大?1 势必使主磁路过饱和,将导 致励磁电流急剧增大,铁损增加,功率因素降低。 若在降低频率的同时降低电压使 1 1 保持不变则可保持?1 不变 从而避免了主磁路过饱和现象的发生。 这种方式称为恒磁通控制方式。 此时电动机转矩为 T= 式中T-电动机转矩,N.m; 1 —电源极对数;—磁极对数;—转差率; 2 —转子电阻; 2 —转子电抗;由 于转差率较小, 2 2 2 ? 2 则有1 1 2π2 +2 221 121 1 1 T≈ 2π 2 11 其中= 2π2= 1 21 12由此可知:若频率1 保持不变则T ∝ s;若转矩T不变则s ∝ 1 1 ;2 电动机临界转差率≈ 2 = 2π2 = 其中C = 2π 2 1 2 12电动机最大转矩= 1 1 4π1 2π1 2 60 111 2 1 60 =常数最大转速降? = 1 = ==常数由此可知:保持 1 1 =常数,最大转矩和最大转矩处的转速降落均等于常数,与频率无关。 因此不同频率的各条机械特性曲线是平行的,硬度相同。 3/ 10

(300MW)引风机系统变频节能计算

(300MW)引风机系统变频节能计算 一、概况: 机组发电负荷一般在180-300MW之间变化,发电机输出功率变化,锅炉处理也要相应调整,锅炉的送风量、引风量相应变化。 二、节能数据分析: 1、引风机现场技术数据: 1)#2发电机组容量:300MW 2)配置引风机数量:2台 3)年运行时间:7920h 4)上网电价:0.25元 5)设备参数 6)发电机组不同负荷下风机运行参数统计 1.数据来源及相关说明如下: 根据现场SIS系统采集 起止时间:2005-09-1 --- 2006-09-01 数据精度:0.001 数据间隔:20min 采集项目:机组负荷、A引风机电流、B引风机电流、A引风机入口压力、B引风机入口压

力、A引风机出口压力、B引风机出口压力。 数据总量:12384条记录 数据处理计算精度:0.001 2.数据处理 根据有效性同等条件数据处理原则,对12384条数据分别进行了数据筛选,其中有效数据占 79.9%。具体处理结果如下: A引风机 B引风机 2、工频状态下的年耗电量计算: P d:电动机总功率;P A:A电动机功率;P B:B电动机功率;I A:A电动机输入电流;I B:B电动机输入电流;U:电动机输入电压;cosφ:功率因子。

计算公式:P A =3×U ×I A ×cos φ ;P B =3×U ×I B ×cos φ ; 则P d =P A +P B =3×U ×(I A +I B )×cos φ…① 电动机在工频状态下,引风机电动机实际功耗计算值见下表。 C d :年耗电量值 ;T :年运行时间 ;δ:单负荷运行时间百分比 。 累计年耗电量公式:C d = T ×∑(P d ×δ) …② C d =15344790.3 kW?h 因此,采用工频运行时,每年引风机系统耗电量约为1534.48万度电。 3、变频状态下的年耗电量计算: 根据风机风压、挡板开度、压力、功率之间典型特性关系的变化趋势分析,推测出100%开度情况下的总耗电功率为1078 kw 。 P ':电动机总实际功率 ; P 100:电动机100%挡板开度时实际总功率 ;H ':风机实际风 压 ; H 0:额定风压。 计算公式: 2 3 100 )'('H H P P = …① 另有,电动机效率d η与电动机负荷率β之间的关系如图一所示。 变频器的效率b η与电动机负荷率β之间的关系如图二所示。

相关文档