文档库 最新最全的文档下载
当前位置:文档库 › 钢-混凝土组合梁的发展历程解析

钢-混凝土组合梁的发展历程解析

钢-混凝土组合梁的发展历程解析
钢-混凝土组合梁的发展历程解析

目录

1 钢-混凝土组合梁的定义及分类 (1)

1.1 定义 (1)

1.2 分类 (2)

2 钢-混凝土组合梁的发展历程 (5)

2.1萌芽阶段 (5)

2.2发展阶段 (5)

2.3全面研究、实用阶段 (6)

2.4深入研究、推广应用、完善规范阶段 (6)

3 钢-混凝土组合梁的工程应用实例 (8)

3.1 多层工业厂房 (8)

3.2 高层建筑 (10)

3.3 桥梁结构 (10)

4 钢-混凝土组合梁的前景 (11)

参考文献 (13)

钢-混凝土组合梁结构的发展概述

1 钢-混凝土组合梁的定义及分类

1.1 定义

钢-混凝土组合结构是在钢结构和混凝土结构的基础上发展起来的一种新型结构形式[1]。目前钢-混凝土组合结构的主要形式包括组合结构、组合楼板、组合桁架、组合柱等组合承重体系以及组合斜撑、组合剪力墙等组合抗侧力体系,应用领域包括高层及超高层建筑(如图1所示)、大跨桥梁、地下工程、矿山工程、港口工程以及组合加固和修复工程等[2]。本文主要对钢-混凝土组合梁进行介绍。

图1 赛格广场大厦(深圳)

钢-混凝土组合梁作为建筑房屋的横向承重构件,通过抗剪连接件将钢梁与混凝土板组合成一个整体来抵抗各种外界作用,能够充分发挥钢梁抗拉、混凝土板受压性能好的优点,与非组合梁结构相比,具有以下一系列的优点:(1)组合梁截面中混凝土主要受压,钢梁受拉,能过充分发挥材料特性,

承载力高。在承载力相同时,比非组合梁节约钢材约15%-25%。

(2)混凝土板参加梁的工作,梁的刚度增大。楼盖结构的刚度要求相同时,采用组合梁可比非组合梁减小截面高度26%-30%。组合梁用于高层建筑,不仅降低楼层结构高度,且显著减轻对地基的荷载。

(3)组合梁的翼缘板较宽大,提高了钢梁的侧向刚度,也提高了梁的稳定性,改善了钢梁受压区的受力状态,增强抗疲劳性能。

(4)可以利用钢梁的刚度和承载力承担悬挂模板、混凝土板及施工荷载,无需设置支撑,加快施工速度。

(5)抗震性能好。

(6)在钢梁上便于地焊接托架或牛腿,供支撑室内管线用,不需埋设预埋件。

相比于混凝土结构,组合结构的缺点是需要采取防火及防腐措施。但组合结构的防火及维护费用比钢结构低,并且随着科学技术的发展,防腐涂料的质量和耐久性也在不断提高,为组合结构的应用提供了有利条件。

1.2 分类

组合梁自问世以来至今,各国学者们展开了广泛且具有深度的研究。目前,组合梁的种类已从单一的外包式钢-混凝土组合梁发展至T形组合梁、现浇混凝土翼板组合梁、预制混凝土翼板组合梁、叠合板翼板组合梁、压型钢板组合梁等形式。

钢-混凝土组合梁按照截面形式可以分为外包混凝土组合梁和钢梁外露的组合梁(如T形组合梁),如图2所示。外包混凝土组合梁又称为劲性混凝土梁或钢骨混凝土梁,主要依靠钢材与混凝土之间的粘结力协同工作;T形组合梁则依靠抗剪连接件将钢梁与混凝土翼板组合成一个整体来抵抗各种外界作用。大量的研究和实践经验表明,T形组合梁更能够充分发挥不同材料的优势,具有更高的综合性能,是组合梁应用和发展的主要形式。

(b)T形组合梁(无拖座)

(a)外包混凝土组合梁

(b)T形组合梁(有拖座)

图2 不同的组合梁截面形式

T形组合梁按照混凝土翼板的形式不同又可以分为现浇混凝土翼板组合梁、预制混凝土翼板组合梁、叠合板翼板组合梁以及压型钢板混凝土翼板组合梁等。如图3所示。

(1)现浇混凝土翼板组合梁(图3- a):现浇混凝土翼板组合梁就是指组合梁的混凝土翼板是在施工现场进行现场浇筑的。它的优点是组合梁的混凝土翼板整体性好,缺点是需要现场支模,湿作业工作量大,施工速度慢。

(2)预制混凝土翼板组合梁(图3- b):预制混凝土翼板组合梁就是指组合梁的混凝土翼板是事先预制好的,通过运输吊装等工序,在施工现场进行装配并在预留槽口处浇筑混凝土从而使之成为一个整体的形式。这种形式的组合梁的特点是混凝土翼板预制,现场只需要在预留槽口处浇筑混凝土,可以减少现场湿作业量,施工速度快,但是对预制板的加工精度要求高,不仅要求需要在预制板端部预留槽口,而且要求预留槽口在组合梁抗剪连接件的位置处对齐,同时槽口处需附加构造钢筋。由于槽口处构造及现浇混凝土是保证混凝土翼板和钢梁的整体工作的关键,因此,槽口处构造及现浇混凝土浇筑质量直接影响到混凝土翼板和钢梁的整体工作性能。

(3)叠合板翼板组合梁(图3- c):叠合板翼板组合梁是我国科技工作者在

现浇混凝土翼板组合梁和预制混凝土翼板组合梁的基础上发展起来的新型组合梁,具有构造简单、施工方便、受力性能好等优点。预制板在施工阶段作为模板,在使用阶段则作为楼面板或桥面板的一部分参与板的受力,同时还作为组合梁混凝土翼板的一部分参与组合梁的受力,做到了物尽其用。

(4)压型钢板混凝土翼板组合梁(图3- d):随着我国钢材产量和加工技术的提高,压型钢板的应用越来越广泛,尤其是在高层建筑中的应用越来越多。压型钢板在施工阶段可以作为模板,在使用阶段的使用功能则取决于压型钢板的形状、规格及构造。对于带有压痕和抗剪键的开口型压型钢板以及近年来发展起来的闭口型和缩口型压型钢板,还可以代替混凝土板中的下部受力钢筋,其他类型的压型钢板一般则只作为永久性模板使用。

图3 不同混凝土翼板形式的钢-混凝土组合梁截面形式组合梁采用的钢梁形式有工字型(轧制工字型钢、H型钢或焊接组合工字形钢)、箱型、钢桁架、蜂窝形钢梁等。同时,采用预应力技术可以进一步提高组合梁的力学性能和使用性能。按照施加预应力的部位不同,又可以分为在混凝土翼板里施加预应力的方式,也称体内预应力,目的是降低组合梁负弯矩区混凝土翼板的拉应力以控制混凝土开裂或减小裂缝宽度;也可以只在钢梁内施加预应

力,以减小使用荷载作用下组合梁正弯矩区钢梁的最大拉应力,这种方法也可以称为体外预应力。

2 钢-混凝土组合梁的发展历程

组合梁由于能充分发挥钢与混凝土两种材料的力学性能,在国内外获得广泛的发展与应用。组合梁自20世纪20年代出现以来,在桥梁结构中的大跨桥面梁、工业建筑中的重荷载平台梁和吊车梁以及对结构高度和自重都有较高要求的民用建筑组合楼盖中已得到广泛应用。钢-混凝土组合梁的发展过程大致如下[1] [3](示意图见图4):

2.1萌芽阶段

钢-混凝土组合梁出现于20世纪20年代,随后在30年代中期出现了钢梁和混凝土翼板之间的多种抗剪连接件构造方法,这一时期是组合梁处于萌芽状态的初始阶段。1922年,Mackay HM在加拿大Domion桥梁公司进行了2 根外包混凝土钢梁试验[4],几乎在同时英国国家物理实验室也进行了外包混凝土钢梁的试验,1923年Caughen首次进行6根T型组合梁试验,建议可以根据材料力学方法进行设计。上述试验中试件在钢与混凝土交界面均没有机械连接件。而在1923 至1939 年间,美国、英国及其他欧洲各国等就没有连接件的钢与混凝土组合梁开展了进一步的试验研究,其中以1939年Batho、Lash和Kirkham 的试验研究最为深入全面[5]。研究表明,没有机械连接件的钢与混凝土接触面,在滑移一旦出现时组合梁就开始破坏。1933年Maning等第一次研究了采用机械抗剪连接件的组合梁。1933年Ros首次设计了推出试验来研究抗剪连接件,该方法行之有效,一直沿用至今。最早开始系统地研究配有机械连接的钢与混凝土组合梁是在1935-1936 年间,瑞士人V oellmy 进行螺旋筋剪力连接件组合梁试验[6]。

可以看到, 处于萌芽阶段的研究主要集中于考虑防水需要的外包混凝土钢梁及其实用连接件的研究。该阶段探索性的研究为后续钢与混凝土组合梁的蓬勃发展奠定了一定的基础。

2.2发展阶段

在这一个阶段,20世纪20-30 年代的研究成果尤其是采用抗剪连接件的组合梁在该阶段得到了较广泛的应用,并且开始制定相应的规程,同时关于实用连接件的研究工作进一步展开,使得组合梁的应用在科学指导下逐渐普及。1943

年,里海大学报道了槽钢连接件组合梁的试验报告[7],并且在1954年L.M. Viest 首次对栓钉连接件进行研究,并提出以残余滑移为0.07mm 时的剪力作为允许抗剪临界值[8],之后在1964 年Chapman 和Balakrishnan 首次进行了带头栓钉的研究[9] [10],充分考虑了栓钉在钢与混凝土组合梁的滑移和掀起作用下的实际受力情况。研究和应用表明栓钉在提高了组合梁极限承载力的同时,也大大加快了组合梁的施工速度,并使组合梁后来能在压型钢板组合楼盖中应用成为可能。

2.3全面研究、实用阶段

这一阶段在总结以往研究和应用成果的基础上,进一步改进和完善了组合梁的有关设计规范或规程,组合结构的应用和发展逐步成熟,几乎日趋赶上钢结构的发展,并受到广泛的重视。研究工作重点由简支梁研究转而开始了连续梁的研究,由完全剪力连接组合梁的研究转而开始了部分剪切连接组合梁的研究,由考虑允许应力设计方法转为考虑极限状态设计方法。其中代表性的理论研究成果有:1965 年R.G . Slutter ,R.G .Driscoll 提出了极限抗弯强度计算方法[11]、1971 年R.P. Johnson 关于纵向抗剪的计算[12]以及1975 年R.P. Johnson 提出部分剪力连接组合梁的强度和变形计算[13]等。 20世纪20-30 年代,萌芽阶段 20世纪40-50 年代,发展阶段 20世纪60-70 年代,全面研究,实用阶段

20世纪80 年代至今,深入研究、推

广应用,完善规范阶段图4 钢-混凝土组合梁的发展历程简图

2.4深入研究、推广应用、完善规范阶段

在前面工作的基础上,钢与混凝土组合梁又有了新的进展。研究工作从线性、平面构件开始向非线性、空间体系扩展。同时也开始出现新的截面组合形式。

这一阶段,相继出现了预制装配式钢-混凝土组合梁、叠合板组合梁、预应力钢-混凝土组合梁、钢板夹心组合梁等多种新的结构形式。同时,对组合梁在使用阶段所产生的问题以及新材料、新工艺的应用开展了更加细致的研究,并由线弹性向非线性,由平面结构向空间结构的方向进行了发展。

我国从50年代初期开始研究组合梁结构,之后在公路、铁路桥梁方面得到应用。如1957年建成的武汉长江大桥,其上层公路桥的纵梁(跨度18m)采用了组合梁,但当时在应用中并未考虑钢与混凝土材料之间的组合效应,而仅仅将其作为强度储备以提高安全度或者是为了方便施工。在房屋建筑方面,早在50年代,北京钢铁设计研究总院对组合梁结构进行了探讨和研究。自20世纪80年代初以来,随着我国经济建设的快速发展、钢产量的大幅提高、钢材品种的增加、科研工作的深入、应用实践经验的积累,钢-混凝土组合梁结构得到了迅速的发展和越来越广泛的应用,应用范围已涉及建筑、桥梁、高耸结构、地下结构、结构加固等领域。例如:我国已建成的上海环球金融中心(492m)、金茂大厦(见图5,高421m)、深圳地王大厦(384m)、深圳赛格广场大厦(292m)等超高层建筑都采用了组合楼面;上海杨浦大桥(602m)、东海大桥(420m)、芜湖长江大桥(见图6,大桥主跨度312m)、深圳彩虹桥(150m)以及北京等城市的大量立交桥也都使用了钢-混凝土组合梁作为桥面系。大量工程应用实例证明,钢-混凝土组合梁综合了钢梁和钢筋混凝土梁的优点,可以用传统的施工方法和简单的施工工艺获得优良的结构性能,技术经济效益和社会效益显著,非常适合我国基本建设的国情,是具有广阔应用前景的新型结构形式之一。

图5 金茂大厦(421m)

图6 芜湖长江大桥(312m)

目前, 各国均对组合结构编制了相应的规范。其中,欧洲规范4 (Eurocode 4)是一本专门的钢-混凝土组合梁的设计规范;我国现行规范和规程如《钢结构设计规范》(GB50017-2003)、《型钢混凝土组合结构技术规程》(JCJ138-2001)、《钢-混凝土组合结构设计规程》(DL/T 5085-1999)和《钢-混凝土组合结构施工规范》(GB50901-2013)等也都可以指导钢-混凝土组合结构设计与施工。

3 钢-混凝土组合梁的工程应用实例

3.1 多层工业厂房

1988年开始建设的国家重点建设项目——太原第一热电厂五期工程,由山西省电力勘测设计院设计。该工程的集中控制楼位于两台锅炉之问,处在第一台锅炉的安装通道上,只有在第一台锅炉的大件吊装完,塔吊退出后才能进行全面施工,因此,第一台机组能否早日发电取决于集中控制楼的工期。集中控制楼楼面设计荷载为25~35 kN/m2。对集中控制楼设计必须选择施工工序简单,便于立体交叉作业和多层同时施工且能最大限度地加快施工速度的结构型式。为此,在钢-混凝土组合楼层的三个方案(现浇楼板、压型钢板-混凝土组合楼板、混凝土叠合楼板组合梁)中选择了叠合板组合梁方案,柱为钢管混凝土柱,通过加强环与组合梁相连,形成了完整的钢-混凝土组合结构体系。当时,由于钢-混凝土叠合板组合梁的应用在国内尚无先例,又无设计规范可循,因此在设计前,山西省电

力勘测设计院和郑州工学院合作,对叠合板组合梁进行了试验研究,包括钢筋混

凝土简支叠合板、连续叠合板、钢-混凝土叠合板简支和连续组合梁等,成果为叠合板组合楼层结构设计提供了依据。集中控制楼柱网尺寸为7 m×9 m,次梁沿纵向布置(梁跨9 m)并支承在梁跨为7m的主梁上,如图7所示。预制板跨3.5 m,宽0.8~2.2 m,厚度70 mm,预制板中配置了楼板的正弯矩钢筋。在板的上表面沿每米宽布置1列、纵向间距为300 mm、直径为,6构造抗剪钢筋(如图8所示)。浇灌预制板时在其上表面用竹扫帚拉毛以使其具有一定的粗糙度。组合梁混凝土翼缘的横向配筋率为0.7%,包括伸出预制板端120mm的“胡子筋”和现浇层中的负钢筋。组合梁中支座弯矩调幅度取15%。值得指出的是,由于叠合板组合楼层设计在当时尚无规范可循,又没有实例参考,故集中控制楼楼层结构设计偏于保守。尽管如此,它同现浇组合楼层相比,不仅缩短工期1/3,而且由于节省了支模工序和模板等降低造价18%。与压型钢板组合楼层相比,节省钢材30%,降低造价76%。由于缩短工期使第一台机组提前发电所创造经济效益近700万元。继太原第一热电厂第五期工程之后,第六期工程和阳泉第二发电厂等工程也采用了叠合板组合梁结构。

图7 太原第一热电厂柱网布置及组合梁截面

图8 钢-混凝土叠合板组合梁构造

3.2 高层建筑

北京国际技术培训中心的两幢18层塔楼,楼盖结构采用冷弯薄壁型钢-混凝土简支组合梁,跨度6 m,间距1.5 m,组合梁全高300 mm(包括混凝土楼板厚度)。梁的截面如图9所示。组合楼盖结构设计是以试验研究成果为依据的。栓钉剪力连接件设计采用文献[14]的研究成果,节约栓钉用量达47%(仅这2幢高层建筑的楼盖结构就节约栓钉近10万个)。与钢筋混凝土叠合楼板相比较,结构自重降低29%,水泥消耗节约34%,钢材消耗节约22%,木材消耗节约7%,造价降低5%,施工周期缩短25%,并且使建筑标准提高了一大步,实现了建设部对小康住宅提出的“造价不高水平高,标准不超质量高”的要求,为我国城镇住宅建设提供了一种轻型、优质、大跨的楼盖结构型式,这种新型组合梁在高层建筑楼盖结构中具有广阔的应用前景,有利于推动大开问灵活分隔的高层建筑的发展。

钢-压型钢板混凝土组合结构在高层建筑中的应用也在不断发展,如深圳赛格广场、上海世界金融大厦、金茂大厦等超高层建筑的楼板也采用了压型钢板组合楼板。压型钢板组合楼盖的最大优点是施工速度快,但造价比较高。

图9 冷弯薄壁型钢一混凝土组合梁截面

3.3 桥梁结构

1993年,北京市市政工程设计研究总院设计的北京国贸桥,在三个主跨采用了钢-混凝土叠合板连续组合梁结构,其侧面和横剖面如图10所示。当时叠合板组合梁在国内城市立交桥中的应用尚属首次。其综合效益为:

(1)比原现浇桥面板方案节省近4000 m2的高空支模工序和模板,减小现场湿

作业量,缩短工期近一半,未中断下部交通;

(2)比钢筋混凝土梁桥自重减轻约50%;

(3)比钢桥节省钢材30%左右。

图10 国贸桥三跨钢-混凝土连续叠合板组合梁

模拟气超-20的静载试验结果和分析表明,该桥具有同现浇桥面板组合梁一样的受力性能,再次证明钢-混凝土叠合板组合梁具有良好的整体工作性能。它在桥梁结构中的成功应用实现了“轻型大跨、预制装配、快速施工”的目的,符合我国城市立交桥建设的国情。继国贸桥之后,仅北京又有6座大跨立交桥的主跨采用了这种结构型式,最大跨度已达到70m,取得了显著的技术经济效益和社会效益。

钢-混凝土叠合板组合梁的显著优点是省掉了高空支模工序和模板。用于桥梁可以不中断下部交通,用于建筑可以省去满堂红脚手架,对于减少现场作业量和保护环境等都是有利的。有关专家对多座城市大跨立交桥结构方案(包括预应力钢筋混凝土桥、钢桥及钢-混凝土组合梁桥)比较后认为,钢-混凝土叠合板组合梁方案的综合效益最好。

4 钢-混凝土组合梁的前景

大量工程应用实例证明,钢-混凝土组合梁综合了钢梁和钢筋混凝土梁的优

点,可以用传统的施工方法和简单的施工工艺获得优良的结构性能,技术经济效益和社会效益显著,非常适合我国基本建设的国情,是具有广阔应用前景的新型结构形式之一。

为了促进传统结构的发展,还需要加大对钢-混凝土组合结构研究的投入。在组合梁领域值得进一步研究的问题包括组合梁在复合受力状态下的性能与设计方法、组合梁截面的优化、预应力组合梁、桁架组合梁、大跨组合梁的温度、徐变和收缩效应、新型组合梁的开发、钢-混凝土组合结构体系的整体性能、钢-混凝土组合楼盖的空间作用、钢-压型钢板组合梁的组合效应利用问题,组合梁在超高层建筑中的应用问题等,将钢-混凝土组合梁用于超高层建筑的转换层结构是值得探讨的,它将克服目前转换层钢筋混凝土大梁尺寸过大的问题。此外,有必要尽快制订一部完整的适合我国基本建设国情的钢一混凝土组合结构设计规程。

参考文献

[1] 聂建国. 钢-混凝土组合梁结构---试验、理论与应用[M]. 北京: 科学出版社, 2005.

[2] 劳埃·杨. 张培信译. 钢-混凝土组合结构设计[M]. 上海: 同济大学出版社, 1991.

[3] 肖辉, 李爱群, 陈丽华等. 钢与混凝土组合梁的发展、研究和应用[J]. 特种结构, 2005, 22(01): 38-41.

[4] Mackay HM, Gillespie P &Leluau C. Report on the strength of steel I-beams haunched with concrete. Engineering Journal, Canada, 1923 , 6(8):365-369.

[5] Batho C, Lash SD &Kirkham RHH. The properties of composite beams, consisting of steel joints encased in concrete, under direct and sustained loading. Journal of the Institution of Civil Engineers, 1939 , 11(4):61-114.

[6] Viest IM.Investigation of stud shear connectors for composite concrete and steel T-beams. Journal of the American Concret e Institute, 1956, 27(8):875-891.

[7] https://www.wendangku.net/doc/d616939152.html,m. Composite steel beams with precast hollow core slabs: behavior and design. Compostite structure, 2002, 11(4): 179-185.

[8] Viest IM. Investigation of stud shear connectors for composite concrete and steel T-beams. Journal of the American Concret e Institute, 1956 , 27(8): 875-891.

[9] Chapman JC. Composite construction in steel and concrete: The behaviour of composite beams. The Structural Engineer , 1964 , 42(4): 115-125.

[10] Chapman JC , Balakrishnan S .Experiments on composite beams .The Structural Engineer 1964, 42(11):369-383.

[11] Slutt er RG, Driscol lGC. Flexural strength of steel-concrete compostite beams. Journal of the Structural Division(ASCE), 1965 , 91(ST2):71-99.

[12] Ollgaard JG, Slutter RG &Fisher JW.Shear strength of stud connectors in lightweight and normal weight concrete .Engineering Journal(AISC),1971, 8(2):55-64.

[13] R.P. Johnson and I. M. May. Partial-interaction design of composite beams, Structural Engineer, 1975,8.

[14] 聂建国, 沈聚敏, 袁彦声等. 钢-混凝土组合梁中剪力连接件实际承载力的

研究[J].建筑结构学报,1996,17(2):21-29.

钢与混凝土组合梁

第四章 钢与混凝土组合梁 思考题: 1.组合梁是由哪几部分组成的?钢梁与混凝土板之间能够共同工作的条件是什么? 2.组合梁的设计计算理论有哪两种?一般各在什么情况下应用? 3.组合梁按塑性理论计算时,钢梁截面应满足哪些要求?为什么? 4.完全剪切连接组合梁按塑性理论计算时采用了哪些基本假定? 5.连续组合梁在受力性能和设计计算方面有什么特点? 6.连续组合梁按照弹性理论计算的原则和方法是什么? 7.连续组合梁按塑性理论计算时应满足哪些要求? 8.组合梁中的钢梁在哪些情况下可不进行整体稳定性验算? 9.什么是部分剪切连接?一般在什么条件下,采用部分剪切连接的设计方法? 10.在简支组合梁的变形计算中为什么采用折减刚度,而不直接采用换算截面刚度? 习题: 1.某平台次梁采用钢与混凝土简支组合梁,梁的跨度为6m ,梁间距为2m ,梁的截面尺寸见题图4.1。施工阶段和使用阶段的活荷载标准值分别为1.5kN/m 2和6kN/m 2,使用阶段活荷载的准永久值系数5.0=q ψ。平台上有30mm 厚水泥砂浆面层,钢梁与混凝土之间无温差。混凝土的强度等级为C25(2N/mm 9.11=c f ,24N/mm 1080.2?=c E ),钢材采用Q235钢(2N/mm 215=f ,2N/mm 125=v f ,25N/mm 1006.2?=s E )。钢梁与混凝土板之间采用栓钉连接件,以承受交界面上全部的纵向剪力.试按弹性理论进行以下内容的验算: 施工阶段:(1) 钢梁的受弯承载力;(2) 钢梁的受剪承载力;(3) 钢梁的挠度; 使用阶段:(1)组合梁的受弯承载力;(2) 组合梁的受剪承载力;(3) 组合梁 的挠度;(4) 钢梁腹板的局部稳定性;(5) 剪切连接件设计。

钢一混凝土组合梁

钢-混凝土组合梁 钢-混凝土组合梁(以下简称组合梁)是在钢结构和混凝土结构基础上发展起来的一种新型梁,通常其肋部采用钢梁,翼板采用混凝土板,两者间用抗剪连接件或开孔钢板连成整体。抗剪连接件是钢梁与混凝土板共同工作的基础,它沿钢梁与混凝土板的交界面设置。两种材料按组合梁的形式结合在一起,可以避免各自的缺点,充分发挥两种材料的优势,形成强度高、刚度大、延性好的结构形式。近几年,钢-混凝土组合梁在我国的应用实践表明,它不仅可以很好地满足结构的功能要求,而且还具有良好的技术经济效益。 钢-混凝土组合梁的特点 钢-混凝土组合梁可以广泛的用于建筑结构和桥梁结构等领域。对比钢梁和钢筋混凝土梁,钢-混凝土组合梁具有以下主要特点: (1)由于混凝土板与钢梁共同工作,可以充分发挥钢材与混凝土材料各自材料特性;另外,钢-混凝土组合梁与钢板梁相比节省钢材约20%-40%,可以降低造价。 (2)增大梁的截面刚度,降低梁的截面高度和建筑高度。 (3)组合梁的混凝土受压翼板增加了梁的侧向刚度,防止了主梁在使用荷载下的扭曲失稳。 (4)降低冲击系数,抗冲击、抗疲劳和抗震性能好。 (5)可以节省施工支模工序和模板,有利于现场施工。 钢-混凝土组合梁发展 钢-混凝土组合梁结构是在钢结构和钢筋混凝土结构基础上发展起来的一种新型结构,其与木结构、砌体结构、钢筋混凝土结构和钢结构并列,已经扩展成为第五大结构(组合结构),它是通过连接件把钢梁和混凝土板连接成整体而共同工作的受弯构件。在荷载作用下,混凝土板受压而钢梁受拉,充分发挥钢材与混凝土的材料特性,实践表明,它兼顾钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,将成为结构体系的重要发展方向之一,作为组合结构体系中重要的横向承重构件的钢-混凝土组合梁在建筑及桥梁结构等领域必将具有广阔的应用前景。其发展过程大致经历以下四个阶段: 1、20世纪20年代--30年代。萌芽阶段。 钢一混凝土组合梁的研究始于1922年,MackayMH在加拿大Domion桥梁公司进行了两根外包混凝土钢梁试验,同时英国国家物理实验室也进行了外包混凝土钢梁的试验,随后在30 年代中期出现了钢梁和混凝土翼板之间的多种抗剪连接构造方法,可以看到处于萌芽阶段的研究主要集中于考虑防火需要的外包混凝土钢梁及实用连接件的研究,而未考虑两者的组合工作效应,这一阶段探索性的研究为后续钢-混凝土组合梁的蓬勃发展奠定了一定的基础。 2、20世纪40年代~60年代。发展阶段 这一阶段是组合梁发展的第二阶段,在这一阶段,许多技术先进的国家对组合梁开展了比较深入的试验研究,对组合梁的分析基本上按照弹性理论进行分析,并制定了相关的设计规范和规程,使得组合梁的应用在科学指导下逐渐普及。 3、20世纪60年代~80年代,全面研究,实用阶段 由于钢-混凝土组合梁具有广泛的应用前景,组合梁的研究工作进一步得到深化,在总结以往研究和应用成果的基础上,进一步改进和完善了组合梁的有关设计规范或规程,组合结构的应用和发展逐步成熟,几乎日趋赶上钢结构的发展,并广泛重视,研究工作重点也由简支梁研究转而开始了连续梁的研究,由完全剪力连接转为部分剪力连接;由考虑允许应力设计方法转为考虑极限状态设计方法;由弹性理论分析转为塑性理论分析。

钢-砼组合梁施工工艺

钢-砼组合梁施工工艺标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

钢-砼组合梁施工方法与施工工艺 按设计要求,主线桥每个钢梁分六段、H匝道桥分四段工厂制作,现场拼装,通过高强螺栓连接。 一、钢梁制作 钢梁制作选择有施工资质的工厂制造。 我单位提供钢箱梁全部设计详图及设计说明。另外结合施工现场情况,提供必要的施工安装说明等。 制作过程中,会同监理单位进行质量检验验收。并要求工厂提供各种材质试验、焊接试验及钢结构探伤试验报告;提供构件编号及工地预拼图。 焊缝要求:所有对接接头均为Ⅰ级焊缝;腹板与上翼板及底板之间为双面贴角焊缝,焊缝标准为Ⅰ级;其他焊缝均为Ⅱ级。 桥梁钢结构内外表面均须进行二次除锈(污)。第一次是钢材进厂之后在下料之前要进行一次预处理-喷丸(在喷丸机上进行)。并及时涂装车间底漆(约15-20μm)。第二次钢构件焊接成型后在涂装之前要进行一次喷砂(金刚砂)喷砂要在密闭空间、保温保湿的条件下进行(内表面不喷砂)。钢板外露面喷底漆和面漆等。 二、钢梁运输 钢梁制作完成后,经验收达到要求后由工厂运输至工地预拼场,运输采用预先制订的装车及运输方案进行,保证钢梁各种构件不致损伤、变形。 三、钢梁工地试拼装、钢梁组合连接 钢梁运至现场后,在吊装前需要进行试拼装。钢梁试拼前,应根据事先计算的预拱度和准确试拼位置;预先制造好胎模,确保试拼达到要求后,便于钢梁组合连接。钢梁组合拼装时,对容易变形的够应进行强度和稳定性验算,必要时采取加固措施。钢梁拼装、连接过程中,每完成一节应测量其位置、轴线、标高和预拱度,如有不符和要求即进行校正。钢梁连接高强度螺栓,长度与施工图一致,安装时应按顺序穿入孔内,方向全桥一致,不得强行穿入,且施工的预拉力应符合规范要求。 四、钢梁移梁及吊装就位 根据工地现场情况,采用增设临时支承,通过在广深高速公路两侧支立的两台220吨吊车,将钢梁段吊放在永久桥墩和临时支承上,进而进行钢梁连

钢-混组合梁桥的设计优化及应用

龙源期刊网 https://www.wendangku.net/doc/d616939152.html, 钢-混组合梁桥的设计优化及应用 作者:周俊书李兵任亚 来源:《中国科技纵横》2020年第06期 摘要:近年来,钢-混凝土组合梁桥因其施工快速及结构性能优越而越来越多地被应用于高速公路的建设中。以某高速公路互通主线的钢-混组合连续梁桥为背景,介绍了该类型梁桥的基本结构形式,阐述了钢-混组合连续梁桥设计过程中优化负弯矩区混凝土桥面板受力采取的措施,为类似桥梁设计优化提供思路。 关键词:钢-混组合梁;连接件;负弯矩区混凝土 中图分类号:U448.2 文献标识码:A 文章编号:1671-2064(2020)06-0130-02 1设计背景 随着科学技术的进步,中国桥梁建设工作在近年来迅速发展,预应力混凝土箱梁由于施工工艺成熟,施工质量优异等优点而被广泛应用。然而,随着桥梁对大跨径需求的增加,传统的混凝土箱梁桥由于结构自重大、地震响应大、腹板后期开裂等问题日益突出,已逐渐满足不了大跨径桥梁建设的需求。大跨径桥梁趋于选择自重更轻、跨越能力更大的结构形式。钢-混凝土组合梁桥相较于传统的混凝土箱梁桥具有自重小、结构轻巧美观、施工周期短、不中断下穿公路的通行等优点,而越来越多地被应用于高速公路的建设中。 钢-混凝土组合梁是由混凝土桥面板和钢梁通过剪力连接件组合共同承受荷载的梁。在设计过程中,尽力让混凝土桥面板承受压应力,钢梁承受拉应力,以此充分发挥各自材料特性来使结构的经济效益最大化。然而在钢-混组合连续梁的设计过程中,不可避免墩存在顶负弯矩区域的混凝土桥面板承受拉应力、钢梁承受压应力。此时需要采取措施控制混凝土桥面板开裂和钢梁承压局部失稳的问题。如根据路线设计要求,半径较小的曲線组合梁桥还应考虑弯扭耦合效应[1]。即将通车的杨寨东互通主线桥主跨部分采用36m+60m+42m的组合结构,本文将介绍其设计优化过程中采取的相关措施。 2工程概况 杨寨东互通K0+412.5主线大桥位于武汉城市圈环线高速公路大随至汉十段杨寨东互通内,为跨越麻竹高速而设。桥梁左幅桥宽8.25m,跨径为11×20m+(36+60+42)m+4×20m的连续小箱梁和钢-混凝土组合梁;桥梁右幅桥宽12.75m,跨径为11×20m+(42+60+36) m+4×20m的连续小箱梁和钢-混凝土组合梁。其中跨越麻竹高速主线按照8车道41m路幅预留,且建设期不中断麻竹高速公路的交通通行,受制于上跨麻竹高速主线的净空要求,预应力混凝土箱梁方案不再适用。在钢-混凝土组合梁与钢箱梁的方案选择过程中,钢筋混凝土桥面

钢_混凝土组合结构桥梁研究新进展_聂建国

第45卷第6期2012年6月 土木工程学报 CHINA CIVIL ENGINEERING JOURNAL Vol.45Jun.No.62012 基金项目:国家自然科学基金重点项目(51138007),清华大学自主科 研计划(20101081766) 作者简介:聂建国,博士,教授收稿日期:2010- 12-09钢-混凝土组合结构桥梁研究新进展 聂建国 1 陶慕轩 1 吴丽丽 2 聂鑫 1 李法雄 1 雷飞龙 1 (1.清华大学土木工程安全与耐久教育部重点实验室,北京100084; 2.中国矿业大学(北京),北京100083) 摘要:钢-混凝土组合结构桥梁近年来在我国得到了迅速的发展。在传统桥梁结构形式的基础上,发展多种新型组合结构桥梁形式,拓宽组合结构桥梁的应用领域。介绍近年来在钢-混凝土组合结构桥梁方面的最新研究进展,内容包括波形钢腹板组合梁桥、槽型钢-混凝土组合梁桥、钢-混凝土组合刚构桥、双重组合作用连续组合梁桥和大跨斜拉桥组合桥面系。通过对传统结构形式的改进和发展,可充分发挥组合结构桥梁的综合优势,研究结果表明,钢-混凝土组合结构桥梁具有广阔的推广应用前景。 关键词:钢-混凝土组合结构;桥梁;波形钢腹板;槽型组合梁;组合刚构桥;双重组合;组合桥面系中图分类号:U448.38 文献标识码:A 文章编号:1000- 131X (2012)06-0110-13Advances of research on steel-concrete composite bridges Nie Jianguo 1 Tao Muxuan 1 Wu Lili 2 Nie Xin 1 Li Faxiong 1 Lei Feilong 1 (1.Key Laboratory of Civil Engineering Safety and Durability of the Ministry of Education ,Tsinghua University ,Beijing 100084,China ; 2.China University of Mining &Technology ,Beijing ,Beijing 100083,China ) Abstract :Steel-concrete composite bridges have been developed rapidly in recent years in China.Several new types of composite bridges have been developed on the basis of traditional structures to broaden the application area of composite bridges.In this paper ,some recent advances in research of steel-concrete composite bridges are summarized.The main research work involves composite girder bridges with corrugated steel webs ,channel-shaped steel-concrete composite girder bridges ,steel-concrete composite rigid frame bridges ,continuous composite bridges with double composite action and composite deck systems for large-span cable-stayed bridges.Through improvement and development of the traditional structural forms ,the comprehensive advantages of composite bridges can be fully displayed ,which demonstrates a good prospect of application and extension for steel-concrete composite bridges. Keywords :steel-concrete composite structure ;bridge ;corrugated steel web ;channel-shaped composite girder ;composite rigid frame bridge ;double composite ;composite deck system E-mail :dmh03@mails.tsinghua.edu.cn 引言 钢-混凝土组合结构桥梁(简称组合桥)是指将钢 梁与混凝土桥面板通过抗剪连接件连接成整体并考 虑共同受力的桥梁结构形式。相对于不按组合结构设计的纯钢桥,组合桥可以有效减小结构高度、提高结构刚度、减小结构在活荷载下的挠度。通过抗剪连接件的连接作用,混凝土桥面板对钢梁受压翼缘起到约束作用,从而增强了钢梁的稳定性,有利于材料强度的充分发挥。截面高度的降低,使结构外形更加纤 巧,改善桥梁的景观效果,有利于增加桥下净空或降 低桥面高程。组合桥相对于混凝土桥, 上部结构高度降低、自重减轻、地震作用减小、结构延性提高、基础造价降低。同时,组合桥便于工厂化生产、现场安装质量高、施工费用低、施工速度快,并可以适用于传统砖石及混凝土结构难以应用的情况 [1] 。 组合桥自20世纪50年代之后得到了迅速的发展, 从20 25m 跨径的中小跨径梁桥到跨径近千米的斜拉桥,都有组合结构的应用 [2] 。近年来,除常用的 组合板梁桥和组合箱梁桥之外,相继研发了波形钢腹板组合梁桥、组合桁梁桥、组合刚构桥等一系列新的结构形式,拓宽了组合桥的应用领域。而在国内,随着道路等级的不断提高和建设规模的扩大,桥梁呈现出跨径不断增大、桥型不断丰富、结构不断轻型化的发展趋势,同时对桥梁建设的经济性和综合效益也越

钢-混凝土组合梁计算原理及截面设计

钢-混凝土组合梁计算原理及截面设计 钢-混凝土组合梁计算原理及截面设计 钢-混凝土组合梁是在钢结构和混凝土结构基础上发展起来的一种新型结构型式。它主要通过在钢梁和混凝土翼缘板之间设置剪力连接件(栓钉、槽钢、弯筋等),抵抗两者在交界面处的掀起及相对滑移,使之成为一个整体而共同工作。 钢-混凝土组合梁同钢筋混凝土梁相比,可以减轻结构自重,减小地震作用,减小截面尺寸,增加有效使用空间,节省支模工序和模板,缩短施工周期,增加梁的延性等。同钢梁相比,可以减小用钢量,增大刚度,增加稳定性和整体性,增强结构抗火性和耐久性等。 近年来,钢-混凝土组合梁在我国城市立交桥梁及建筑结构中已得到了越来越广泛的应用,并且正朝着大跨方向发展。钢-混凝土组合梁在我国的应用实践表明,它兼有钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,适合我国基本建设的国情,是未来结构体系的主要发展方向之一。 计算原理 在钢-混凝土组合梁弹性分析中,采用以下假定: 1、钢材与混凝土均为理想的弹性体。 2、钢筋混凝土翼缘板与钢梁之间有可靠的连接交互作用,相对滑移很小,可以忽略不计。

3、平截面假定依然成立。 4、不考虑混凝土翼缘板中的钢筋(该假设只在正弯矩承载力计算时成立,负弯矩承载力计算式需考虑钢筋作用[1])。 钢-混凝土组合梁弹性分析采用换算截面法。(a)表示换算前截面,(b)表示换算后截面。换算截面法的基本原理是:混凝土翼缘板按照总力不变及应变相同条件,换算成弹性模量为Es、应力为бs的与钢等价的换算截面面积。具体计算时,为了混凝土截面重心高度换算前后保持不变,换算时混凝土翼缘板厚度不变而仅将翼缘板有效翼缘宽度be除以α E(钢材弹性模量与混凝土弹性模量的比值。 求得等价的钢梁截面后,可以按照材料力学的方法来计算截面的抗弯承载力。设换算后截面的惯性矩为 I换算,换算截面形心轴距离钢梁底部为y 换算,组合梁总高为y换算作用在截面上的弯矩为M,而组合梁挠度的计算,则按照换算截面惯性矩计算组合梁截面刚度后,再由结构力学的方法计算梁的挠度。 截面设计 根据《公路桥涵钢结构及木结构设计规范》(JTJ025-86),对钢-混凝土组合梁进行了设计。如图4所示,为该工程选用的组合梁截面图。钢梁选为Q345B钢,混凝土翼缘板用 C40混凝土,剪力连接件采用[10槽钢。组合梁总高为1650mm,高跨比约为31.5。组合梁截面换算惯性矩为8.576×1010mm^4,而纯钢梁的截面惯性矩只有5.228×10 10mm^4,组合梁截面惯性矩是纯钢梁的1.64倍,大大提高了组合梁的刚度,减小了组合梁在荷载作用下的挠度

既有钢-混组合梁桥常见病害分析及其加固策略.

既有钢一混组合梁桥常见病害分析及其加固策略 159 既有钢一混组合梁桥常见病害分析及其加固策略 黄侨1,2荣学亮2陆军3 (1.东南大学桥梁与隧道工程研究所南京210096; 2.哈尔滨工业大学桥梁工程研究所哈尔滨 150090; 3.苏州天狮建设监理有限公司苏州 215011 摘要:钢一混组合粱桥以其施工速度快,建筑高度小,抗震性能好等优点,在我国公路和城市桥梁建设中得到了广泛的应用。但是由于交通量和重型车辆的不断增加,空气、水汽、工业烟尘以及其他化学和污染物的环境作用,缺乏定期的养护维修等原因,既有钢一混组合梁桥在运营若干年后,出现了不同程度的病害问题。为保证该类桥梁的安全运营,延长其使用寿命,必须对该类型桥梁进行维修、加固。本文通过调研国内外既有钢一混组合梁桥的运营状况,总结、归纳了该类桥梁出现的几种常见病害, 并在病害成因分析的基础上,研究了该类桥梁的加固方法。并对几种不同的加固方式进行了对比分析,研究了各种加固方法的适用性。对症下药,几种加固方法相结合,变被动加固为主动加固的加固设计理念贯彻于本文的加固方法中。 关键词:钢一混组合梁桥病害加固方法体外预应力 1引言 钢一混组合梁桥是一种在公路尤其城市桥梁工程中应用较多的结构形式之一。该结构形式最早出现于 19世纪末20世纪初,经过几代工程师们近百年深入、细致、全面地研究和应用。自20世纪70年代开始快速发展。以法国为例,据该国1990~t993年建设的桥梁上部结构的统计分析,工字钢梁与混凝土桥梁构成的公路组合梁在跨长30--dlOm范围内最有竞争力,在60~80m跨长则有明显优势。组合粱的占有率达85%。在我国公路和城市桥梁中,组合梁的应用也取得了举世公认的进步,1993建成的上海杨浦大桥(跨径为 602m,2001建成的福建青州闽江大桥(跨径为

浅议钢筋混凝土梁与钢-混凝土组合梁

浅议钢-混凝土组合梁与钢筋混凝土梁 摘要:分析钢-混凝土组合梁与钢筋混凝土梁的设计和计算的异同,重点探讨钢-混凝土组合梁与钢筋混凝土梁的变形特点、裂缝、受弯承载力,在分析的基础上,加深对其的了解,从而知道钢-混凝土组合梁是组合结构中最常见的组合构件之一,是在钢结构和混凝土结构基础上发展起来的一种新型梁,它是由钢筋混凝土翼缘板,钢梁肋部和抗剪连接件组成的整体受力构件。钢与混凝土组合梁结构充分利用了钢材受拉性能好和混凝土受压性能好的特点,是将两种材料通过连接件组合成整体而共同工作发挥作用的一种新型结构。钢筋混凝土梁形式多种多样,是房屋建筑、桥梁建筑等工程结构中最基本的承重构件,应用范围极广。 关键词:钢-混凝土组合梁、钢筋混凝土梁、变形、受弯、裂缝 前言:钢-混凝土组合梁是由钢梁、连接件和钢筋混凝土板组成,而钢筋混凝土梁是用钢筋混凝土材料制成的梁。钢-混凝土组合梁的上翼缘有截面面积较大的钢筋混凝土板承受压力,致使钢梁上翼缘截面减小,从而节约钢材,钢梁下翼缘则承受拉力,这是组合梁的受力特点。钢筋混凝土梁既可作成独立梁,也可与钢筋混凝土板组成整体的梁-板式楼盖,或与钢筋混凝土柱组成整体的单层或多层框架。 1、变形 1.1钢-混凝土组合梁 1.1.1 在荷载保持不变的情况下,由于混凝梁发生收缩徐变,组合梁的变形将不断增加。 1.1.2 混凝土的收缩徐变受到钢梁的约束,组合梁截面中将产生内力重分布,这种内力重分布也会对组合梁的长期变形产生影响[1]。 中国现行《钢结构设计规范))(G B50017,送审稿) [2] 和《公路桥涵钢结构及木结构设计规范》(JTJ025-86)[3]中均采用降低棍凝土弹性模量的方法来考虑混凝土收缩徐变对组合梁长期变形的影响,混凝土长期荷载作用下的有效弹性模量E为

钢混凝土组合梁桥施工关键技术

钢混凝土组合梁桥施工关键技术 为推进钢结构桥梁建设,交通运输部发布了《关于推进公路钢结构桥梁建设的指导意见》(交公路发〔2016〕115号),决定推进钢箱梁、钢桁梁、钢混组合梁等公路钢结构桥梁建设,提升公路桥梁品质,发挥钢结构桥梁性能优势,助推公路建设转型升级。 标签:钢混凝土组合梁桥;钢结构制作;钢梁拼装;翼缘板湿接缝;桥面板施工;支座安装 Abstract:In order to promote the construction of steel structure bridges,the Mi nistry of Transport issued the “Guiding Opinions on the Construction of Steel Bridges for the Promotion of Highway Structures” (No.115,2016),deciding to promote the construction of steel bridges with steel box girder,steel truss beam,steel-concrete composite beam and other highway steel-structure bridges,such as steel box girder,steel truss beam,steel-concrete composite beam,etc,to improve the quality of highway bridges,give play to the performance of steel bridges,and promote the transformation and upgrading of highway construction. Keywords:steel-concrete composite beam bridge;steel structure fabrication;steel beam assembly;flange plate wet joint;bridge deck slab construction;support installation 钢混组合梁结构发挥了混凝土材料的抗压性能和钢材的抗拉性能,回避了钢桥面铺装的疲劳问题,在中等跨径桥梁中优势明显。 对中小跨径桥梁,混凝土结构建造成本相对较低,但随着桥梁跨径的增大,钢结构桥梁的成本优势开始显现。从全寿命周期看,钢结构桥梁的成本优势更为突出。钢结构具有自重轻、材质均匀、质量稳定、耐久性强、易于工厂化制造、装配化施工、便于回收利用等。 根据钢结构桥梁的结构优点和成本优点,尤其适用在跨径多、跨径大、受力条件复杂、高地震烈度区桥梁中。对比混凝土结构桥梁,钢结构桥梁的优势。选择钢结构和混凝土结构组合桥梁,能够很好的发挥两种结构的结构优势,达到降低工程全寿命周期成本,提高工程品质的目的。 1 某市高速公路工程钢混组合梁桥施工概況 该桥采用钢混组合梁,跨越长度40米、宽度33米。钢梁断面为工字结构,单品梁高1820mm,顶板宽度为500mm,底板宽度为750mm。腹板横向设置加劲肋,加劲肋高度为1650mm。主桥为六榀钢混梁结构,钢混梁最大吊装重量(含预制桥面板)194.1T。

钢-混凝土组合梁的发展历程

目录 1 钢-混凝土组合梁的定义及分类 (1) 1.1 定义 (1) 1.2 分类 (2) 2 钢-混凝土组合梁的发展历程 (5) 2.1萌芽阶段 (5) 2.2发展阶段 (5) 2.3全面研究、实用阶段 (6) 2.4深入研究、推广应用、完善规范阶段 (6) 3 钢-混凝土组合梁的工程应用实例 (8) 3.1 多层工业厂房 (8) 3.2 高层建筑 (10) 3.3 桥梁结构 (10) 4 钢-混凝土组合梁的前景 (11) 参考文献 (13)

钢-混凝土组合梁结构的发展概述 1 钢-混凝土组合梁的定义及分类 1.1 定义 钢-混凝土组合结构是在钢结构和混凝土结构的基础上发展起来的一种新型结构形式[1]。目前钢-混凝土组合结构的主要形式包括组合结构、组合楼板、组合桁架、组合柱等组合承重体系以及组合斜撑、组合剪力墙等组合抗侧力体系,应用领域包括高层及超高层建筑(如图1所示)、大跨桥梁、地下工程、矿山工程、港口工程以及组合加固和修复工程等[2]。本文主要对钢-混凝土组合梁进行介绍。 图1 赛格广场大厦(深圳) 钢-混凝土组合梁作为建筑房屋的横向承重构件,通过抗剪连接件将钢梁与混凝土板组合成一个整体来抵抗各种外界作用,能够充分发挥钢梁抗拉、混凝土板受压性能好的优点,与非组合梁结构相比,具有以下一系列的优点:(1)组合梁截面中混凝土主要受压,钢梁受拉,能过充分发挥材料特性,

承载力高。在承载力相同时,比非组合梁节约钢材约15%-25%。 (2)混凝土板参加梁的工作,梁的刚度增大。楼盖结构的刚度要求相同时,采用组合梁可比非组合梁减小截面高度26%-30%。组合梁用于高层建筑,不仅降低楼层结构高度,且显著减轻对地基的荷载。 (3)组合梁的翼缘板较宽大,提高了钢梁的侧向刚度,也提高了梁的稳定性,改善了钢梁受压区的受力状态,增强抗疲劳性能。 (4)可以利用钢梁的刚度和承载力承担悬挂模板、混凝土板及施工荷载,无需设置支撑,加快施工速度。 (5)抗震性能好。 (6)在钢梁上便于地焊接托架或牛腿,供支撑室内管线用,不需埋设预埋件。 相比于混凝土结构,组合结构的缺点是需要采取防火及防腐措施。但组合结构的防火及维护费用比钢结构低,并且随着科学技术的发展,防腐涂料的质量和耐久性也在不断提高,为组合结构的应用提供了有利条件。 1.2 分类 组合梁自问世以来至今,各国学者们展开了广泛且具有深度的研究。目前,组合梁的种类已从单一的外包式钢-混凝土组合梁发展至T形组合梁、现浇混凝土翼板组合梁、预制混凝土翼板组合梁、叠合板翼板组合梁、压型钢板组合梁等形式。 钢-混凝土组合梁按照截面形式可以分为外包混凝土组合梁和钢梁外露的组合梁(如T形组合梁),如图2所示。外包混凝土组合梁又称为劲性混凝土梁或钢骨混凝土梁,主要依靠钢材与混凝土之间的粘结力协同工作;T形组合梁则依靠抗剪连接件将钢梁与混凝土翼板组合成一个整体来抵抗各种外界作用。大量的研究和实践经验表明,T形组合梁更能够充分发挥不同材料的优势,具有更高的综合性能,是组合梁应用和发展的主要形式。

钢混组合结构桥梁的发展和应用继续教育自测答案

第1题 组合钢板梁桥最常用的连接件形式为 A.角钢连接件 B.栓钉连接件 C.钢筋连接件 D.槽钢连接件 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第2题 以下哪点不是钢混组合桥梁的优点 A.自重轻 B.施工方便 C.抗震性能好 D.整体性能好 答案:D 您的答案:D 题目分数:5 此题得分:5.0 批注: 第3题 当钢混组合桥梁受环境限制需采用顶推方法施工时,其梁高最经济形式为 A.等高梁 B.抛物线变高梁 C.直线变高梁 D.圆曲线变高梁 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第4题 当桥梁平面曲线半径较小、抗扭刚度要求较高时,钢混组合桥梁宜采用截面形式为 A.钢板I字钢梁

B.开口槽形钢梁 C.闭口钢箱梁 D.钢桁梁 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第5题 波形钢腹板组合梁桥中腹板常用型号有哪几种 A.800型 B.1000型 C.1200型 D.1600型 E.2000型 答案:B,C,D 您的答案:B,C,D 题目分数:10 此题得分:10.0 批注: 第6题 钢混组合桥梁常见结构体系主要有哪几种 A.简支梁 B.连续梁 C.连续刚构 D.斜拉桥 E.悬索桥 答案:A,B,C 您的答案:A,B,C 题目分数:10 此题得分:10.0 批注: 第7题 钢混凝土组合桥梁有哪些优点 A.材料利用充分 B.承载力高、刚度大 C.抗震性能好 D.构件截面尺寸小

E.施工速度快 答案:A,B,C,D,E 您的答案:A,B,C,D,E 题目分数:5 此题得分:5.0 批注: 第8题 钢混组合桥梁断面形式主要有哪几种 A.I形 B.Ⅱ形 C.Π形 D.箱形 E.三角形 答案:A,B,C,D,E 您的答案:A,B,C,D,E 题目分数:5 此题得分:5.0 批注: 第9题 钢混组合桥梁中钢梁形式主要有哪几种 A.钢板梁 B.钢箱梁 C.开口箱梁 D.钢桁梁 E.钢管梁 答案:A,B,C,D 您的答案:A,B,C,D 题目分数:5 此题得分:5.0 批注: 第10题 钢混组合桥梁抗剪连接件主要形式有 A.钢筋连接件 B.开孔钢板连接件 C.栓钉连接件 D.角钢连接件 E.槽钢连接件 答案:A,B,C,D,E

钢与混凝土组合梁的应用实例

工 程 技 术 中国新技术新产品- 121 - 一、工程概况 某钢结构框架厂房,两层,柱距6m,底层跨度6m,四跨,层高4.2m,二层两跨12m,层高3.9m,二层楼面采用钢梁混凝土板,设计楼面活荷载2t/m 2,无动力荷载,屋面采用轻型彩钢板。抗震设防烈度6度,0.05g,地震分组第二组,场地类别二类,地基比较均匀,土质良好。 二、工程设计方案 根据工程基本情况,拟定设计方案采用底层钢框架,上层门式刚架,楼面沿纵向设置次梁兼做横向刚架侧向支撑,次梁间距3m。次梁采用混凝土-钢梁组合结构,主刚架梁采用非组合连续钢梁。刚架采用PKPM-STS钢结构整体计算。 三、楼板的设计计算 压型钢板-混凝土做组合楼板时,钢板能作为板底受力钢筋,比非组合楼板更省材料,但是,施工中需要采用比较可靠地连接构造传递压型板与混凝土结合面的纵向剪力,并需要在压型板上涂刷防火涂料及后期保护性维护。因此本工程采用非组合型楼板,压型板仅作为混凝土的永久支撑使用,楼板按照普通楼板设计。 四、组合梁的设计 1 组合梁的设计计算原则 组合梁均按照极限状态设计准则进行,塑性设计法比弹性设计法计算简便,且考虑钢梁的塑性承载力,与实际情况更吻合,安全的同时更加经济,本工程采用塑性设计方法计算组合梁的承载力。 2 简支组合梁的受弯承载力计算 计算组合梁的受弯承载力需首先确定梁属于完全抗剪连接或部分抗剪连接,然后采用相应的公式计算其受弯承载力。对于简支梁,仅存在正弯矩区,钢梁与混凝土面之间的纵向剪力Vs取Af和behc1fc中的较小值,若抗剪连接件能完全抵抗此纵向剪力,抗剪件不会进入全截面塑性状态,钢梁与混凝土理论上无相对滑移,即完全抗剪连接;若抗剪连接件不能完全抵抗纵向剪力,抗剪连接件全面进入塑性状态后,钢梁与混凝土之间将会产生相对滑动,即部分抗剪连接。 3 组合梁的抗剪承载力计算 组合梁的全部竖向剪力,由钢梁的 腹板承受,按下式计算:V≤hwtwfv,对于连接节点处,梁端剪力还应考虑强剪系数1.3。 4 本工程组合梁截面的选取和计算工程材料:混凝土C30,钢梁钢材Q 345B ,因采用压型钢板,抗剪连接件采用圆柱头栓钉,性能等级4.6级, f=215N/mm 2 ,r=1.67。 (1)梁上荷载计算 恒载:上部楼板自重,及楼板面层gk1=(25×0.2+1.1)×3.0=18.6kN/m gk2=1kN/m(钢梁自重)活荷载:使用荷载20kN/m 2qk=20×3=60kN/m (2)单个栓钉抗剪承载力 压型钢板组合梁,栓钉的抗剪承载力需要考虑折减系数βv,本工程压型钢板板肋垂直于钢梁布置, 其中,bw——混凝土凸肋的平均宽度,当肋的上部宽度小于下部宽度时,区上部宽度;he——混凝土凸肋的高度;hd ——栓钉的高度;n0——梁截面肋中栓钉数,多于3个时,按3个计算。 本工程中,将压型板较宽凸肋朝下,bw=120,单排按2个栓钉考虑,凸肋高度he=60,栓钉高度hd=130,30≤hd-he=70≤75,满足构造要求。 (3)钢梁截面的初步选择 钢梁的抗剪全部由腹板承担,故可以根据支座剪力及板的高厚比限制估算钢梁的高度 支座剪力V=[(18.6+1)×1.2+60× 1.4]×3=322.56kN 腹板主次梁连接处考虑切肢削弱每侧45mm,节点连接处考虑强剪系数1.3,腹板按弹性高厚比控制,则有: [V]=(66tw-90)×tw×180≥1.3× 322.56×1000 hw≥6.5,取板厚tw=8mm 反算梁高度h0 (H0-90)×8×180≥1.3×322.56×1000H0≥381mm,初步取H0=400mm进行试算 根据构造要求及试算,满足使用阶段的强度及刚度要求下,钢梁截面H=450,上翼缘宽度160mm,厚度12mm,下翼缘宽度200mm,厚度8mmAs=6960mm 2。 混凝土翼板的有效宽度be=b0+b1+b2 其中,b0=130(压型板上部宽度)b1=b2=min(L/6,6×hc1,S/2) =min(6000/6,6×160,3000/2) =1000 b e =b 0+b 1+b 2=130+1000+1000 =2130mm A×f=6960×310=2157.6kN·m b e ×h c 1×f c =2130×160×14.3 =4873.44kN·m 因此,组合梁的纵向剪力Vs=Af=2157.6kN·m 抗剪连接件的设置: 根据构造,最终设置单排2M16栓钉(As=201mm 2),单个栓钉抗剪承载力βv×Nvc=1.0×251.34×201=50.53kN,按完全抗剪连接,需栓钉排数n=2157.6/(50.53×2)=22排,排间距S=3000/22=136mm,因板肋的间距为200mm,不能保证栓钉均位于板肋上,故不能满足要求,因此改用部分抗剪连接设计,栓钉间距S=200mm,均设于板肋间,经过计算,钢梁强度及刚度满足要求,实际栓钉排数n=3000/200-1=14排,满足完全抗剪连接50%的最小要求,且钢梁翼缘,腹板厚度均满足相应的高厚比及其它构造要求。 (4)组合梁与非组合梁的经济型比较 如果采用非组合梁,按简支梁计算,需采用H600×200×10×10截面钢梁,As=9800mm 2,相对节省钢材率(9800-6960)/9800=28.9%。 参考文献 [1]张作运,陈远椿,周廷坦.钢与混凝土组合梁设计[M].北京:中国建筑工业出版社. 钢与混凝土组合梁的应用实例 李蔚然 (中色科技股份有限公司,河南 洛阳 471039) 摘 要:组合梁是由钢梁、钢筋混凝土板及两者之间的剪切连接件组成整体而共同工作的一种结构形式。混凝土处于受压区,钢梁主要处于受拉区,两种不同材料都能充分发挥各自的长处,受力合理,节约材料。本文通过一个工程实例,介绍一些该结构形式的技术特点及设计过程中的一些计算及构造细节。关键词:压型钢板组合梁;设计计算;设计方案中图分类号:TU375 文献标识码:A DOI:10.13612/https://www.wendangku.net/doc/d616939152.html,tp.2016.01.111

钢混凝土组合梁2015

钢-混凝土组合梁 2015 钢-混凝土组合梁(以下简称组合梁)是在钢结构和混凝土结构基础上发展起来的一种新型梁,通常其肋部采用钢梁,翼板采用混凝土板,两者间用抗剪连接件或开孔钢板连成整体。抗剪连接件是钢梁与混凝土板共同工作的基础,它沿钢梁与混凝土板的交界面设置。两种材料按组合梁的形式结合在一起,可以避免各自的缺点,充分发挥两种材料的优势,形成强度高、刚度大、延性好的结构形式。近几年,钢-混凝土组合梁在我国的应用实践表明,它不仅可以很好地满足结构的功能要求,而且还具有良好的技术经济效益。 钢-混凝土组合梁的特点 钢-混凝土组合梁可以广泛的用于建筑结构和桥梁结构等领域。对比钢梁和钢筋混凝土梁,钢-混凝土组合梁具有以下主要特点: (1)由于混凝土板与钢梁共同工作,可以充分发挥钢材与混凝土材料各自材料特性;另外,钢-混凝土组合梁与钢板梁相比节省钢材约20%-40%,可以降低造价。 (2)增大梁的截面刚度,降低梁的截面高度和建筑高度。 (3)组合梁的混凝土受压翼板增加了梁的侧向刚度,防止了主梁在使用荷载下的扭曲失稳。 (4)降低冲击系数,抗冲击、抗疲劳和抗震性能好。 (5)可以节省施工支模工序和模板,有利于现场施工。 钢-混凝土组合梁发展 钢-混凝土组合梁结构是在钢结构和钢筋混凝土结构基础上发展起来的一种新型结构,其与木结构、砌体结构、钢筋混凝土结构和钢结构并列,已经扩展成为第五大结构(组合结构),它是通过连接件把钢梁和混凝土板连接成整体而共同工作的受弯构件。在荷载作用下,混凝土板受压而钢梁受拉,充分发挥钢材与混凝土的材料特性,实践表明,它兼顾钢结构和混凝土结构的优点,具有显著的技术经济效益和社会效益,将成为结构体系的重要发展方向之一,作为组合结构体系中重要的横向承重构件的钢-混凝土组合梁在建筑及桥梁结构等领域必将具有广阔的应用前景。其发展过程大致经历以下四个阶段: 1、20世纪20年代--30年代。萌芽阶段。 钢一混凝土组合梁的研究始于1922年,MackayMH在加拿大Domion桥梁公司进行了两根外包混凝土钢梁试验,同时英国国家物理实验室也进行了外包混凝土钢梁的试验,随后在30年代中期出现了钢梁和混凝土翼板之间的多种抗剪连接构造方法,可以看到处于萌芽阶段的研究主要集中于考虑防火需要的外包混凝土钢梁及实用连接件的研究,而未考虑两者的组合工作效应,这一阶段探索性的研究为后续钢-混凝土组合梁的蓬勃发展奠定了一定的基础。 2、20世纪40年代~60年代。发展阶段 这一阶段是组合梁发展的第二阶段,在这一阶段,许多技术先进的国家对组合梁开展了比较深入的试验研究,对组合梁的分析基本上按照弹性理论进行分析,并制定了相关的设计规范和规程,使得组合梁的应用在科学指导下逐渐普及。 3、20世纪60年代~80年代,全面研究,实用阶段 由于钢-混凝土组合梁具有广泛的应用前景,组合梁的研究工作进一步得到深化,在总结以往研究和应用成果的基础上,进一步改进和完善了组合梁的有关设计规范或规程,组合结构的应用和发展逐步成熟,几乎日趋赶上钢结构的发展,并广泛重视,研究工作重点也由

钢桥、组合梁桥-midas操作例题资料-钢混组合梁

Civil&Civil Designer 二、钢混组合梁操作例题资料 1工程概况 本桥为某高速路联络线匝道桥中的一联,桥宽6m。上部结构采用 38+33.5+37.5m钢混组合连续梁,下部结构桥墩为柱式。主梁为单箱单室,梁高3.5m,预制高3.1m,钢箱底板厚50mm,上翼缘板厚50mm,腹板厚20mm,布置加劲肋。钢材均采用Q345,分4段预制后现场采用高强螺栓拼接。钢箱顶部混凝土桥面板厚0.2m,承托高0.2m,抗剪界面为c-c,采用C50混凝土现浇;横隔板等设置距离详见图2所示。 图1.1-1 钢箱梁构造图(一)

钢混组合梁操作例题资料 图1.1-2 钢箱梁构造图(二)

2 建模步骤 2.1定义材料 特性>材料特性值>材料 图2.1-1 材料定义

图2.1-2 材料数据 《公路钢混组合桥梁设计与施工规范》(JTG/T D64-01-2015)桥梁设计,需要定义组合材料,选择规范“JTG D64-2015(S)”。 2.2定义截面 特性>截面特性值>组合梁截面 组合梁截面支持“钢-箱型(Type1)”、“钢-I 型(Type1)、“钢-槽型(Type1)” 、“钢-箱型(Type2)、“钢-I 型(Type2)、“钢-槽型(Type2),共六种。截面中可任意设置纵向加劲肋,支持“平板”、“T 形”、“U 肋”三种类型,截面特性值考虑了纵向加劲肋的影响。

图2.2-1 截面数据 按照界面内辅助示意图,输入混凝土板和钢箱梁各段距离,顶底板、腹板厚度等。输入Es/Ec(钢与混凝土弹性模量之比)、Ds/Dc(钢与混凝土容重之比)、Ps(钢梁泊松比)、Pc(混凝土板泊松比)、Ts/Tc(钢与混凝土线膨胀系数之比)。点击“截面加劲肋”,进行加劲肋设置。 点击“定义加劲肋”,定义加劲肋尺寸,设置加劲肋布置位置及间距。

钢-混凝土组合桥梁设计规范

4.4耐久性规定 4.4.1 基本规定 4.4.1.1 组合桥梁结构的设计基准期,安全等级和结构重要性系数应分别按现行标准 《公路桥涵设计通用规范》(JTG-D60)第1.0.6条、1.0.9条、4.1.9条和《地 铁设计规范》(GB50157)第1.0.7条的规定采用。 4.4.1.2 组合桥梁的钢筋混凝土桥面板、人行道、栏杆等的耐久性规定,应满足现 行标准《公路预应力混凝土和钢筋混凝土桥涵设计规范》(JTG D62)和《公 路工程混凝土结构防腐技术规范》(JTG B07-01)的有关规定要求。 4.4.1.3组合桥梁要进行完整的桥面排水设计,其雨水迳流频率:特大桥、重要桥 梁不小于五年一遇;一般大桥和重要小桥不小于两年一遇。 桥面纵横坡设置,除满足道路行车条件外,尚应满足桥面排水的需要。纵坡 不宜小于0.3%。横坡:公路桥梁应不小于2%;城市桥梁应不小于1.5%。 4.4.1.4组合桥梁均应设置桥面防水层。 4.4.2 组合桥梁防腐蚀涂装设计 4.4.2.1 组合桥梁钢结构的防腐蚀涂装,应结合桥梁所处环境,期望涂层使用的年限, 涂层的维修性能等进行。 1 组合桥梁钢结构的腐蚀主要是大气介质腐蚀。大气环境分类、气体介质分类以 及腐蚀程度分类、分别按表4.4.2-1、表4.4.2-2、表4.4.2-3采用。 表4.4.2-1 大气环境分类表 腐蚀 腐蚀速度 腐蚀环境 等级 名称 (㎜/a) 环境气体类型 相对湿度(年平均)(%)大气环境 Ⅰ 无腐蚀 <0.001 A <60 乡村大气 A 60-75 乡村大气 Ⅱ 弱腐蚀 0.001-0.025 B <60 城市大气 A >70 乡村大气 B 60-75 Ⅲ 轻腐蚀 0.025-0.050 C <60 城市大气和工业 大气 B >70 C 60-75 Ⅳ 中腐蚀 0.050-0.20 D <60 城市大气 工业大气和海洋 大气 C >70 Ⅴ 较强腐蚀 0.02-1.00 D 60-75 工业大气 Ⅵ 强腐蚀 1~5 D >75 工业大气

相关文档