文档库 最新最全的文档下载
当前位置:文档库 › 露点计算及结露

露点计算及结露

露点计算及结露
露点计算及结露

结露就是指物体表面温度低于附近空气露点温度时表面出现冷凝水的现象。

知道相对湿度以及实际气温时,露点可以透过以下公式求得近似值:

当中的则是:

温度和露点单位为摄氏、相对湿度为百分比,则代表自然对数。

常数和分别是:

此公式是基于Magnus-Tetens 近似法(Magnus-Tetens Approximation),

当中把饱和水汽压视为温度的函数。[2]此方法仅在以下范围时有效:0℃< < 60℃

1% < < 100%

0℃< < 50℃

或者

以文字表示,即露点与干球温度每相差1℃,相对湿

度即下降5%。在这里干球温度和露点单位为

摄氏、相对湿度为百分比。

有关此计算法的讨论,可参阅美国气象学会的期刊。

[3]

烟气露点计算

烟气露点计算方法 1、已知烟气中SO3气体浓度 在烟气的酸露点间接计算中,都是先测量出烟气中SO3或者H2SO4的体积含量,然后再有Muller曲线查出酸露点如图1所示,该曲线是Muller 在1959年使用热力学关系式计算了还有很低浓度H2SO4蒸汽的烟气的酸露点而得到,并为许多研究者所证实。Muller曲线是现在评测各种酸露点方法的基础。 手工查曲线得出的酸露点温度误差较大,且不便于计算机计算和优化,我们可以将图1扫描到计算机,并用Adobe photoshop 5.0 CS软件读取曲线上一些数据点,列为表1,如下 再采用Origin 6.0 软件整合表1中数据,回归出公式(1):

t sld=116.55+16.06lgV SO 3+1.05(lgV SO 3 )2(1) 式中: V SO 3 ――为烟气中SO3体积百万分率; t sld――为烟气酸露点温度,℃; 与表1中的数据相比,公式1计算出的平均相对误差最小为0.17%,最大误差率为0.42%。 2、已知烟气SO3和水蒸气浓度 A.G.Okkes方程 荷兰学者A.G.Okkes根据Muller的实验数据,提出以下公式(2),公式中分压单位均为标准大气压 t sld=10.88+27.6lgP H 2O +10.83lgP SO 3 +1.06(lgP SO 3 +2.99)2.19 式中: P H 2O ――为烟气中水蒸气分压,Pa; P SO 3 ――为烟气中SO3分压,Pa; 该公式与公式(1)计算出的温度相差不到1.5℃,因此公式(2)在已知SO3和水蒸气浓度的情况下可以直接计算。 3、工程实际计算 福建可门电厂设计煤种参数 3.1 1kg燃料完全燃烧后烟气酸露点计算

关于露点温度的计算方法

关于露点温度的计算方法 2010-10-25 16:37:42| 分类:工作| 标签:|字号大中小订阅 因为看到很多朋友发帖子,询问露点温度的计算方法,没有发现太确切的跟帖,现举例说明如下: 例如:23℃,RH45%的湿度,对应的露点温度算法: 先在温度对应的饱和水汽压上查找23℃,对应的饱和水汽压——21.07毫米汞柱,再用21.07×45%(需要的湿度)=9.4815,在下表中查询此值9.4815对应的饱和水汽压,没有完全吻合的值,就在其上下临界点按比例取一个温度值即为露点温度,因此,23℃,45%的湿度,对应的露点温度为10.5℃。 知道为什么这么计算吗?道理很简单,就是假设我们需要设定23℃时的饱和蒸汽压,那么对应的气压值是21.07毫米汞柱,可是我们需要的不是饱和的,是RH45%,那么21.07的45%,是我们实际需要的水气压值即9.4815,我们假设这个水汽压值是另外一个温度对应的饱和水汽压,这个饱和水汽压恰恰是由湿度供给系统来确保提供的,那么这个水汽压对应的温度即是10.5℃即是我们要得到的水蒸汽(湿度)供给系统所需要设定的露点温度(汽压达到饱和时的温度)。通俗一点讲就是10.5℃的饱和蒸汽压放到23℃的环境里就只有45%的相对湿度啦! 这里大家一定要知道什么是“露点温度”,露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。 不同温度时饱和水汽压(P)(单位:毫米高水银柱)

烟气露点计算及烟囱冷凝水量计算方法及结果

7 烟气露点计算及烟囱冷凝水量计算方法及结果 7.1 烟气中水蒸汽露点温度的计算 当已知烟气中的含湿量dg(g/kg 干烟气)时,可按下式计算烟气中的水蒸汽露点温度(水露点)t DP : 1) 当dg=3.8g/kg ~160g/kg 时: t DP.O = ]} )/804(lg[ 21433.0{491.7]} )/804(lg[ 21433.0{908.236dg P d dg P d g d g g g d g g +?+-+?+??ρρ , ℃; (7.1-1) 2) 当dg=61g/kg ~825g/kg 时 t ’DP ·O =]} )/804(lg[20974.0{4962.7]} )/804(lg[ 20974.0{1.238dg P d dg P d g d g g g d g g +?+-+?+??ρρ , ℃; (7.1-2) 式中: Pg ——烟气的绝对压力, kPa ; dg ——烟气含湿量 g/kg 干烟气; ρg ——干烟气密度 kg/Nm 3。 7.2 烟气酸露点温度的计算 a. 按燃煤成分为基准的计算方法 燃煤锅炉的烟气酸露点按下述公式计算: t Dp =t Dp.o +n sp S 05 .1.) (3 1β℃ (7.2-1) 式中: t Dp.o ——烟气中纯水露点温度,按7.1确定。 S SP 。——燃料折算硫分,%·g/kcal ,按可燃硫S c.ar 计算: S sP =S c.ar × ar net Q .4182 (7.2-1a) n ——指数,表征飞灰含量对酸露点影响的程度; n=αfly ·A sP 。 α fly ——飞灰份额,对煤粉炉αfly =0.8~0.9;

关于露点温度的计算方法(DOC)

关于露点温度的计算方法 例如:23℃,RH45%的湿度,对应的露点温度算法: 先在温度对应的饱和水汽压上查找23℃,对应的饱和水汽压——21.07毫米汞柱,再用21.07×45%(需要的湿度)=9.4815,在下表中查询此值9.4815对应的饱和水汽压,没有完全吻合的值,就在其上下临界点按比例取一个温度值即为露点温度,因此,23℃,45%的湿度,对应的露点温度为10.5℃。 知道为什么这么计算吗?道理很简单,就是假设我们需要设定23℃时的饱和蒸汽压,那么对应的气压值是21.07毫米汞柱,可是我们需要的不是饱和的,是RH45%,那么21.07的45%,是我们实际需要的水气压值即9.4815,我们假设这个水汽压值是另外一个温度对应的饱和水汽压,这个饱和水汽压恰恰是由湿度供给系统来确保提供的,那么这个水汽压对应的温度即是10.5℃即是我们要得到的水蒸汽(湿度)供给系统所需要设定的露点温度(汽压达到饱和时的温度)。通俗一点讲就是10.5℃的饱和蒸汽压放到23℃的环境里就只有45%的相对湿度啦! 这里大家一定要知道什么是“露点温度”,露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于

露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。 不同温度时饱和水汽压(P)(单位:毫米高水银柱) 室内空气露点查询表

烟气酸露点温度的计算

酸露点温度的计算 〔南京凯华电力环保有限公司 崔云寿〕 1、 t dew =186+20logV H2O +26logV so2 t dew ——烟气的酸露点温度 V H20——烟气水蒸汽气体的百分比(%) V so2——烟气SO 2气体的百分比(%) 2、前苏联“锅炉机组热力计算标准法”(1973版) t p =KOH n sh t e S A zs +?05.11253 t p ——酸露点℃ s n ——燃料的折算硫分(%) αrh ——飞灰占总灰分的份额(%)查灰份分析 A n ——燃料分析的灰份(%) S n =1000 )(p h p Q s S p ——燃料的工作质硫份(%) O h p ——燃料的低位发热量(Kcal/kg) 公式中125是指与炉膛出口过量出气体为αT 有关的系数,原规定如下:当αT =1.4~1.5时为129 当αT =1.2时为121 注:50年代原全苏热工研究所(BTN)在试验数据基础上整理而成,适用于固、液、气燃料。我国目前包括各大锅炉

厂主要应用的计算公式。 3、日本“电力工业中心研究所 t p=20LgV so3+α 式中t p露点温度℃ V so3烟气中SO3体积份数% α——水分常数, 当水分为5%,α=184 当水分为10%,α=194 当水分为15%,α=201 4、美国CE公司露点计算公式是基于两种条件 a、燃料中的硫分燃烧后都生成SO2。 b、烟气中的SO2的2%含量(体积分数)转变为SO3 计算顺序是根据给定的燃料组成和空气过剩系数计算出烟气组成,然后根据烟气的总物质量求出SO2的体积系数,按照2%的转换率计算出SO3体积分数,按计算出的烟气中SO3和水蒸汽含量(体积分数)查曲线可得出露点温度。 这种方法应该也不错,但是比较麻烦,我国锅炉方面技术人员一般不采用这种方法计算。

闪蒸过程的计算归纳.doc

第三节 闪蒸过程的计算 2.3 等温闪蒸和部分冷凝过程 流程示意图: 闪蒸过程的计算方程(MESH ) ⑴物料衡算----M 方程: C 个 ⑵相平衡--------E 方程: C 个 ⑶摩尔分率加和式---S 方程: 2个 ⑷热量平衡式-------H 方程: 1个 变量数:3C+8个 (F, F T ,F P ,T,P,V ,L,Q,i i i x y z ,,) 方程总数:2C+3个 需规定变量数:C+5个 其中进料变量数:C+3个(F, F T ,F P ,i z ) 根据其余2个变量的规定方法可将闪蒸计算分为如下五类: 1 1 =∑=C i i x 1 1 =∑=C i i y ,...C ,i Vy Lx Fz i i i 21 =+=C i x K y i i i ,...2,1 ==L V F LH VH Q FH +=+

表2-4闪蒸计算类型 2.3.1 等温闪蒸 规定:p 、T 计算:Q, V , L,i i x y , 一、汽液平衡常数与组成无关 ()P T f K i ,= 已知闪蒸温度和压力,i K 值容易确定,所以联立求解上述(2C+3)个方程比较简单。 具体步骤如下: 1. 输出变量求解 将E---方程: 代入M —方程: 消去i y ,得到: 将L=F-V 代入上式: 汽化率 代入(2-66)式,得到: C i VK V F Fz x i i i ,...2,1 =+-= (2-66) )1(1-+= i i i K z x ψ (2-67) C i x K y i i i ,...2,1 ==,...C ,i Vy Lx Fz i i i 21 =+=C i x VK Lx Fz i i i i ,...2,1 =+=F V /=ψ

用aspen_plus作各种类型的闪蒸计算

闪蒸是化工行业比较常见的单元操作,闪蒸类型很多,最常见的是绝热闪蒸和等温闪蒸,也可以指定温度或压力算,只需指定duty的数值,或指定气体分数为0-1之间某个数值的计算。闪蒸操作的自由度为C(组分数)+4,可以从闪蒸罐温度,压力,气体分数,热负荷这四项中选任意两个。 4U* F.c*I8\"t7t)l;[2V [本帖最后由lsrwan于2009-4-1421:39编辑] c1.JPG(6.4KB,下载次数:70) 建立流程,然后点data->setup c2.JPG(12.34KB,下载次数:33) 老规矩,输入帐号 c2.5.JPG(15.66KB,下载次数:31) 选取组分

c3.JPG(29.89KB,下载次数:33) 选取热力学方法 c4.JPG(26.64KB,下载次数:28)这是NRTL的参数,不必理会直接next

c5.JPG(26.45KB,下载次数:33) 输入流体的参数,此时该流体处于气液平衡状态 c6.JPG(13.07KB,下载次数:32)

等温闪蒸,罐的压力温度与流体相同,这是理想状体,实际很难完全实现 c7.JPG(39.31KB,下载次数:35) 等温闪蒸结果,可以看出进行了分离 绝热闪蒸设置,duty为0 c9.JPG(38.14KB,下载次数:35)

绝热闪蒸结果,可以看出流体1的焓为流体23之和 c10.JPG(13.75KB,下载次数:32) 这是泡点压力计算的设置 c11.JPG(33.65KB,下载次数:29) 通过计算可以知道与用aspen properties结果是一样一样的

关于烟气露点的计算

关于烟气露点的计算 烟气中SO2含量为1800~4500mg/Nm3,HCl=200~300mg/Nm3, HF=20~30mg/Nm3。粉尘=5~350 mg/Nm3,脱硫后SO2<400 mg/Nm3。露点为50oC。在锅炉的设计和运行中,烟气露点是一个能清楚表达腐蚀能否发生的 指标,在一定程度上也能表征腐蚀的程度。对于燃用高硫煤的锅炉,烟气露点成为重要的影响技术经济指标的因素之一,还是影响除尘器工作效率的因素之一。循环流化床烟气脱硫的关键技术之一是严格控制流化床入口的烟气温度,该温度越接近露点,脱硫效率越好,但是,此温度又必须维持在露点以上,否则会引起结露,导致设备堵塞和腐蚀,无法正常工作。目前使用最为普遍的计算烟气露点的经验公式为: t sld=[ B (S ar ZS) 1/3/4396a fh A ar AS]+ t ld [oC] (1)式中,t sld--烟气的酸露点,oC;t ld--烟气的水蒸汽露点,oC;B--与过量空气系数有关的常数,当a t=1.4~15时,B=208;a t=1.2时,B=195;S ar ZS, A ar AS--收到基折算(每1000kJ的折算值)硫分及灰分,%;a fh--飞灰占总灰分的数额。 SO3对露点的影响很大,只要有极少量的硫酸蒸汽存在,露点就会提高到373K以上。而SO2对露点的影响则小得多,在相当大的浓度范围内,露点的波动不超过1K。在接近露点温度时,SO3在烟气中几乎完全溶解于水蒸汽,硫酸蒸汽的分压P H2SO4就等于SO3的分压P SO3;而SO2的分压P SO2虽远大于P H2SO4,但SO2在烟气中极少溶解于水蒸汽而成为亚硫酸蒸汽,即亚硫酸蒸汽的分压 P H2SO3接近于0,因而不能提高烟气的露点温度。从SO2在空气中和水的离解平衡常数K298和K T来分析。其平衡式在K298下时为:SO2+ H2O H2SO3(2)平衡常数为K298=1.3×10-2 [mol] ?H298=16.3[kJ/mol]

闪蒸原理

闪蒸原理 闪蒸和蒸馏不同,在闪蒸过程中没有热量加入。其原理很简单,物质的沸点是随压力增大而升高,那么是不是压力越低,沸点就越低呢。那好,这样就可以让高压高温流体经过减压,使其沸点降低,进入闪蒸罐。这时,流体温度高于该压力下的沸点。流体在闪蒸罐中迅速沸腾汽化,并进行两相分离。使流体达到气化的设备不是闪蒸罐,而是减压阀。闪蒸罐的作用是提供流体迅速气化和汽液分离的空间。可以看出闪蒸也是有代价的,就是牺牲压力能量。一句话,闪蒸就是通过减压,是流体沸腾,而产生汽液两项。建立一个新的压力等级下的汽液平衡。多用于纯物质。 闪蒸, "FLASHING", 确实是从减压导致的汽液分离现象引申出的形象词汇, 不过其严格定义适用的范围远不止此. 比较严格的定义是从一个热力学平衡态到下一个热力学平衡态变化的计算. 因此, 如果两个热力学状态的变化只有压力的降低, 并无内外功的交换和热的交换, 那的确与8楼描述的现象类似, 也是最容易想象的过程, 也是该词汇导出的源头. 实际上, 塔的蒸馏计算中, 每一块理论板都要进行这样的闪蒸计算, 不过此时一般的名称叫"平衡级"计算, 理论上更严格一些, 而其计算的内容是完全一样的. 每一个严格的或"闪蒸"计算或"平衡级"计算, 都必须满足以下三大平衡:质量平衡, 能量平衡和相平衡. 因此, 一个标准的"闪蒸"计算模块,既可处理压力的变化(升高或降低), 也可处理热的交换和功的交换. 内外功的交换和热量交换主要反映在能量平衡中, 质量平衡和相平衡则主要确定汽化分率和汽液相组成. 此外, "闪蒸"计算还有一个非常重要和有难度的任务, 是判断您指定的状态是否处于汽液两相, 还是仅汽相或仅液相. 而且, 液液平衡的计算一般也需要"闪蒸"计算承担, 当然有些软件单拿出来,因为计算难度更高. 以上对"闪蒸"的描述仅一家之言, 不是非常严谨, 但相对更准确一些. 总之, 不管您用PROII, ASPEN或HYSIS, 闪蒸"计算着实为其最基础的核心. 根据亨利定律P=EX,不同温度与分压下气相溶质在液相溶剂中溶解度不同。当溶剂压力降低时,溶剂中的溶质就会迅速地解吸而自动放出,形成闪蒸。闪蒸的能量由溶剂本身提供,故闪蒸过程中溶剂温度有所下降。从较高的一定压力到较低的一定压力,达到解吸平衡时解吸的溶质量是一定的,对应溶剂中剩余的溶质量也是一定的。所以闪蒸的控制目标只有一个,那就是闪蒸的压力 闪蒸蒸汽是怎样形成的? 当水在大气压力下被加热时,100℃是该压力下液体水所能允许的最高温度。再加热也不能提高水的温度,而只能将水转化成蒸汽。水在升温至沸点前的过程中吸收的热叫“显热”,或者叫饱和水显热。在同样大气压力下将饱和水转化成蒸汽所需要的热叫“潜热”。然而,如果在一定压力下加热水,那么水的沸点就要比100℃高,所以就要求有更多的显热。压力越高,水的沸点就高,热含量亦越高。压力降低,部分显热释放出来,这部分超量热就会以潜热的形式被吸收,引起部分水被“闪蒸”成蒸汽。

相对湿度 、露点温度转换的计算公式

相对湿度、露点温度转换的计算公式 湿度研究对象是气体和水汽的混合物。 无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 1、压力为P,温度为T 的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T 和压力P 下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 2、实际水汽压与同一温度条件下的饱和水汽压的比值 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。 但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的(在湿度论坛中,本人给出了温度to 饱和水汽压的简化公式以及计算程序,可下载)。 上面说道:饱和水汽压是与温度相关的量。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to 饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to 饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压 实际水汽压除以饱和水汽压,就可以得到相对湿度。

烟气露点计算及烟囱冷凝水量计算方法及结果

7 烟气露点计算及烟囱冷凝水量计算方法及结果 7.1 烟气中水蒸汽露点温度的计算 当已知烟气中的含湿量dg(g/kg 干烟气)时,可按下式计算烟气中的水蒸汽露点温度(水露点)t DP : 1) 当dg=3.8g/kg ~160g/kg 时: t DP.O =]} )/804(lg[21433.0{491.7]} )/804(lg[21433.0{908.236dg P d dg P d g d g g g d g g +?+-+?+??ρρ , ℃; (7.1-1) 2) 当dg=61g/kg ~825g/kg 时 t ’DP ·O =]} )/804(lg[20974.0{4962.7]} )/804(lg[20974.0{1.238dg P d dg P d g d g g g d g g +?+-+?+??ρρ , ℃; (7.1-2) 式中: Pg ——烟气的绝对压力, kPa ; dg ——烟气含湿量 g/kg 干烟气; ρg ——干烟气密度 kg/Nm 3。 7.2 烟气酸露点温度的计算 a. 按燃煤成分为基准的计算方法 燃煤锅炉的烟气酸露点按下述公式计算: t Dp =t Dp.o +n sp S 05.1.)(3 1 β ℃ (7.2-1) 式中: t Dp.o ——烟气中纯水露点温度,按7.1确定。 S SP 。——燃料折算硫分,%·g/kcal ,按可燃硫S c.ar 计算: S sP =S c.ar ×ar net Q .4182 (7.2-1a) n ——指数,表征飞灰含量对酸露点影响的程度; n=αfly ·A sP 。 αfly ——飞灰份额,对煤粉炉αfly =0.8~0.9;

烟气露点经验计算公式

(35 KB) 一、低温腐蚀的原因: 烟气进入低温受热面后,随着受热面的不断吸热,烟温逐渐降低,其中的水蒸汽可能由于烟温降低或在接触温度较低的受热面时发生凝结。烟气中水蒸汽开始凝结的温度称为水露点,纯净水蒸汽露点决定于它在烟气中的分压力。常压下燃用固体燃料的烟气中,水蒸汽的分压力PH2O=~,水蒸汽的露点低达45~54℃,—般情况下不易在受热面上发生结露,而当锅炉燃用含硫燃料时,硫燃烧后全部或大部分生成二氧化硫,其中一部分二氧化硫(占总含量的1%左右)又在—定条件下进—步氧化生成三氧化硫(S03),S03 与烟气中的水蒸汽化合后生成硫酸蒸汽,硫酸蒸汽的凝结温度称为酸露点,酸露点比水露点要高得多,而且烟气中S03 含量愈高,酸露点愈高,酸露点可达110~160℃,当受热面的壁温低于酸露点时,这些酸就会凝结下来,对受热面金属产生严重的腐蚀作用,这种腐蚀称为低温腐蚀。烟气露点的高低,表明了受热面低温腐蚀的范围大小及腐蚀程度高低,露点愈高,更多受热面要遭受腐蚀,而且腐蚀愈严重。因此,烟气中酸露点是—个表征低温腐蚀是否会发生的指示。烟气的酸露点与燃料含硫量和单位时间送入炉内的总硫量有关,而后者是随燃料发热量降低而增大的。两者对露点的影响,综合起来可用折算硫分(SY ZS)。而且,SY ZS 越高,燃烧生成S02 就越多,S03 也将增多,致使烟气露点升高。当燃用固体燃料时,烟气中带有大量的飞灰粒子。灰粒子含有钙和其它碱金属化合物,它们可以部分地吸收烟气中的硫酸蒸汽从而可以降低它在烟气中的浓度,使得烟气中酸蒸汽分压力降低,酸露点也降低。烟气中飞灰粒子数量

愈多,影响愈显著。燃料中灰分对酸露点的影响可用折算灰分Ay ZS 与飞灰系数aFH 来表达。综合上述影响因素,可用下列经验式估算烟气的酸露点:低温腐蚀还与烟气中S03 的生成份额有关。二氧化硫进一步氧化生成S03 是在一定条件下发生的。一般有下列三种方式:(1)燃烧生成三氧化硫。在炉膛高温作用下,部分氧分子会离解成原子状态,它能将 SO2 氧化成S03。火焰中心温度越高,越容易生成原子氧,较多的过量空气也会增大原子氧的浓度,原子氧越多,生成S03 就会越多。(2)起催化作用生成三氧化硫。烟气流过对流受热面时,S02 会遇到一些催化剂,如钢管表而的氧化铁膜Fe203,飞灰沉积在高温过热器受热面上成为催化剂(灰中含有微量的钒燃烧后生成V205)等,受到催化作用的S02 与烟气中剩余氧结合而生成S03‘。 93)盐分解出S03。燃煤中硫酸盐在燃烧时会分解出一部分S03,但它在S03 总量中所占的比例甚小

烟气露点温度确定

1 总则 1.0.1 本规定适用于在设计中确定管式炉烟道气的露点温度。 1.0.2 运转管式炉烟道气的露点温度应使用露点仪进行测定。 1.0.3 本规定代替《烟气露点温度确定》(BA9-5-3-82)。 2 影响露点温度的因素 2.0.1 影响烟道气露点温度的因素 a) 燃料中含H2量高或(和)用蒸汽作雾化剂,则烟气中的水蒸汽含量多;露点温度升高; b) 燃料中含硫或硫化氢多,则烟气中的SO2量增加。若过剩氧多,则SO2转化成SO2的量增多,露点温度升高; c) 在烟气中的水蒸汽含量一定时,燃料中含S 量愈多,露点温度愈高,则在受热面上冷凝液体中硫酸浓度愈大; 由于烟道气露点温度的影响因素较多,所以无法用理论方法精确计算,一般都是采用经验方法确定。 3 露点温度确定方法 3.0.1 工业炉烟道气露点温度的确定方法较多,本规定认为宜采用图 3.0.1线算法确定。 a) 图3.0.1线算法用法: 1) 根据燃料油含硫量和过剩空气系数 得A点; 2) AB为水平线; 3) 根据烟道气中水蒸汽的含量得C点; 4) 连接BC两点得D点,即为烟道气的露点温度。

燃料油含硫量(重),% 燃料气见b)款 图3.0.1 烟道气露点温度线算法 b) 烧气体燃料时,根据烧燃料油和烧燃料气两种条件下烟气中SO2体积百分比相同的前提,可用下式将燃料气中的H2S换算成S含量(%)。 S H S V V 油气 =094 2 . (3.0.1) 式中H2S?燃料气中H2S含量(重)百分比中的分子数; V油、V气?分别为1Kg油和1Kg气燃烧后的烟气体积,标m3; V油?一般可按16标m3/Kg油进行计算。详细计算可按表3.0.1-1或表3.0.1-2。例:燃料气中H2S重量百分比=3%;V油=1.6;V气=14; 则S=0.94?3?16/14=3.2 即按含硫量3.2( %)求露点温度。 表3.0.1-1 一公斤燃料油燃烧后烟气中各组分的重量和体积 2

烟气露点经验计算公式

烟气露点经验计算公式.doc (35 KB) 一、低温腐蚀的原因: 烟气进入低温受热面后,随着受热面的不断吸热,烟温逐渐降低,其中的水蒸汽可能由于烟温降低或在接触温度较低的受热面时发生凝结。烟气中水蒸汽开始凝结的温度称为水露点,纯净水蒸汽露点决定于它在烟气中的分压力。常压下燃用固体燃料的烟气中,水蒸汽的分压力PH2O=0.01~0.015MPa,水蒸汽的露点低达45~54℃,—般情况下不易在受热面上发生结露,而当锅炉燃用含硫燃料时,硫燃烧后全部或大部分生成二氧化硫,其中一部分二氧化硫(占总含量的1%左右)又在—定条件下进—步氧化生成三氧化硫(S03),S03 与烟气中的水蒸汽化合后生成硫酸蒸汽,硫酸蒸汽的凝结温度称为酸露点,酸露点比水露点要高得多,而且烟气中S03 含量愈高,酸露点愈高,酸露点可达110~160℃,当受热面的壁温低于酸露点时,这些酸就会凝结下来,对受热面金属产生严重的腐蚀作用,这种腐蚀称为低温腐蚀。烟气露点的高低,表明了受热面低温腐蚀的范围大小及腐蚀程度高低,露点愈高,更多受热面要遭受腐蚀,而且腐蚀愈严重。因此,烟气中酸露点是—个表征低温腐蚀是否会发生的指示。烟气的酸露点与燃料含硫量和单位时间送入炉内的总硫量有关,而后者是随燃料发热量降低而增大的。两者对露点的影响,综合起来可用折算硫分(SY ZS)。而且,SY ZS 越高,燃烧生成S02 就越多,S03 也将增多,致使烟气露点升高。当燃用固体燃料时,烟气中带有大量的飞灰粒子。灰粒子含有钙和其它碱金属化合物,它们可以部分地吸收烟气中的硫酸蒸汽从而可以降低它在烟气中的浓度,使得烟气中酸蒸汽分压力降低,酸露点也降低。烟气中飞灰粒子数量愈多,影响愈显著。燃料中灰分对酸露点的影响可用折算灰分Ay ZS 与飞灰系数aFH 来表达。综合上述影响因素,可用下列经验式估算烟气的酸露点:低温腐蚀还与烟气中S03 的生成份额有关。二氧化硫进一步氧化生成S03 是在一定条件下发生的。一般有下列三种方式:(1)燃烧生成三氧化硫。在炉膛高温作用下,部分氧分子会离解成原子状态,它能将 SO2 氧化成S03。火焰中心温度越高,越容易生成原子氧,较多的过量空气也会增大原子氧的浓度,原子氧越多,生成S03 就会越多。(2)起催化作用生成三氧化硫。烟气流过对流受热面时,S02 会遇到一些催化剂,如钢管表而的氧化铁膜Fe203,飞灰沉积在高温过热器受热面上成为催化剂(灰中含有微量的钒燃烧后生成V205)等,受到催化作用的S02 与烟气中剩余氧结合而生成S03‘。 93)盐分解出S03。燃煤中硫酸盐在燃烧时会分解出一部分S03,但它在S03 总量中所占的比例甚小

酸露点的计算

前苏联热力计算标准方法中推荐的烟气露点温度计算公式: 1,1.05fh s ar zs t t A =+ 式中:当炉膛出口过量空气系数''1 1.2~1.25α=时,121β=; ''1 1.4~1.5α=时,129β=;,ar zs A 为收到基的折算含灰量(%); ,ar zs S 为收到基的折算含硫量(%);,ar zs A 、,ar zs S 为收到基折算硫分和折算灰分,就是对应于4 190 kJ/ kg(1 000 kcal/ kg) 发热量的成分。 ,ar zs A 的计算公式: ,,10000()ar ar zs net ar A A Q = 其中ar A 为收到基的含灰量;,net ar Q 为收到基的低位发热量; ,ar zs S 的计算公式: ,,10000()ar ar zs net ar S S Q = 其中ar S 为收到基的含硫量,,net ar Q 为收到基的低位发热量; fh α为飞灰份额,对煤粉炉,0.75~0.8fh α=;另外s t 为水露点温度。

s t 的确定根据测得的烟气中水蒸气的含量查表得s t 的数值。 在烟气为一个大气压时,烟气水露点温度和水蒸气的含量关系: 计算时假设燃料中硫分燃烧后都生成SO2 ;烟气中SO2 的2 %含量转变为SO3 ;取受热面出口烟气压力为0. 098 MPa 。计算煤种的元素分析如表: 计算煤种的元素分析 计算: β取121 fh α取0.75 ,0.8810000()0.37623380 ar zs S =?= ,18.7810000()8.0323380 ar zs A =?= 10.75,12110.4291.058.031.05fh s s s ar zs t t t t A ?=+=+=+?

关于露点温度的计算方法

关于露点温度的计算方法 例如:23 C, RH45%的湿度,对应的露点温度算法: 先在温度对应的饱和水汽压上查找23 C,对应的饱和水汽 压——21.07毫米汞柱,再用21.07 M5% (需要的湿度)=9.4815, 在下表中查询此值9.4815 对应的饱和水汽压,没有完全吻合的值, 就在其上下临界点按比例取一个温度值即为露点温度,因此, 23C, 45%的湿度,对应的露点温度为10.5C。 知道为什么这么计算吗?道理很简单,就是假设我们需要设定23C 时的饱和蒸汽压,那么对应的气压值是21.07 毫米汞柱,可是我们需 要的不是饱和的,是RH45%,那么21.07的45%,是我们实际需要 的水气压值即9.4815,我们假设这个水汽压值是另外一个温度对应 的饱和水汽压,这个饱和水汽压恰恰是由湿度供给系统来确保提供 的,那么这个水汽压对应的温度即是10.5 C即是我们要得到的水蒸汽(湿度)供给系统所需要设定的露点温度(汽压达到饱和时的温度)。通俗一点讲就是10.5 C的饱和蒸汽压放到23 C的环境里就只 有45%的相对湿度啦! 这里大家一定要知道什么是“露点温度”,露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是 空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到 饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于

露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点 温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。 不同温度时饱和水汽压(P)(单位:毫米高水银柱) 室内空气露点查询表

三部国家标准三种露点算法的比较

三部国家标准三种露点算法的比较 陈建新高广岩沈阳晨光绿能科技有限公司 摘要:建筑节能是国家可持续发展的一项重要举措,结露性能是评价建筑门窗、幕墙节能性能的一个重要指标,然而对于露点计算却有几种不同的方法。本文依据三部国家级标准的三种算法对露点分 别进行了计算,并进行了比较从而得出了结论。 关键词:露点;结露;节能;减排; 1 前言 建筑节能是国家可持续发展的一项重要举措,结露性能是评价建筑门窗、幕墙节能性能的一个重要指标,特别是在北方,门窗幕墙结露露水的流淌和再结冻将造成幕墙门窗构件以及室内其他设备设施锈蚀和损坏,甚至引起整体门窗幕墙的结构性破坏,影响门窗幕墙的安全性能。 然而对于露点计算却确有几种不同的方法。本文依据三部现行有效国家级标准的三种算法对露点分别进行了计算,并进行了比较从而得出了结论。这三个国家标准分别是: (1)中华人民共和国气象行业标准《地面气象观测规范第6部分空气温度和湿度的观测》QX/T 50-2007。 (2)中华人民共和国行业标准《建筑玻璃应用技术规程》JGJ 113-2009。 (3)中华人民共和国行业标准《建筑门窗玻璃幕墙热工计算规程》JGJ/T 151-2008。 本文仅对三个标准的公式进行直接引用。 2 《地面气象观测规范第6部分空气温度和适度的观测》QX/T 50-2007 《地面气象观测规范第6部分空气温度和适度的观测》QX/T 50-2007标准的附录A中明确:露点温度没有直接计算公式,可采用新系数的马格拉斯公式求出初值,再用逐渐逼近(最多三次方)方法求出露点T d(℃)。 即: b E e Log a E e Log T d - ? =………………(2.1) 式中: e——水汽压,单位为百帕(hPa); E0——0℃时的饱和水汽压,取值为6.1078hPa; a——系数,取7.69; b——系数,取243.92。 经验算,初值精度:当–80℃<Td<40℃时,误差为±0.14℃;当40℃≤Td<50℃时,误差为±0.2℃。 在公式(2.1)中水汽压e可通过相对湿度由下式获得: 100 W E U e ? =…………………………(2.2)式中: U——相对湿度,单位为百分率(%); E W——干球温度t所对应的纯水平液面饱和 水汽压,单位为百帕(hPa)。 在公式(2.2)中水汽压E W又可由下式获得:78614 .0 )1 10 ( 10 42873 .0 ] 10 1[ 10 50475 .1 ( 028 .5 1( 79574 . 10 1( 76955 .4 3 )1 ( 2929 .8 4 1 1 1 1 + - ? ? + - ? ? + - - = = - - - - - T T T T W T T Log T T C LogE …… ………………………………(2.3)转换为: C W E10 =……………………………(2.4)

相关文档