文档库 最新最全的文档下载
当前位置:文档库 › 气动噪声模型使用指南

气动噪声模型使用指南

气动噪声模型使用指南
气动噪声模型使用指南

ANSYS Fluent气动噪声模型使用指南

ANSYS Fluent气动噪声模型使用指南 (1)

1 ANSYS Fluent的气动噪声模型特点介绍 (1)

1.1C A A(直接模拟模型) (1)

1.2A c o u s t i c A n a l o g y M o d e l i n g(声比拟模型) (2)

1.3B r o a d b a n d(宽频噪声模型) (2)

2 ANSYS Fluent的气动噪声模型设置 (4)

2.1B r o a d b a n d(宽频噪声模型) (4)

2.2F-W-H(声比拟模型) (7)

2.3C A A(直接模拟模型) (16)

3 ANSYS Fluent气动噪声测试案例 (22)

3.1圆柱绕流 (22)

3.2跨音速空腔流动 (26)

3.3跨音速翼型绕流 (31)

1 ANSYS Fluent的气动噪声模型特点介绍

1.1C A A(直接模拟模型)

ANSYS Fluent中的CAA方法可以通过求解流体动力学方程直接得到声波的产生和繁殖现象。声波的预测需要控制方程时间精度的解,而且,CAA方法需要ANSYS Fluent通过求解非稳态N-S方程(如DNS)、非稳态雷诺平均RANS方程以及在分离涡DES和大涡LES 模拟中用到的滤波方程,精确模拟粘性效应和湍流效应。

CAA方法需要高精度的数值求解方法、非常精细的网格以及声波非反射边界条件,因此计算代价较高。如果要计算远场噪声(比如几百倍的机翼弦长远处的噪声传播),CAA方法则需要超大规模并行计算支持;但是如果计算近场噪声(比如,机身表面的APU、空穴、微小部件扰动噪声),CAA方法是容易可行的。在大多包含近场噪声的计算中,由于局部压力波动导致的噪声是可以通过ANSYS Fluent准确模拟的。既然CAA方法直接求解声波传播,那么需要求解可压缩的控制方程(如雷诺平均方程、可压缩的LES大涡模拟的滤波方程)。当流动速度较低或亚音速流动时,而且近场中的噪声源主要由局部压力波动构成,则可以使用不可压缩流动。然而,不可压缩流动处理不能模拟回声和声波反射现象。

1.2A c o u s t i c A n a l o g y M o d e l i n g(声比拟模型)

对于中场和远场噪声模拟,ANSYS Fluent采用基于Lighthill的“噪声比拟”方法,作为CAA方法的补充是ANSYS Fluent中计算代价较小的方法之一。“噪声比拟”方法不同于CAA方法,它把波动方程和流动方程解耦,在近场流动解析采用适当的控制方程比如非定常雷诺平均、DES分离涡或LES大涡模拟等方法,然后再把求解结果作为噪声源,通过求解波动方程得到解析解,这样就把流动求解过程从声学分析中分离出来。

ANSYS Fluent采用基于Ffowcs Williams and Hawkings(FW-H方程)的方程,FW-H方程采用最通用的Lighthill的“噪声比拟”方法,可以求解由单极子、偶极子和四极子产生的噪声传播。ANSYS Fluent采用时域积分的方法(声压、噪声信号与时间相关),通过少量的面积分计算指定位置的噪声。

流场变量(如压力、速度分量、源(散射)面的密度)时间精度的解的获得需要求解面积分。时间精度的解可以从非稳态雷诺平均方程(URANS)、大涡模拟(LES)、或分离涡(DES)模型求解得到,可以捕捉精确的流动特征如涡脱落等现象。

ANSYS Fluent中的噪声积分源面不仅可以放在不可穿透壁面上,也能放在内部(可穿透)面上,这样就可以考虑源面包围的四极子噪声贡献。特别是针对飞行器高、亚音速流动,四极子噪声影响不可忽略,ANSYS Fluent中先进的基于“可穿透面积分”的FW-H模型可以很好解决高、亚速气动噪声问题。

宽频噪声和音频噪声都可以通过精确求解流动中的噪声源特征体现,但这对各种流动的湍流模型要求较高,ANSYS Fluent中丰富的湍流模型可以满足流动求解的精度。

ANSYS Fluent中的FW-H噪声模型可以选择多个源面和接收位置,也可以保存噪声源数据,或在瞬态流动求解过程中同时执行噪声计算。声压信号可以通过快速傅立叶(FFT)变换得到,结合ANSYS Fluent后处理获得全部声压标准(SPL)和能量谱范围下的噪声数据图。

ANSYS Fluent的FW-H噪声模型能够预测声波向自由空间的传播,因此对于航空领域如飞行器绕流引起的远场气动噪声可以得到比较准确的分析结果。FW-H噪声模型目前还不能预测封闭空间内或噪声向密闭空间内部的传播。

1.3B r o a d b a n d(宽频噪声模型)

在许多工程应用中的湍流,噪声没有明显的频段,声波能量连续分布在一个宽频段范围内按频率连续分布,这就涉及到宽频噪声问题。在ANSYS Fluent的宽频噪声模型中,湍流参数通过RANS方程求出,再用一定的半经验修正模型(如Proudman 方程模型、边界层噪声源模型、线性Euler方程源项模型、Lilley方程源项模型)计算表面单元或体积单元的噪声功率。下面简要说明在ANSYS Fluent的宽频噪声模型中的修正模型:

1)Proudman 方程

ü最初由Proudman于1952年导出,求解各项同性湍流噪声(四极子噪声源),Proudman 方程适用的假设是:高雷诺数、低马赫数及各向同性湍流流动。计算公式如下:

ü在ANSYS Fluent中采用体积后处理变量Acoustic Power或Acoustic Power Level(dB)来描述四极子噪声在总噪声能量中的贡献,计算公式如下:

2)Turbulent Boundary Layer Noise(湍流边界层噪声源项)

ü在ANSYS Fluent中后处理变量中,Surface Acoustic Power[W/m^2]或Surface Acoustic Power Level(dB)作为表面后处理积分量,具体公式如下:

üTurbulent Boundary Layer Noise源项模型对于评估局部偶极子噪声源对总噪声能量的贡献非常有用。

ü对于三维增升装置降低噪声设计快速评估,Turbulent Boundary Layer Noise源项不失为一种快速有效的方法。

3)Source Terms in Linearized Euler Equations (LEE)(线性Euler方程源项)

ü线化欧拉方程从N-S方程导出,通过把流动分解为时均流、湍流和噪声分量,同时假设噪声分量远远小于时均流和湍流分量。方程如下:

üShear noise是由于时均流和湍流的交互作用产生,Self noise是湍流流场自发产生的。üANSYS Fluent后处理采用Stochastic Noise Generation and Radiation(简称SNGR)的方法计算源项的总体均值。

4)Lilley方程源项

Lilley方程是三阶波动方程,由可压缩流体的质量守恒和动量守恒方程联合导出。Lilley 方程源项包含Shear noise和Self noise两项;Shear noise包含时均流,但是Self noise不包含。

üANSYS Fluent后处理采用Stochastic Noise Generation and Radiation(简称SNGR)的方法计算源项的总体均值。

Broadband模型是CAA和“声比拟”方法的很好补充,特别是对飞机部件的降噪设计过程中,可以采用宽频噪声模型提取有用的诊断信息来快速确定流动中的哪一部分对噪声影响最大。然而,这些源项模型不能预测接收位置的噪声量级。

Broadband模型不需要瞬态流动解,所有的源项模型只需要典型的RANS方程解,比如实际速度场、湍动能和湍流耗散率。因此宽频噪声模型需要最小的计算代价。

2 ANSYS Fluent的气动噪声模型设置

2.1B r o a d b a n d(宽频噪声模型)

步骤1:首先获得一个气动外形的稳态流场解,注意稳态流场对计算网格和湍流模型没有苛刻的要求,采用常规计算的网格量和湍流模型即可。

步骤2:激活宽频噪声模型,如下对话框所示:

步骤3:在后处理模块激活噪声模型后处理,如下对话框所示:

气动外形的局部偶极子湍流边界层噪声源查看可采用如下变量云图:

评价气动外形四极子噪声源对总噪声源的影响可以用如下变量云图:

2.2F-W-H(声比拟模型)

步骤1:首先进行瞬态流场分析,这里的瞬态流场可以是常规的湍流模型瞬态流动计算比如SST、SA模型等瞬态计算,也可以是杂交瞬态模型如DES、SAS,或者大涡模拟LES;注:

当然在航空领域的壁面约束流动采用大涡是不太现实的,而ANSYS Fluent提供了非常适合工程领域的杂交瞬态模型,比如DES,SAS是DES的改进版,其技术借鉴了ANSYS CFX中的高级分离涡模型。对于SAS模型,计算量远远低于LES,而且其精度也非常接近LES,采用常规网格就可以实现非稳态流动计算,一般情况下对壁面和分离区域进行适当的网格加密,主要为了比较准确地捕捉分离涡流动,当然如果要考虑如非稳态小尺度湍流流动、转捩流动、大分离流动等则需超算的支持。

步骤2:查看瞬态流动计算结果,一般情况下要计算到涡开始周期脱落后才进行压力脉动数

据的提取,然后激活噪声模型;

注意:选择F-W H模型以后,选择输出噪声源数据为ASD或CGNS格式之一,是否同时计算噪声信号是可选的选项,如果选择了这个按钮,则后面不需要再计算提取噪声源信号数据了。在模型常数菜单里面,注意如果是2维计算则要填写源修正长度尺度,一般选择为2.5D、5D、10D都可以,在3维计算中则不需要严格定义修正长度。

步骤3:选择源的Zones,然后定义写出频率,2代表每两个时间步写出一次噪声源,200

代表每隔200个时间步提取一次数据。

步骤4:定义声源接收位置点;

注意:接收点可以在计算域内部,也可以在外部。

步骤5:计算结果后处理

在Plot菜单里选择FFT(傅立叶变换),双击出现如下菜单:

声压曲线绘制:

Overall Sound Pressure Level in dB (reference pressure = 2.000000e-05) = 1.156805e+02

Overall Sound Pressure Level in dB (reference pressure = 2.000000e-05) = 1.043936e+02

PSD 曲线绘制:

2.3C A A(直接模拟模型)

注意:直接模拟的CAA方法必须限制观测点在流场内部,CAA是通过精确计算观测点的压力波动来预测噪声的传播、衍生等复杂物理现象,CAA计算一般要求大涡或分离涡湍流模型,常规的雷诺平均的方法会导致压力脉动计算不准确。由于Fluent新增了SAS高级瞬态湍流模型,因此为了避免大涡计算的困难,可以采用SAS模型来实现CAA方法。

步骤1:首先在Fluent中求解高精度瞬态流场,求解瞬态流场前可以先算一个稳态流动的粗略结果作为瞬态计算的初场,瞬态流场要求计算足够长的时间,在监控点的压力呈周期波动

时,也就是有涡的周期脱落现象发生时,在计算足够多的脉动周期后就可以停止计算。

定义噪声监测点:

步骤2:激活噪声模型,注意options不选择任何选项。

不同监测点的数据进行比较。

现行房屋国家噪音标准

国家噪音标准 1 GB3096-1993 《城市区域环境噪声标准》(dB(A)) 类别区域白天夜晚 0 安静疗养区、高级别墅区、高级宾馆区等特别需要安静的区 域。位于城郊和乡村的这一类区域分别按严于0类标准5 dB 执行。 50 40 Ⅰ居住、文教机关为主的区域。乡村居住环境可参照执行该类 标准。 55 45 Ⅱ居住、商业、工业混杂区。60 50 Ⅲ工业区。65 55 Ⅳ城市中的道路交通干线道路两侧区域,穿越城区的内河航道 两侧区域。穿越城区的铁路主、次干线两侧区域的背景噪声 (指不通过列车时的噪声水平)限值也执行该类标准。 70 55 1)夜间突发的噪声,其最大值不准超过标准值15 dB。 2)各类标准适用区域由当地人民政府划定。 3)昼间、夜间的时间由当地人民政府按当地习惯和季节变化划定。(北京地区为白天6:00-21:59,夜晚22:00-5:59) 4)标准规定,城市区域环境噪声的测量位置在居住窗外或厂界外1米处。一般地,室外环境噪声通过打开的窗户传入室内大致比室内低10 dB。 2 GB12348-1990《工业企业厂界噪声标准》 标准限值等效声级dB (A) 类别区域白天夜晚Ⅰ居住、文教机关为主的区域。55 45 Ⅱ居住、商业、工业混杂区及商业中心区。60 50 Ⅲ工业区。65 55 Ⅳ城市中的道路交通干线道路两侧区域。70 55 夜间频繁突发的噪声(如排气噪声)。其峰值不准超过标准值10 dB,夜间偶然突发的噪声(如短促鸣笛声),其峰值不准超过标准值15 dB。

3 GB/T17249.1-1998 《声学——低噪声工作场所设计》 推荐的各种工作场所背景噪声级 稳态A 声级 dB (A ) 房间类型 dB(A) 备注 会议室 30-35 背景噪声是指室内技术设备(如通风系统)引起的噪声或者是室外传来的噪声,此时对工业性工作场所而言生产用机器设备没有开动。 适用范围:本标准适用于新建或已有工作场所噪声问题的规划。适用于装设有机器的各种工作场所。 教室 30-40 个人办公室 30-40 多人办公室 35-45 工业实验室 35-50 工业控制室 35-55 工业性工作场所 65-70 4 GBJ87-198 5 《工业企业厂区噪声控制设计规范》 工业企业厂区内各类地点噪声标准 序号 地点类别 噪声限值 dB(A) 备注 1 生产车间及作业场所(工人每天连续接触噪声8小时) 90 1、 本表所列噪声限值, 均应按现行国家标准测量确定。 2、 对于工人每天接触噪 声不足8小时的场合,可按实际接触噪声的时间,按接触时间减半噪声限值增加3 dB 的原则,确定其噪声限值。 3、 本表所列室内背景噪 声级,指在室内无声源发声条件下,从室外经由墙、门、窗(门窗启闭状态为常规状态)闯入室内的室内平均噪声级 2 高噪声车间设置的值班室、观察室、休息室(室内背景噪声级) 75 3 精密装配线、精密加工车间的工作地点、计算机房(正常工作状态) 70 4 车间所属办公室、实验室、设计室(室内背景噪声级) 70 5 主控制室、集中控制室、通讯室、电话总机室、消防值班室(室内背景噪声级) 60 6 长部所属办公室、会议室、设计室、中心实验室(室内背景噪声级) 60 7 医务室、教室、哺乳室、托儿所、工人值班室(室内背景噪声级) 55 适用范围:本标准适用于工业企业的新建、改建、扩建和技术改造工程的噪声(脉冲噪声除外)控制设计。新建、改建、扩建工程的噪声控制设计必须与主题工程设计同时进行。

数字图像处理7-不同噪声的特点,随机数与样本的关系

这次作业的内容是理解噪声的生成,同时了解各种随机噪声的特性。第一项作业主要是监测按照不同的模型生成的随机数与原本模型的契合度,这里举了两个例子,我就来根据代码以及程序运行的结果来一一进行解释。代码如下: x = -5:0.1:5; %直方图的范围 y = randn(10000,1);%产生一组随机序列,10000个。 z=rand(1,10000)*10-5; t = -5:0.01:5; hist(y,x);%画出直方图 hold on; xm=mean(y); xv=var(y); disp(xm); disp(xv); pdf = length(y)*0.1*exp(-t.^2/2)/sqrt(2*pi);%产生高斯概率分布pdf plot(t,pdf,'r')%画出高斯概率分布函数 a=xcorr(y); figure; plot(a); figure; hist(z,x); hold on; xm=mean(z); xv=var(z); disp(xm); disp(xv);

pdf = t*0+length(y)/(10/0.1);%产生均匀概率分布pdf plot(t,pdf,'r')%画出均匀概率分布函数 im1 im2 im3 首先来看程序,程序先中定义了直方图的范围,从-5到5,其中分度值为0.1,也就是一共10/0.1=100个量化等级。随后产生了两组随机数,y是基于高斯分布模型产生的随机数,z是均匀分布的随机数,二者都产生了10000个数据。随后先对y这组数据进行处理,用hist函数,根据之前定义的范围,画出了这 组随机数的概率分布函数。可以看出其基本的轮廓和正态分布还是非常接近的,但是在某些值上参差不齐,会有突然突出或者凹陷的情况。在画完之后,程序调 用mean和var函数对这一组数据分别进行了求方差和求均值的操作。这里的输出分别为方差0.9909,而均值为-8.9737e-04,也就是0.00089737.randn函数默认的模型是方差为1而均值为0的正态分布函数,因此生成的随机数虽然有些误差,但是在大体方向上还是遵循了这个模型的方差与均值。随后程序中pdf = length(y)*0.1*exp(-t.^2/2)/sqrt(2*pi);这个语句,就是生成对应的高斯分布的概率密度函数。exp(-t.^2/2)/sqrt(2*pi)这一部分很明显就是均值为0,方差为1的高斯分布的密度函数。随后length(y)*0.1这个系数,是数据个数*分度值,来让 这个概率密度函数和画出来的条形图相吻合,也就是类似归一化的过程。和之前的那组条形图,也就是实际随机数据的条形图画在一起,可以看出基本上是符合的。但是由于量化等级太少而且样本数不够多,还是有在此基础上很明显的波动

散热器风扇气动噪声仿真研究

本文在两款风扇结构对比分析的基础之上,以CFD方法为主要研究方法,计算了普通散热器风扇和仿生造 型风扇的气动噪声值,并进行了深入的对比。对比结果表明,仿生造型风扇在风扇直径和通风能力增大的 前提之下,实现了风扇气动噪声的降低。并且本文在对两款风扇的瞬态流场进行了深入分析的基础之上, 明确了仿生造型风扇的降噪机理,并提出了一些可以指导风扇降噪设计的建议。本文的研究结果,可以对 冷却风扇气动噪声性能的优化提供参考。 0 引言 在传统的轿车噪声源逐渐受到控制的情况下,作为轿车冷却系统必不可少的重要部件,冷却风扇的气动噪声问题逐渐受到了广泛的关注。并且,在具体的冷却模块设计中,为了满足特定的通风量要求,或者为了将双风扇合并为单风扇,往往涉及到风扇直径的增大。但是,冷却风扇气动噪声值和风扇直径之间存在着重要的关系[1],大直径的风扇意味着更大的气动噪声。 另一方面,近代仿生学研究表明,将如图1所示的鸟类翅膀的宏观非光滑外形,应用于机翼及风扇叶片等气动机械造型中,有利于降低其气动噪声值[2-3]。所以,将仿生学成果应用于轿车散热器风扇,用以进行风扇气动噪声的优化,或者在风扇直径增大时降低其气动噪声,无论是在理论研究和工程实际之中都具有重要的意义。 图1 鸟类翅膀非光滑形态示意图 本文以计算流体动力学(Computational Fluid Dynamics--CFD)和计算气动声学(Computational Aeroacoustics--CAA)理论为基础,建立了轴流风扇气动噪声计算方法。应用该方法对小直径普通风扇和大直径仿生叶片风扇的气动噪声值进行了计算,而且对仿生叶片风扇的降噪机理进行了深入的研究。 1 风扇气动噪声计算方法 1.1 计算几何模型及计算域选取 研究显示,轴流风扇的噪声源包括干涉噪声和自噪声两部分[4]。其中,干涉噪声是指旋转叶片与固定部件之间的流体干涉,以及风扇上游部件导致的进口湍流产生的噪声;自噪声的主要噪声源为风扇叶片的气流分离、尾窝脱落和叶尖窝等。 针对轿车散热器风扇而言,如图2所示,散热器风扇由轮毂、叶片、和叶圈组成,叶圈与叶片固连在一起共同运动。风扇外部有风扇框架,风扇框架上与叶圈相对应的部分为护风圈。另外在散热器风扇上游存在发动机舱入口格栅、散热器、冷凝器等部件,风扇下游还有动力总成及其附件等结构。所有这些结构,都会对散热器风扇的气动噪声值产生不同程度的影响。

国家噪声标准

国家噪声标准文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

国家环境噪声标准 银川正大有限公司收编 2013年5月29日

●《工业企业噪声卫生标准》 ●国际标准化组织公布了《职业性噪声暴露和听力保护标准》ISO1999 ●GBJ87-1985《工业企业噪声控制设计规范》 工业企业厂区内各类地点噪声标准 ●GB3096-1993《城市区域环境噪声标准》 /dB 标准限值等效声级 L Aeq

适用范围:本标准适用于城市区域环境噪声评价。乡村生活区参照,夜间突发噪声,其最大值不准超过标准值15分贝。 ●GB12348-1990《工业企业厂界噪声标准》 /dB 标准限值等效声级 L Aeq 适用范围:本标准适用于工厂及有可能造成噪声污染的企事业单位的边界噪声评价。Ⅰ类标准适用于居住、文教机关为主的区域 Ⅱ类标准适用于居住、商业、工业混杂区以及商业中心区 Ⅲ类标准适用于工业区域 Ⅳ类标准适用于交通干线道路两侧区域 夜间频繁突发噪声(如排气),其峰值不准超过标准10dB(A);夜间偶发噪声(如鸣笛),其峰值不准超过标准15dB(A)。 ●GB12523-1990《建筑施工场界噪声限值》 标准限值等效声级 L /dB Aeq

适用范围:本标准适用于城市建筑施工期间施工场地产生的噪声评价。 ●GB9660-1988《机场周围飞机噪声环境噪声标准》 /dB 标准限值 L WECPN 适用范围:本标准适用于机场周围受飞机通过时所产生噪声影响的区域评价。 一类区域:特殊住宅区、居民、文教区;二类区域:除一类区域以外的生活区 ●GB12525-1990《铁路边界噪声限值及其测量方法》 /dB 标准限值等效声级 L WECPN 适用范围:本标准适用于城市铁路边界距铁路外侧轨道中心线30m处的噪声评价。 ●GB/T3450-1994《铁路机车司机室允许噪声值》 铁路机车司机室内噪声限值 适用范围:本标准稳态噪声允许值适用于铁路干线机车司机室的噪声检验,等效噪声允许值适用于对铁路运营司机室噪声的卫生评价。 ●GB/T12861-1991《铁路客车噪声的评价》 /dB 客车车内噪声标准限值平均稳态A声级 L A

数字图像去噪典型算法及matlab实现

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 代码 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5

使用CFX联合Actran进行气动噪声分析

如何使用CFX联合Actran进行气动噪声分析 2013/8/13 步骤如下: 1.定常流场的计算 2.采用LES大涡模拟进行非定常流场计算 2.1非定常计算需要设置计算总时间和时间步长,如下图所示: 2.2采用的湍流模型为LES Smagorinsky大涡模型

2.3何时开始保存非定常流场数据 先进行一段时间的非定常流场计算,当监测点的数据比如压力、速度等出现周期性波动时,可以认为非定常流场已达到收敛。此时用刚刚计算的非定常流场最后一步的计算结果(***.res)作为初值,重新开始非定常流场计算,并设置保存每一步的流场数据,要保存的数据依据流体是否可压而不同,对于不可压缩流体,只需保存速度场;对于可压缩流体,需要保存速度场外,还需要保存密度场、压力场和温度场中的一个。注意要勾选Include Mesh这一项: 3.将非定常流场数据转换为Ensight Gold格式 打开CFX-Solver Manager,选择Tools-Export,打开流场数据导出面板,在Source 项中选择你第二次计算的非定常流场结果文件(***.res);然后在Domain

Selection中选择你想要导出数据所在的计算域;在Timestep Selection中选择你要导出哪些时间步数据,一般选择All;最后选择导出格式为EnSight以及导出数据的路径,如下图所示: 注意:***.res会自动和你保存的.trn非定常流场数据相关联,不需要你自己去设置;如果你没有保存非定常流场数据,那么Timestep Selection不会被激活,呈现灰色,也就无法导出你要的结果了,如下图所示: 4.修改.case文件 导出Ensight gold格式时,会出现一个***.case配置文件,里面包含了你导出的数据信息,在利用Actran进行气动噪声计算的时候,计算声源就是用这个文件作为输入文件,其格式如图所示:

数字图像处理-图像去噪方法

图像去噪方法 一、引言 图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信 息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。 二、常见的噪声 1、高斯噪声:主要有阻性元器件内部产生。 2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。 3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法.图像频率域去噪方法

是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。 三、去噪常用的方法 1、均值滤波 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。其基本原理是用均值替代原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在 f?sf(x,y),其中,s为模板,M为该点上的灰度g(x,y),即g x,y=1 M 该模板中包含当前像素在内的像素总个数。这种算法简单,处理速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别是在边缘和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。

国家噪声标准精编版

国家环境噪声标准 大连兆和科技发展有限公司收编 2003年5月29日

●《工业企业噪声卫生标准》 ●国际标准化组织公布了《职业性噪声暴露和听力保护标准》ISO1999 ●GBJ87-1985《工业企业噪声控制设计规范》 工业企业厂区内各类地点噪声标准 ●GB3096-1993《城市区域环境噪声标准》 标准限值等效声级 L Aeq/dB 准值15分贝。

●GB12348-1990《工业企业厂界噪声标准》 标准限值等效声级 L Aeq/dB Ⅰ类标准适用于居住、文教机关为主的区域 Ⅱ类标准适用于居住、商业、工业混杂区以及商业中心区 Ⅲ类标准适用于工业区域 Ⅳ类标准适用于交通干线道路两侧区域 夜间频繁突发噪声(如排气),其峰值不准超过标准10dB(A);夜间偶发噪声(如鸣笛),其峰值不准超过标准15dB(A)。 ●GB12523-1990《建筑施工场界噪声限值》 标准限值等效声级 L Aeq/dB ●GB9660-1988《机场周围飞机噪声环境噪声标准》 标准限值 L WECPN/dB 适用范围:本标准适用于机场周围受飞机通过时所产生噪声影响的区域评价。 一类区域:特殊住宅区、居民、文教区;二类区域:除一类区域以外的生活区 ●GB12525-1990《铁路边界噪声限值及其测量方法》 标准限值等效声级 L WECPN/dB 适用范围:本标准适用于城市铁路边界距铁路外侧轨道中心线30m处的噪声评价。

●GB/T3450-1994《铁路机车司机室允许噪声值》 铁路机车司机室内噪声限值 运营司机室噪声的卫生评价。 ●GB/T12861-1991《铁路客车噪声的评价》 客车车内噪声标准限值平均稳态A声级 L A/dB 电车和上述车种的合造车噪声评价。不适用于动车组的车辆噪声评价。公务车、卫生车、维修 车和试验车等特殊用途车以及其他有特殊要求的客车,除允许噪声级及测点位置按设计及使用 需有特殊要求外,其他也应符合本标准。 客车车外噪声标准限值平均稳态A声级 L A/dB 适用范围:本标准适用于各种客车静止时,空调机组及发电机组满负荷运转时,距离管道中心线3.5m处测量的车外噪声限值。 ●GB13669-1992《铁路机车辐射噪声限值》 铁道机车辐射噪声标准限值平均稳态A声级 L A/dB 适用范围:本标准适用于新设计、新制造或经大修后出厂的铁道电力、内燃和蒸汽机车的辐射噪声检验。

数字图像处理论文——各种题目

长春理工大学——professor——景文博——旗下出品 1基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像直接分割图像处理后的分割图像 2基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。 3静止背景下的移动目标视觉监控 主要内容:

基于视觉的人的运动分析最有前景的潜在应用之一是视觉监控。视觉监控系统的需求主要来自那些对安全要求敏感的场合,如银行、商店、停车场、军事基地等。通过对静止背景下的目标识别,来提醒监测人员有目标出现。 要求: 1>对原始参考图和实时图像进行去噪处理; 2>对去噪后的两幅图像进行代数运算,找出目标所在位置,提取目标,并将背景置黑; 3> 判断目标大小,若目标超过整幅图像的一定比例时,说明目标进入摄像保护区域,系统对监测人员进行提示(提示方式自选)。 4>显示每步处理后的图像; 5>分析此种图像监控方式的优缺点。 背景目标出现目标提取 4车牌识别图像预处理技术 主要内容: 车辆自动识别涉及到多种现代学科技术,如图像处理、模式识别与人工智能、计算机视觉、光学、机械设计、自动控制等。汽车作为人类生产、生活中的重要工具被广泛的使用,实现自动采集车辆信息和智能管理的车牌自动识别系统具有十分重要的意义: 要求: 1>对原始车牌图像做增强处理; 2>对增强后的彩色图像进行灰度变换; 3>对灰度图像进行直方图均衡处理; 4>选取自适应的阈值,对图像做二值化处理; 5>显示每步处理后的图像; 6>分析此种图像预处理的优缺点及改进措施,简要叙述车牌字符识别方法 原始车牌图像处理后的车牌图像 5医学细胞图像细胞分割图像增强算法研究 主要内容: 医学图象处理利用多种方法对各种图像数据进行处理,以期得到更好的显示效果以便医生根据细胞的外貌进行病变分析。 要求: 1>通过对图像的灰度变换调整改变细胞图像的灰度,突出感兴趣的细胞和细胞核区域。 2>通过直方图修改技术得到均衡化或规定化等不同的处理效果。 3>采用有效的图像平滑方法对细胞图像进行降噪处理,消除图像数字化和传输时所混入的噪声,提高图像的视觉效果。 4>利用图像锐化处理突出细胞的边缘信息,加强细胞的轮廓特征。 5>显示每步处理图像,分析此种细胞分割图像预处理方法的优缺点。 原始细胞图像 图像处理后的细胞图像 6瓶子灌装流水线检测是否液体灌装满瓶体 当饮料瓶子在罐装设备后要进行液体的检测,即:进行判断瓶子灌装流水线是否灌装满瓶体的检测,如液面超过瓶颈的位置,则装满,否则不满,如果不满则灌装液体不合格,需重新进行灌装。 具体要求: 1)将原进行二值化 2)二值化后的图像若不好,将其滤波再进行膨胀处理,并重新进行二值化

数字图像处理论文,图像去噪

数字图象处理(论文) 学 院 计算机学院 专 业 计算机科学与技术、管路敷设技术标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

图像去噪算法论文 图像在生成或传输过程中常常因受到各种噪声的干扰和影响而使图像爱那个的质量下降,对后续的图像处理(如分割、理解等)产生不利影响。因此,图像爱那个去噪是图像处理中的一个重要环节。而对图像去噪的方法又可以分为两类,一种是在空间域内对图像进行去噪,一种是将图像变换到频域进行去噪的处理。 一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声,还有加性、乘性噪声等,如上,减少噪声的方法,可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均值滤波算法和中值滤波算法。图像频率域去噪方法是对图像进行某种变换,将图像从空间域转换到频率域,对频率域中的变换系数进行处理,再进行反变换将图像从频率域转换到空间域来达到去除图像噪声的目的。将图像从空间转换到变换域的变换方法很多,常用的有傅立叶变换、小波变换等。在这节课上我学习的是借助Matlab 软件对图像进行处理。在图像去噪方面,在 Matlab 中常用的去噪函数有 imfilter( ), wiener2( ), medfilt2( ), ordfilt2( )以及小波分析工具箱提供的wrcoef2( )和 wpdencmp( )等,好像随着Matlab 的发展,有些函数变了,不过早大致上变化不大,也有可能是我下载的Matlab 不完整吧,总之在实践过程中有些错误让我很纠结。因为我是刚接触到这类知识,所以很多都还不懂,虽然从课上有了一些了解,但我觉得还远远不够,然而最近实在时间不多,只、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

Aeroacoustics_气动声学(理论教程)

Aeroacoustics 气动声学 翻译:岳刚伟

简介 本翻译英文原文源于STAR-CCM+12.02版本的帮助文件,仅供从事CFD相关领域的同学参考,译者从2010年开始从事汽车行业的CFD仿真分析工作,本翻译根据自身的理解进行,翻译过程中错误在所难免,请予以指正。 附制作的空气动力学视频,请提出指导建议,感谢! https://https://www.wendangku.net/doc/d617185596.html,/x/page/w0159lk8pka.html? https://https://www.wendangku.net/doc/d617185596.html,/x/page/s0156bgaa11.html?

Computational aeroacoustics (CAA) is a branch of multiphysics modeling and simulation that involves identifying noise sources that are induced by fluid flow and propagation of the subsequently generated sound waves. 计算气动声学(CAA)是多体物理学的建模和仿真的一个分支,包括识别流体流动和随后产生的声波的传递而产生的噪声源。 Noise sources originate from various types of flow, such as: 噪声源来自于各种类型的流动,例如: Turbulent flow over solid bodies (bluff body flows) 固体表面的湍流(钝体/非线性流动) Turbulent boundary layer flows (for example, automobile, aircraft components) 湍流边界层流动(例如汽车、飞机部件) High-speed turbulent shear flows (for example, free jet flow) 高速湍流切变流动(例如,自由射流) High-speed impinging flows (for example, jet impingement, rocket exhaust noise) 高速撞击流(如射流冲击、火箭排气噪声) Structural vibration that is induced by fluid flow (fluid-structure interactions) 由流体流动(流体与结构相互作用)引起的结构振动 High-speed rotating flows (for example, rotorcrafts or turbomachinery) 高速旋转流(例如,直升机或涡轮机械) Turbulent combustion (reacting flows) 湍流燃烧(反应流) Blast waves (explosions) 爆炸波(爆炸) A typical CAA simulation requires the following components: 典型的CAA仿真需要以下组件: Navier-Stokes equations for fluid flow 流体流动的纳维-斯托克方程 High-resolution turbulence models 高精度的湍流模型 Analytical or computational acoustic wave propagation

最新数字图像处理期末复习资料

1图像的特点:1)直观形象2)易懂3)信息量大 2 图像的分类:1)按灰度分类:二值图像,多灰度图像2)按色彩分类:单色图像,动态图像3)按运动分类:静态图像,动态图像4)按时空分布分类:二维图像,三维图像 3 数字图像处理的主要内容:1)图像获取2)图像变换3)图像增强4)图像复原5)图像编码6)图像分析7)图像识别8)图像理解 4数字图像处理方法:1)空域法2)变换域法 5什么是数字图像的采样和量化? 采样:将模拟图像在空间上连续的点按照一定的规则变换成离散点的操作。 量化:由于采样图像被分割成空间上离散的像素,但其灰度是连续的,还不能用计算机进行处理,所以要对采样后的图像进行量化,即将连续的像素灰度值转换成离散的整数值的过程。6图像像素间的邻接、连接和连通的区别? 邻接:两个像素是否邻接就看它是否接触,一个像素和在它邻域中的像素是邻接的。邻接仅仅考虑了像素间的空间关系。 连接:对两个像素,要确定它们是否连接,要考虑两点:①空间上要邻接;②灰度值要满足某个特点的相似准则 第二章 1 试述图像采集系统的结构及其各部分的功能? 2 连续图像随机过程可以用哪些数字特征来描述? 概率密度,一阶矩或平均值,二阶矩或自相关函数,自协方差,方差 3 为什么说只要满足采样定理,就可以有离散图像无失真的重建元连续图像? 这是由图像的连续性决定的,由图像上某一点的值可以还原出该点的一个小邻域里的值,这个图像连续性越好,这个邻域就可以越大,抽样次数可以很少就可以无失真还原。而抽样定理对应这个邻域最小的情况即抽样次数最多的情况,大概是每周期两个样本 4与标量量化相比,向量量化有哪些优势? 合理地利用样本间的相关性,减少量化误差提高压缩率, 5 Matlab图像处理工具箱提供了哪几类类型的数字图像?它们之间能否转换?如果可以如何转换? 二进制图像,索引图像,灰度图像,多帧图像,RGB图像,它们之间可以相互转换, 转换函数(23页 6 数字图像的空间分辨率和采样间隔有什么联系? 采样间隔是决定图像分辨率的主要参数

国家噪音标准规范

中华人民共和国环境噪声污染防治法 关于噪声标准的界定 1996年10月29日第八届全国人民代表大会常务委员会第二十二次会议通过 颁布机关:全国人民代表大会常务委员会 颁布时间:1996-10-29 实施时间:1997-03-01 发文文号:中华人民共和国主席令第77号 时效性:有效 第八章附则 第六十三条本法中下列用语的含义是: (一)“噪声排放”是指噪声源向周围生活环境辐射噪声。 (二)“噪声敏感建筑物”是指医院、学校、机关、科研单位、住宅等需要保持安静的建筑物。 (三)“噪声敏感建筑物集中区域”是指医疗区、文教科研区和以机关或者居民住宅为主的区域。 (四)“夜间”是指晚二十二点至晨六点之间的期间。 (五)“机动车辆”是指汽车和摩托车。 第六十四条本法自1997年3月1日起施行。1989年9月26日国务院发布的《中华人民共和国环境噪声污染防治条例》同时废止。 中华人民共和国城市区域环境噪声标准 1主题内容与适用范围 本标准规定了城市五类区域的环境噪声最高限值。 本标准适用于城市区域。乡村生活区域可参照本标准执行。 2标准值 城市5类环境噪声标准值如下: 类别昼间夜间 0类50分贝40分贝 一类55分贝45分贝 二类60分贝50分贝

三类65分贝55分贝 四类70分贝55分贝 3各类标准的适用区域 (1)0类标准适用于疗养区、高级别墅区、高级宾馆区等特别需要安静的区域。位于城郊和乡村的这一类区域分别按严于0类标准5分贝执行。 (2)一类标准适用于以居住、文教机关为主的区域。乡村居住环境可参照执行该类标准。 (3)二类标准适用于居住、商业、工业混杂区。 (4)三类标准适用于工业区。 (5)四类标准适用于城市中的道路交通干线道路两侧区域,穿越城区的内河航道两侧区域。穿越城区的铁路主、次干线两侧区域的背景噪声(指不通过列车时的噪声水平)限值也执行该类标准。 4夜间突发噪声 夜间突发的噪声,其最大值不准超过标准值15分贝。 中华人民共和国工业企业厂界噪声标准 1.标准的适用范围 本标准适用于工厂及有可能造成噪声污染的企事业单位的边界。 2.标准值 各类厂界噪声标准值如下: 类别昼间夜间 一类55分贝45分贝 二类60分贝50分贝 三类65分贝55分贝 四类70分贝55分贝 3.各类标准适用范围的划定 (1)一类标准适用于以居住、文教机关为主的区域。 (2)二类标准适用于居住、商业、工业混杂区及商业中心区。 (3)三类标准适用于工业区。 (4)四类标准适用于交通干线道路两侧区域。 4.各类标准适用范围由地方人民政府划定。 5.夜间频繁突发的噪声(如排气噪声)。其峰值不准超过标准值10分贝,夜间偶然突发的噪声(如短促鸣笛声),其峰值不准超过标准值15分贝。

数字图像处理答案

一、名词解释 1.图像平滑 图像平滑是指用于突出图像的宽大区域、低频成分、主干部分或抑制图像噪声和干扰高频成分,使图像亮度平缓渐变,减小突变梯度,改善图像质 量的图像处理方法。图像平滑的方法包括:插值方法,线性平滑方法,卷积法等等 2.图像复原 图像复原是一种对退化(或品质下降)了的图像去除退化因素,并进而恢复或重建被退化了的图像的技术。以图像退化的数学模型为基础,来改善图像质量。 3.HSI模型 HSI 颜色模型用H、S、I 三参数描述颜色特性,其中H 定义颜色的波长,称为色调;S 表示颜色的深浅程度,称为饱和度;I 表示强度或亮度。HSI 颜色模型对于开发基于彩色描述的图像处理方法是一个理想的工具。 4.有损压缩 有损压缩是通过牺牲图像的准确率以实现较大的压缩率,如果容许解压图像有一定的误差,则压缩率可显著提高。有损压缩在压缩比大于30:1时仍然可重构图像,而如果压缩比为10:1到20:1,则重构的图像与原图几乎没有差别.有损预测编码,变换编码 5无损压缩

无损压缩算法中删除的仅仅是图像数据中冗余的信息,因此在解压缩时能精确恢复原图像,无损压缩的压缩比很少有能超过3:1的,常用于要求高的场合。哈夫曼编码,行程编码 ,算术编码 6数字图像 一幅图像可定义为一个二维函数f(x,y),当空间坐标x、y和幅值f为有限的离散数值时,称该图像为数字图像。简言之,以数字格式表示的图像。 二、简答题(共41分) 1.图像锐化与图像平滑有何区别与联系? 图象锐化是用于增强边缘,导致高频分量增强,会使图像清晰; 图像平滑用于去噪,对图像高频分量即图像边缘会有影响。 都属于图像增强,改善图像效果 2图像卷积和图像相关的区别与联系? 图像卷积和图像相关是两种运算,但是相关函数和卷积函数除了复共轭和符号以外,具有相同的形式,都是含参变量的无穷积分。实现卷积的每一步都与相关相同,包括需要延拓。卷积是空间域过滤和频域过滤之间的纽带。相关的重要用途在于匹配,常用来比较两个函数的关联性,相似程度 3正交变换的物理意义? 特点:(1)能量保持不变(2)能量集中(3)能够把统计相关信号变成统计不相关信号。数字图像的变换要求能从反变换中完整地恢复过来。正交变换是满足完整反变换要求的一种交换。

数字图像处理简答题及答案

数字图像处理简答题及答案 简答题 1、数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。 2、什么是图像识别与理解? 3、简述数字图像处理的至少3种主要研究内容。 4、简述数字图像处理的至少4种应用。 5、简述图像几何变换与图像变换的区别。 6、图像的数字化包含哪些步骤?简述这些步骤。 7、图像量化时,如果量化级比较小会出现什么现象?为什么? 8、简述二值图像与彩色图像的区别。 9、简述二值图像与灰度图像的区别。 10、简述灰度图像与彩色图像的区别。 11、简述直角坐标系中图像旋转的过程。 12、如何解决直角坐标系中图像旋转过程中产生的图像空穴问题? 13、举例说明使用邻近行插值法进行空穴填充的过程。 14、举例说明使用均值插值法进行空穴填充的过程。 15、均值滤波器对高斯噪声的滤波效果如何?试分析其中的原因。 16、简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。 17、中值滤波器对椒盐噪声的滤波效果如何?试分析其中的原因。 18、使用中值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?

19、使用均值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象? 20、写出腐蚀运算的处理过程。 21、写出膨胀运算的处理过程。 22、为什么YUV表色系适用于彩色电视的颜色表示? 23、简述白平衡方法的主要原理。 24、YUV表色系的优点是什么? 25、请简述快速傅里叶变换的原理。 26、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的高通滤波中的应用原理。 27、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的低通滤波中的应用原理。 28、小波变换在图像处理中有着广泛的应用,请简述其在图像的压缩中的应用原理。 29、什么是图像的无损压缩?给出2种无损压缩算法。 2、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01 e=11 a=10 b=001 c=0001 d=0000。若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用霍夫曼编码有所提高? 31、DCT变换编码的主要思想是什么? 32、简述DCT变换编码的主要过程。 33、什么是一维行程编码?简述其与二维行程编码的主要区别。 34、什么是二维行程编码?简述其与一维行程编码的主要区别。 35、简述一维行程编码和二维行程编码的异同。 36、压缩编码算法很多,为什么还要采用混合压缩编码?请举例说明。 37、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01 e=11 a=10 b=001 c=0001 d=0000。若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用行程编码有所提高? 38、连续图像和数字图像如何相互转换?

数字图像处理_领域平均滤波_中值滤波

东华大学实验报告 课程 数字图像处理 名称 数字图像变换 实验名称: 邻域平均法(box 模板)和中值滤波处理 一、 实验目的 图像变换是数字图像处理中的一种综合变换,如直方图变换、几何变换等。通过本实验,使得学生掌握两种变换的程序实现方法。 二、 实验任务 请设计程序,分别用邻域平均法,其模板为: 和中值滤波法对testnoise 图像进行去噪处理(中值滤波的模板的大小也设为3×3)。 三、实验环境 本实验在Windows 平台上进行,对内存及cpu 主频无特别要求,使用VC 或者MINGW (gcc )编译器均可。 四、设计思路 介绍代码的框架结构、所用的数据结构、各个类的介绍(类的功能、类中方法的功能、类的成员变量的作用)、各方法间的关系 ????????????1111*1111191

试验要求中以给出大致的编程思路和源代码以及代码注释,只有黑框部分需要自己填写。在此不进行赘述。 五、具体实现 实现设计思路中定义的所有的数据类型,对每个操作给出实际算法。对主程序和其他模块也都需要写出实际算法。 注意:源代码中要加上注释。

代码:(红色为重点代码) <邻域平均法>(3*3) /*------利用第一次实验课提供的和文件以获取位图的高宽以及从文件头到实际的位图数据的偏移字节数,从而实现对位图实际数据的操作。------*/ #include <> #include <> #include <> #include "" /*------定义结构指针------*/ struct bmphdr *hdr; //定义用于直方图变量 unsigned char *bitmap,*count,*new_color; /*------main()函数编写------*/ int main() { //定义整数 i, j 用于函数循环时的,nr_pixels为图像中像素的个数 int i, j ,nr_pixels,nr_w,nr_h; //定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像 FILE *fp, *fpnew; //定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。 // argc=3; // argv[1]=""; // argv[2]=""; //参数输入出错显示 /* if (argc != 3) {

相关文档