文档库 最新最全的文档下载
当前位置:文档库 › 6063-T5材质及工艺流程解析汇总

6063-T5材质及工艺流程解析汇总

6063-T5材质及工艺流程解析汇总
6063-T5材质及工艺流程解析汇总

6063-T5工业铝型材材质及工艺流程解析

一、6063材质

1 6063 为铝锭原材,6063为铝材编号,我国目前通用的是美国铝业协会〈Aluminium Association〉的编号

第一位数:表示主要添加合金元素

6表示主要添加合金元素为矽和镁

第二位数:表示原合金中主要添加合金元素含量或杂质成分含量经修改的合金

0表示原合金

第三及四位数:纯铝:表示原合金合金:表示个别合金的代号

3 表示主要添加合金元素为锰或锰与镁

2 -后面的Tn表示加工硬化的状态或热处理状态的鍊度符号

T5 表示由高温成型冷却,然后人工时效的状态.

适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但不影响力学性能极限),予以人工时效的产品。

二 6063-T5 工艺流程

6063-T5铝型材采用质轻高钢性的铝锭原材熔铸、挤压、铸造、上色的工序后,表面经电脑化喷砂、阳极氧化、电泳处理,再以压克力树脂涂布,表面更加美观与耐刮性。

1、熔铸 : 1配料 2 熔炼 3 铸造

2、挤压

3、铸造

4、上色 : 1表面预处理2 电脑化喷砂、阳极氧化、电泳 3封孔

下面附上常规的自动化设备工业铝型材的图片

详询:116363 9363

定型耐火材料的生产工艺流程图

定型耐火材料工艺流程 定型耐火材料的生产工艺流程图 活化煅烧 死烧

检验包装 一.原料的煅烧 原料的煅烧具有极为重要的必要性,原料的煅烧分为活化煅烧和死烧,活化煅烧是使原料全部或部分组分得到活化,变为活性状态的煅烧,通过加入添加剂得以实现,死烧则是使原料全部达到完全烧结,无论哪种煅烧都能够使生料变成熟料,熟料配料的好处如下: (1)熟料配料能够保证制品烧成后的尺寸准确性,以及制品的体积稳定性。 (2)熟料配料有利于改善制品的矿物组成及显微组织结构,从而保证制品具有良好的使用性能; (3)熟料配料有利于缩短制品的烧成周期,提高生产效率和烧成合格率。二.原料的挑选分级 原料的挑选分级能够保证优质品的质量,避免劣质原料被用来生产优质品;此外,这道工序还能保证优质原料被有价值的利用,避免优质原料被用来生产低等级的制品。 一般挑选分级的对象有耐火黏土、高铝矾土、菱镁矿等,根据熟料的外观颜色、有无显而易见的杂质、比重、致密度等情况进行人工拣选。 三.原料的破粉碎 破粉碎在耐火材料的生产流程中是一道极为重要的生产工序,它决定了产品质量的好坏,因此它有着极为重要的意义: (1)各种原料只有破粉碎到一定细度才能充分均匀混合,从而保证制品组织结构的均匀性; (2)通过破粉碎将各种原料的加工成适当粒度,以保证制品的成型密度; (3)只有将原料粉碎到一定细度,才能提高原料的反应活性,促进高温下的固相反应,形成预期的矿物组成和显微组织结构,以及降低烧成温 度。 根据破碎的不同要求,可以选择不同类型的破碎机,常用的破碎机有颚式破碎机和圆锥破碎机。

配料不仅仅是调配化学组成的过程,还是调配颗粒组成的过程,因此在配料过程中颗粒级配的设计师极为重要的,合理的颗粒级配可以达到最紧密堆积,保证坯体的成型密度,减小坯体的烧成收缩,从而保证制品的质量和性能。 以取得最紧密堆积为目的,耐火材料的颗粒组成,一般采用下述公式: y i =[a +(1?a )(d i D )n ]?100 y i ——粒径为d i 的颗粒应配入的数量(%); a ——系数,取决于物料性质及细粉含量等因素,一般情况下,a=0-0.4; n ——指数,与颗粒分布特性及细粉的比例有关,一般地n=0.5-0.9; D ——最大(临界)颗粒尺寸(mm )。 理想的堆积是粗颗粒构成骨架,中颗粒填充于大颗粒构成的空隙中,细粉则填充于中间颗粒构成的空隙中,在实际生产中,通常采取三组分颗粒配料,有时候也会采取四组分颗粒配料,不同的产品因为成型和烧成的不同,会选取不同的配比。 五. 混练 混练是使各种物料分布均匀化,并促进颗粒接触和塑化的操作过程,耐火材料的混练过程,由于颗粒粒度相差较大及成型的需要,实际上不是一个单纯的混合过程,而是伴有一定程度的碾压、排气过程。混练的最终目的是使混合料的任意单位体积内具有相同的化学组成和颗粒组成。 达到较好混练质量所需要的混练时 间,主要与物料的流动性、外加剂的种 类、混练机的结构性能等因素有关,对 应于某一种坯料及混练设备,都有一个 最佳的混练时间,超过该时间就会造成 “过混合”,如右图所示,而且最佳混练 时间有时相差较大,例如黏土砖需要 4-10min ,而镁砖需要20-25min 。

材料制备工艺课程设计

课程设计说明书PZT压电陶瓷蜂鸣器片 学院名称:材料科学与工程学院 专业班级:无机非金属材料1001班 学号: 3100703002 学生姓名:程小伟 指导教师:杨娟、周明 2014年1月

目录 前言 (3) 1压电蜂鸣片简介 (4) 1.1蜂鸣器的作用 (4) 1.2蜂鸣器的结构原理 (4) 2 陶瓷工艺设计的目的和意义 (5) 3设计任务及说明 (5) 4计算 (6) 4.1以1mol为基准对Pb0.95Sr0.05(Zr0.52Ti0.48)O3 进行计算 (6) 4.2以100g为基准对Pb0.95Sr0.05(Zr0.52Ti0.48)O3+0.5wt%Cr2O3+0.3wt%Fe2O3进行计算 (7) 5 PZT陶瓷制备的工艺流程 (7) 5.1称量与混合 (8) 5.2预烧 (8) 5.3粉体制备 (9) 5.4造粒 (10) 5.5成型 (10) 5.6排塑 (11) 5.7烧成 (12) 5.8极化 (15) 5.9焊接 (16) 5.10测试 (17) 6 工艺参数 (18) 6.1预烧工艺参数 (18) 6.2烧结工艺参数 (18) 6.3极化工艺参数 (18) 7主要设备选型 (19) 7.1球磨机 (19) 7.2 喷雾造粒干燥机 (19) 7.3滚压成型机 (20) 7.4 冲片机 (20) 7.5微波烧结装置 (20) 8总结 (21) 参考文献 (22)

前言 1880年,居里兄弟首先在单晶上发现压电效应。在1940年前,人们知道有两类铁电体:罗息盐和磷酸二氢钾盐。在1940年后,发现了BaTiO3是一种铁电体,具有强的压电效应,这是压电材料发展的一个飞跃。在1950年后,发现了压电PZT体系,具有非常强和稳定的压电效应,这是具有重大实际意义的进展。在1970年后,添加不同添加剂的二元系PZT陶瓷具有优良的性能,已经用来制造滤波器、换能器、变压器等。随着电子工业的发展,对压电材料与器件的要求就越来越高了,二元系PZT已经满足不了使用要求,于是研究和开发性能更加优越的三元、四元甚至五元压电材料。 由于PZT压电陶瓷具有优异的压电、介电和光电等电学性能,广泛地应用于电子、航天等高技术领域,用于制备传感器、换能器、存储器等电子元器件,是一种很有发展前途的功能材料。由此,国内外研究学者对PZT压电陶瓷进行了大量的研究,包括PZT压电陶瓷元器件,以PZT为基料的三元、四元压电陶瓷,PZT铁电陶瓷薄膜,PZT纤维等铁电陶瓷材料。由于PZT基压电陶瓷的制备工艺简单,原材料容易获得,价格低廉,并可方便地制成各种复杂的形状,在工程技术方面的应用非常广泛,甚至超过了压电晶体。 PZT系列压电陶瓷的研究已有即几十年的历史,取得了重大进展。其未来的热点趋势主要有:①高转换效率的PZT压电陶瓷。高能量转换效率的PZT压电陶瓷正在兴起,日本富士通研究实验室研制出了由铌酸镍铅、钛酸铅和锆酸铅组成的铅基钙钛矿型压电陶瓷,其烧结温度在1000℃以下,能量转换效率指数 K 33为80.8 %。②低温烧结PZT陶瓷材料的新技术和新工艺。开发低温烧结PZT

制造流程及工艺方案设计

目录 摘要 (3) 引言 (4) 1.任务与分析 (5) 1.1确定生产纲领 (5) 1.2确定生产类型 (5) 2.设计的目的、要求和内容 (6) 2.1设计目的 (6) 2.2设计要求 (7) 2.3设计内容 (7) 3.工艺分析 (8) 3.1技术要求 (8) 3.2零件特点 (8) 4.毛坯的选择 (9) 4.1毛坯的选择 (9) 4.2轴类零件的毛坯和材料 (9) 4.3轴类零件加工工艺规程注意点 (10) 4.4轴类零件加工的技术要求 (10) 5.基准的选择 (11)

5.1粗基准的选择原则 (11) 5.2选择精基准 (11) 6.加工余量、工序尺寸和公差的确定 (12) 6.1加工余量概述 (12) 6.2影响加工余量的因素 (12) 6.3加工余量的确定 (12) 6.4零件图的加工余量、工序尺寸和公差的确定 (12) 7.切削用量的确定 (16) 7.1粗车 (16) 7.2半精车 (16) 7.3精车 (16) 8.机床及工艺装备的确定 (17) 8.1机床的选择 (17) 8.2工艺装备的确定 (17) 9.拟定机械加工工艺路线 (17) 9.1选择定位基准 (17) 9.2表面加工方法的选择 (17) 9.3拟定工艺路线 (18) 结论 (20) 致谢 (20) 参考文献 (20)

摘要 车削加工是在车床上利用工件相对于刀具旋转对工件进行切削加工的方法。车削是最基本、最常见的切削加工方法,在生产中占有十分重要的地位车削适于加工回转表面,大部分具有回转表面的工件都可以用车削方法加工,如加工轴类零件的内外圆柱面、内外圆锥面、端面、沟槽、螺纹和回转成形面等,所用刀具主要是车刀。 在各类金属切削机床中,车床是应用最广泛的一类,约占机床总数的50%。车床既可用车刀对工件进行车削加工,又可用钻头、铰刀、丝锥和滚花刀进行钻孔、铰孔、攻螺纹和滚花等操作。按工艺特点、布局形式和结构特性等的不同,车床可以分为卧式车床、落地车床、立式车床、转塔车床以及仿形车床等,其中大部分为卧式车床。 在各种机械产品中,带有螺纹的轴类零件应用很广泛。螺纹切削是加工螺纹件效率最高、经济性最好的加工方法,用车削方法加工螺纹是机械制造业目前常用的加工方法。 在车床上车削螺纹轴可采用成形车刀或螺纹梳刀(见螺纹加工工具)。用成形车刀车削螺纹,由于刀具结构简单,是单件和小批生产螺纹工件的常用方法;用螺纹梳刀车削螺纹,生产效率高,但刀具结构复杂,只适于中、大批量生产中车削细牙的短螺纹工件。普通车床车削梯形螺纹的螺距精度一般只能达到8~9级。在专门化的螺纹车床上加工螺纹,生产率或精度可显著提高。 关键词:车削加工卧式车床螺纹轴工艺

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

材料科学与工程实验室建设规划

成都理工大学材料与化学化工学院实验室“十二·五”建设规划 系、部、室名称:材料科学与工程 编制日期:2010年3月

一、“十一·五”期间学院实验室建设概况 1、实验室设臵情况 经过多年的建设,目前本学科点基本具备课程实验教学条件,初步建立了材料组成与结构表征、材料加工与制备、材料性能测试等三大类11个专业教学实验室,总面积360m2,各实验室功能及承担教学科研工作具体情况见下表1。 表1 专业实验室设臵情况 2、实验仪器设备投入情况 除学院公用大型仪器设备外,材料科学与工程专业实验室现有设备见附表2。总价值

为2137929元。其中2006-2009年投入占70%左右,约150万元。 3、主要成绩 十一五期间,按照材料科学与工程专业内涵及我校材料科学与工程专业办学特色,构建了材料科学与工程专业实验教学体系,规划和建立了材料组成与结构表征、材料加工与制备、材料性能测试等三大类教学实验室,重点建设了材料制备实验室,材料力学性能实验室,材料显微结构实验室。 材料制备实验室主要购臵了用于无机非金属材料烧成的高温电阻电炉、微波烧结炉、气氛炉,热压烧结炉等,用于金属材料熔制的真空熔炼炉、电阻炉,以及用于金属热处理改性的真空热处理炉、渗碳炉等,基本能满足金属材料工程、无机非金属材料工程教学需要。 材料力学性能实验室主要购臵了液压万能试验机、冲击试验机、蠕变试验机、疲劳试验机、各类硬度仪等设备,基本满足结构材料教学需要。 材料显微结构实验室主要购臵了金相显微镜及金相制备相关设备,可以同时满足一个自然班的教学实验,是十一五期间建设较好的一个实验室。 这些实验室共承担结晶学与矿物学、材料科学基础、材料科学研究方法与测试技术、材料设计与制备、金属学、金属热处理原理与工艺、合金熔炼原理、材料物理性能、材料力学性能,课程设计、现代金相实验技术、材料显微组织与结构实验、特色与创新实验等专业基础和专业综合实验教学课程,同时承担每年约150名专业毕业生的毕业设计、毕业实习教学任务、每年50名左右研究生的教学和科研任务。 十一五期间,依托金刚石薄膜实验室、材料科学与技术研究所及现有专业实验室,承担项国家自然科学基金项目3项、国家科技攻关、科技支撑项目和四川省等省部级项目16项,发表论文100余篇,被3大检索收录40余篇。 总之,较好地完成了上一个五年规划中提出的各项实验室建设任务。 4、教学队伍 专业实验室设有管理人员3名(初级2名、中级1名),专职实验教师1名(热分析实验室),所有实验课程教学完全由专业教师执行。 5、存在的问题 尽管通过多年建设,材料科学与工程专业实验教学平台建设取得了明显成效, 但是随着本科教学模式改革的不断深化,工程化教育理念的不断深入,对本科生工程能力、创新能力要求的不断提高,现有实验室很难满足新的培养方案对于学生实验能力培养的要求,存在突出问题主要表现在以下几个方面:

膜结构、膜材料制作加工工艺及其流程

膜材料制作加工工艺及其流程 1、膜材料制作加工流程 1.1、膜结构应根据建造物的性质和等级、使用年限、使用功能、结构跨度、防火要求、地区自然条件及对膜材的耐用年限等要求进行膜材选用。 材料验收→放样→复核→裁剪→排版→搭接→角、顶→边→检验→清洗→包装。 1.2、应根据建筑防火等级和防火要求来选择膜材。 1.3、膜片连接处应保持高度水密性,应进行了抗剥离测试。膜片宜呈瓦状排列,由高处膜片盖住低处膜片。 1.4、膜结构在裁剪中必须考虑预张拉应力的影响,根据膜材的应变关系确定膜片的收缩量,对膜片的尺寸进行调整。 1.5、裁剪缝的应考虑膜材力学性能的正交各向异性,宜使结构主应力方向与织物纤维向

一致。 1.6、膜结构的连接节点包括膜片与膜片连接节点和膜面与支承结构连接节点。根据支承体系的不同,可分为膜面与柔性支承结构节点和膜面与刚性支承结构节点。接照所处部位不同,可分为中间节点和边界节点。 1.7、膜结构的连接构造应考虑结构的形状、荷载、制造、安装等条件,使结构安全、可靠、确保力的传递,并能适应可能的位移和转动。 1.8、膜面与支承结构连接节点必须具有足够的强度和刚度,不得先于连接的构件和膜材而破坏,也不应产生影响受力性能的变形。 1.9、膜片连接处应保持高度水密性,应进行抗剥离测试,并应防止织物磨损、撕裂。连接处的金属构件应有防止腐蚀的措施。连接构件造应充分考虑膜材蠕变的影响。 2、膜片连接的构造原则 2.1、膜片之间可用热融合、缝合或机械连接,如图: (a)热融合 (b)缝合 (c)机械连接 2.2、膜片连接处的膜材强度,应由制作单位工艺保证。当工程需要时,应由试验验证。 2.3、膜片与膜片之间的接缝位置应依据建筑要求、结构要求、经济要求等因素综合确定。 2.4、膜面的拼接纹路应根据膜材主要受力经纬方向合理安排,宜采用纬向拼接、经向拼接和树状拼接三种方法。 2.5、屋面膜片宜反搭接,搭接接缝应考虑防水要求,见图:

耐火材料的生产工艺

2010级化学班孟享洁2010061415 耐火材料的制备 耐火材料是一种耐火度不低于1580℃,有较好的抗热冲击和化学侵蚀的能力、导热系数低和膨胀系数低的无机非金属材料。其主要是以铝矾土、硅石、菱镁矿、白云石等天然矿石为原料经加工后制造而成的。其应用是用作高温窑、炉等热工设备的结构材料,以及工业用高温容器和部件的材料,并能承受相应的物理化学变化及机械作用。主要是广泛用于冶金、化工、石油、机械制造、硅酸盐、动力等工业领域,在冶金工业中用量最大,占总产量的50%~60%。耐火材料的发展在国民工业生产的应用中有着举足轻重的地位。中国耐火材料的发展历史悠久,具有了较为完整的生产工艺,其当代的发展已经是能独立研发各种性能较为优越的耐火材料,但依然存在各种缺点和不足。其制备流程图如下所示: 耐火材料制备原理: 1.耐火原料的加工 原料的加工主要包括原料的精选提纯.均化或合成;原料的干燥和煅烧;原料的破粉碎和分级。 原料的精选提纯和均化为了提高原料的纯度,一般需经拣选或冲洗,剔除杂质,有的还需要采用适当选矿方法进行精选提纯。有的原料中成分不均,需要均化。 原料的煅烧:为了保证原料的高温体积稳定性。化学稳定性和高强度,多数天然原料和合成原料,需经高温煅烧制成熟料或熔融成熔块。烧结温度T约为其熔点的0.7~0.9倍。 原料的破粉碎和分级:原料的破粉碎的目的是按照配料要求制成不同粒级的颗粒及细粉,进行级配,使多组分间混合均匀,以便相互反应,并尽可能获得

致密的或具有一定粒状结构的制品胚体。 2耐火材料成型工艺 耐火材料借助于外力或模型,成为具有一定尺寸。形状和强度的胚体或制品的过程。压制或成型是耐火材料生产工艺过程中的重要环节。按胚料含水量的多少,分为半干法.可塑法.注浆法。 3耐火材料的干燥 干燥过程可分为三个阶段。在此之前有一个加热阶段。一般加热阶段时间很短,胚体温度上升到湿球温度。第二阶段是降速阶段,随着干燥时间的延长,或胚体含水量的减少,胚体表面的有效蒸发面积逐渐减少,干燥速度逐渐降低。第三阶段干燥速度逐渐接近零,最终胚体水分不再减少。 4耐火材料的烧成 烧成是耐火制品生产中最后一道工序。制品在烧成过程中发生一系列物理化学变化,随着这些变化的进行,气孔率降低,体积密度增大,使胚体变成具有一定尺寸.形状和结构强度的制品。 耐火材料的生产工艺 1原料的加工 原料的加工主要包括原料的精选提纯.均化或合成;原料的干燥和煅烧;原料的破粉碎和分级。 2配料与混练 配料组成:(1).化学组成:主成分,易熔杂质总量和有害杂质量的规定(2).颗粒配比(3).常温结合剂(4).原料中水分和灼减的换算。配料方法:重量:磅秤、自动称量称、称量车、电子称、光电数字显示称。容积:带式、板式、槽式、圆盘式、螺旋式、振动给料机。混练:使不同组分和粒度的物料同的物料同

课程设计模板(材料合成与制备方法课程设计)

专 业 课 程 设 计 题 目: 年产1200万支四磨汤口服液生产工艺设计 院 部: 化 学 化 工 学 院 专业: 材料化学 班级: 1101 学号: 学生姓名: 导师姓名: 李 谷 才 完成日期: 2014年6月21日

课程设计任务书 院部:化学化工学院专业:材料化学班级:1101 姓名: 指导教师: 教研室主任:黄先威 院教学院长: 2014年6月21日

目录 1 引言 (1) 2年产1200万支四磨汤口服液生产工艺设计 (2) 2.1 四磨汤的制备方法 (2) 2.1.1 处方设计 (2) 2.1.2 四磨汤制备方法 (2) 2.2 四磨汤生产工艺设计 (2) 2.2.1 原料预处理 (2) 2.2.2 浸出 (4) 2.2.3浸出液的净化 (4) 2.2.4浓缩配液 (4) 2.2.5分装灭菌 (4) 2.2.6包装 (5) 2.3 物料衡算及设备选择 (6) 2.3.1 原材料预算 (6) 2.3.2生产设备 (6) 2.4生产过程要求与措施 (8) 2.5排污方面 (8) 2.6酒精回收 (9) 2.7劳动组织、岗位定员、工时定额与产品生产周期 (9) 2.7.1劳动组织 (9) 2.7.2 岗位定员 (10) 2.7.3工时定额 (10) 3 总结 (11) 参考文献 (11)

1引言 四磨汤由木香,槟榔,枳壳,乌药四味药组成[1],药物纽成虽简单,但临床应用较多且取得了不错的疗效。后世医家对其临床应用有很多研究和阐述。近几年来的大量资料报道表明,该方在临床上的应用范围日益广泛,充分体现了祖国医学的博大精深[2,3]。四磨汤原出自于宋代严用和著《济生方》,由人参、乌药、槟榔、沉香组成。其功用为破滞降逆,补气扶正。方中沉香降气平喘,槟榔行气破滞,乌药调肝顺气,人参补气扶正。用法采取浓磨温服,则力专效速,故方以四磨汤命名[4]。现在临床上所用四磨汤口服液主要组成一般为木香,槟榔,枳壳,乌药[5]。《成方便读》日:“若纯实无虚者,即可去参加枳壳。”《本草纲目》云:“木香乃三焦气分之药,能升降诸气。”故现在一般所用四磨汤偏于行气降逆,破滞消满。该方药物组成虽简单,但在临床上的应用已涉及到内外妇儿各科且取得了较好的疗效。本品为棕黄色至棕色的澄清液体;气芳香,味甜、微苦,具有顺气降逆,消积止痛。用于婴幼儿乳食内滞证,症见腹胀、腹痛、啼哭不安、厌食纳差、腹泻或便秘;中老年气滞、食积证、症见脘腹胀满、腹痛、便秘以及腹部手术后促进肠胃等功能[6]。 基于四磨汤在医疗上的良好功效,故对其生产工艺进行研究设计,以期能够获取更为方便有效的生产方式。设计内容主要分为三部分,第一部分主要是四磨汤生产的工艺流程;第二部分主要为生产过程的物料衡算和设备选择;第三部分为生产过程的一些标准及人事安排等。

设计材料与工艺试题(含答案)

思考题: 1.什么是材料的感觉物性? 指通过人的感知系统对材料作出的综合印象,包括人的感觉系统因生理刺激对材料做出的反映,或由人的知觉系统从材料表面得出的信息。 2.材料的质感及其构成。 是指物体表面的构成材料和构成形式作用于人的视觉和触觉而产生的心理反映,即表面质地的粗细程度在视觉和触觉上的直观感受。 包括:形态、色彩、质地和肌理等 肌理:材料本身的肌体形态和表面纹理。是质感的形式要素,反映材料表面的形态特征,使材料质感体现更具体形象。 质地:是质感的内容要素。是物面的理化特征。 构成:质感的表情、质感的物理构成、 3.材料按照其化学组成可以分为金属材料、非金属材料、复合材料 和天然材料四类。 4.材料基本性能包括工艺性能和使用性能。 5.材料的工艺性能包括切削加工工艺性能、铸造工艺性能、锻造工艺性能、焊接工艺性能、热处理工艺性能等。 6.工业产品造型材料应具备的特殊性能包括感觉物性、加工成型性、表面工艺性和环境耐候性。 7. 材料的使用性能有哪些?其主要的参数指标分别是什么? 主要包含:材料的力学性能和材料的物理化学性能 力学性能包括:1.强度-抵抗塑性变形和破坏的能力。2.弹性-产生弹性变形的能

力。3.塑性-产生永久变形而不破坏的能力。4.硬度-抵抗其他物体压入的能力。5冲击韧性6疲劳强度7蠕变8松弛 8.钢铁材料按照其化学组成可以分为钢材、纯铁和铸铁三大类;其中钢材按照化学组成可以分为碳素钢和合金钢两大类; 9. 铸铁材料按照石墨的形态可以分为可锻铸铁、灰口铸铁和球墨铸铁三种。 10.变形铝合金材料主要包括锻铝、硬铝、超硬铝和防锈铝合金。 11. 金属制品的常用铸造工艺包括砂型铸造、熔模铸造和金属型铸造等。 12. 金属材料的表面处理技术包括表面改质处理、表面精整加工和表面被覆处理。 13. 金属件的连接工艺可以分为机械性连接、金属性连接和化学性连接三种类型。(“。”表示对,“?”表示错) 14. T8A表示含碳量约为0.8%的高级优质碳素结构钢。(错)(碳素工具钢) 15.冷加工黄铜俗称“七三黄铜”,热加工黄铜俗称“六四黄铜”。(对) 16.金属材料的热处理工艺中,淬火的目的是提高材料的硬度和耐磨性。(对) 17.铝及铝合金通过化学氧化生成Al2O3氧化膜的工艺俗称“发蓝”。(?)(磷酸盐) 18.从材料性能考虑,要设计具有切削硬质材料功能的产品部件,以下钢铁材料 中最为适宜的是T12A ,要加工制作弹簧零件,最适宜选用60Mn 。 A. 60M n B. T12A C. T8A D.

生产工艺流程

生产工艺流程 一、滴定管生产 玻璃原材料→剪裁到适当长度→经过碎火→慢慢吹制定形→拉伸成形→降温冷确→检验→不合格产品→合格产品→合格的成品→包装→入库 二、水电解演示器 玻璃原材料→剪裁到适当长度→经过碎火→慢慢吹制定形→拉伸成形→降温冷确→检验→不合格产品→合格产品→合格的成品→包装→入库 三、抽气管 玻璃原材料→剪裁到适当长度→经过碎火→慢慢吹制定形→拉伸成形→降温冷确→检验→不合格产品→合格产品→合格的成品→包装→入库 四、气体发生器

玻璃原材料→剪裁到适当长度→经过碎火→慢慢吹制定形→拉伸成形→降温冷确→检验→不合格产品→合格产品→合格的成品→包装→入库 产品合格检验规程 表1 检验项目

一、水电解器检验的内容: 1.外观要求:由支架、底座、H形电解管、胶塞、铅电极、导线、连接胶管等组成,检验外观是否有破损,不规则变形等情况 形玻璃电解管要求95# 3.产品全高为340±3 mm 形直径15± mm 5.漏斗直径≥32 mm 二、气体发生器检验的内容: 1. 全高:306±15 mm 2. 歪颈垂直度≥3 mm 3. 球斗气泡直径≥5 mm

4. 球斗节瘤最大直径≦3 mm 5. 急冷温差≥80℃ 6. 耐碱等级≦2耐酸等级≦2耐水等级≦3 三、抽气管检验的内容: 1. 内外管应在同一轴线上,内管喷口正对下管口,,两口间距不大于3mm 2. 内管喷口磨平,不允许有斜口和缺口 3. 外观节瘤最大直径小于2mm,数量不超过3个,结石最大至今小于,数量不超过2个 四、滴定管检验内容: 1. 酸式,25ml 采用透明玻璃制造 2. 耐水等级≦3 3. 铜红扩散印线,容量误差± 4. 全高570mm 5. 壁厚± 6. 活塞2#玻璃制

烧结钕铁硼的生产工艺流程要点

烧结钕铁硼的生产工艺流程 发布日期:2012-03-30 浏览次数:167 核心提示:本文对稀土永磁材料的发展过程、性能要求、主要类型等方面做了介绍,着重介绍了烧结钕铁硼磁体的生产工艺流程,最后对目前烧结钕铁硼在生产、科研、生活等各领域中的应用进行了总结,并对其发展方向进行了思考,指出应深入研究烧结钕铁硼磁体生产工艺,提高我国钕铁硼磁体的产品质量,才能增加企业自身的竞争力。 1.1稀土永磁材料概述 从广义上讲,所有能被磁场磁化、在实际应用中主要利用材料所具有的磁特性的一类材料成为磁性材料。它包括硬磁材料、软磁材料、半硬磁材料、磁致伸缩材料、磁光材料、磁泡材料和磁制冷材料等,其中用量最大的是硬磁材料和软磁材料。硬磁材料和软磁材料的主要区别是硬磁材料的各向异性场高、矫顽力高、磁滞回线面积大、技术磁化到饱和需要的磁场大。由于软磁材料的矫顽力低,技术磁化到饱和并去掉外磁场后,它很容易退磁,而硬磁材料由于矫顽力较高,经技术磁化到饱和并去掉磁场后,它仍然长期保持很强的磁性,因此硬磁材料又称为永磁材料或恒磁材料。古代,人们利用矿石中的天然磁铁矿打磨成所需要的形状,用来指南或吸引铁质器件,指南针是中国古代四大发明之一,对人类文明和社会进步做出过重要贡献。近代,磁性材料的研究和应用始于工业革命之后,并在短时间内得到迅速发展.现今,对磁性材料的研究和应用无论在广度或者深度上都是以前无可比拟的,各类高性能磁性材料,尤其是稀土永磁材料的开发和应用对现代工业和高新技术产业的发展起着巨大的推动作用。 1.2永磁材料性能要求 永磁材料的主要性能是由以下几个参数决定的 1.2.1最大磁能积:最大磁能积是退磁曲线上磁感应强度和磁场强度乘积的最大值。这个值越大,说明单位体积内存储的磁能越大,材料的性能越好。 1.2.2饱和磁化强度:是永磁材料极为重要的参数。永磁材料的饱和磁化强度越高,它标志着材料的最大磁能积和剩磁可能达到的上限值越高。

原材料使用及生产工艺流程说明

原材料使用及生产工艺 流程说明 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

原材料使用及生产工艺流程说明 第一章:原材料明细 婴儿纸尿裤、纸尿片的组成材料主要为:非织造布、进口原生纯木浆、高分子吸水树脂(SAP)、湿强纸、仿布防漏流延膜、热熔胶、左右腰贴、前腰贴、弹性PU等。 一.原材料使用要求:所有原材料外观应洁净,无油污、脏污、蚊虫、异物;并且符合环保要求;无毒、无污染、材料可降解;卫生指标符合GB15979 《一次性使用卫生用品卫生标准》规定要求。 二.原材料使用明细: 非织造布:主要用于产品的面层、直接与婴儿皮肤接触、可选的材料有无纺布或竹炭纤维; 进口原生木浆:主要作用是快速吸收尿液;可选材料主要为原生针叶木浆。已经考察的品牌有美国的石头、白玉、惠好、IP、瑞典的女神、俄罗斯的布阔等; 高分子吸水树脂:主要作用是吸收、锁住水分;主要选择日本住友和德国巴斯夫; 湿强纸:卫生包装用纸,含有湿强剂;主要用于包覆绒毛浆和SAP的混合物,便于后续工艺以及防止吸收体分解; 仿布防漏流延膜:主要用作产品的底层;防止尿液渗漏污染衣物或床上用品;主要参考的材料是台湾的复合透气流延膜; 热熔胶:用于任意两种材料的复合;主要选用德国汉高的产品或国民淀粉;

左右腰贴和前腰贴:主要用于婴儿纸尿裤上、让产品具备一定的形状;主要采用美国3M公司产品; 弹性PU:主要作用是让产品更贴身、防止尿液后漏;首选产品为美国3M 弹性PU 。 第二章:工艺流程 一.工艺流程 木浆拉毛——SAP添加——湿强纸包覆——吸收体内切——面层复合——前腰贴复合——底膜复合——左右贴压合——主体折合——产品外切——三折——成品输送——包装——装箱——检验入库——结束 二.流程说明 木浆拉毛:原生木浆经过专用设备拉毛成为绒毛浆;才具备快速吸水的能力; SAP添加:准确控制SAP的施加量,使其均匀混合在绒毛浆里,增加吸收体的吸水速度;利用SAP的锁水特性使混合物吸水后不会反渗; 湿强纸包覆:为了工艺的流畅性以及吸收体的整体性,利用湿强纸的特性对绒毛浆和SAP的混合物进行包覆; 吸收体内切:对经过湿强纸包覆的混合装物体进行分切;使其具备吸收体的形状; 面层复合:将面层材料(无纺布或竹炭纤维)用热熔胶复合在吸收体上,是吸收体不直接与皮肤接触; 前腰贴复合:在底膜和吸收体符合前,为了工艺的流畅性首先把前腰贴复合在底膜上;

耐火材料制备实用工艺,

耐火材料制备原理及工艺 摘要耐火材料是一种耐火度不低于1580℃,有较好的抗热冲击和化学侵蚀的能力、导热系数低和膨胀系数低的无机非金属材料。其主要是以铝矾土、硅石、菱镁矿、白云石等天然矿石为原料经加工后制造而成的。其应用是用作高温窑、炉等热工设备的结构材料,以及工业用高温容器和部件的材料,并能承受相应的物理化学变化及机械作用。主要是广泛用于冶金、化工、石油、机械制造、硅酸盐、动力等工业领域,在冶金工业中用量最大,占总产量的50%~60%。耐火材料的发展在国民工业生产的应用中有着举足轻重的地位。中国耐火材料的发展历史悠久,具有了较为完整的生产工艺,其当代的发展已经是能独立研发各种性能较为优越的耐火材料,但依然存在各种缺点和不足。 关键词耐火材料分类,原理工艺,前景 前言耐火材料是耐火度不低于1580℃的材料。一般是指主要由无机非金属材料构成的材料和制品,耐火度是指材料在高温作用下达到特定软化程度时的温度,它标志材料抵抗高温作用的性能,是高温技术的基础材料。没有耐火材料就没有办法接受燃料或发热体散发的大量热,没有耐火材料制成的容器也没有办法使高温状态的物质保持一定时间。随着现代工业技术的发展,不但对耐火材料质量要求越来越高,对耐火材料有特殊要求的品种越来越多,形状越来越复杂。其成产流程大多如图1-1。 图1-1耐火材料的生产流程[1] 1耐火材料的分类和性能要求 1.1分类 1.1.1按组成来分 耐火材料可分为硅质制品、硅酸铝质制品、镁质制品、白云石制品、铬质制品、锆质制品、纯氧化制品及非纯氧化物制品等。 1.1.2按工艺方法来划分

可分为泥浆浇注制品、可塑成形制品、半干压成形的制品、由粉末非可塑料捣固成形制品、由熔融料浇注的制品、经喷吹或拉丝成形的制品及由岩石锯成的天然制品等。 1.1.3根据耐火度来分 可分为普通耐火材料制品,其耐火度为1580℃~1770℃;高级耐火材料制品,其耐火度为1770℃~2000℃;特级耐火材料制品。其耐火度为2000℃℃以上。1.1.4根据耐火材料制品的外形来分 可分为定形耐火材料制品,如烧成砖。电熔砖。耐火隔热砖以及实验和工业用坩埚。器皿等特殊制品;不定形耐火材料制品,简称散装料,在使用地点才制成所需要的形状和进行热处理,如浇注料、捣打料、投射料、耐火泥等;耐火纤维,如铝纤维、硅酸铝纤维等,使用时一般经过加工成毯、毡、板、绳。组合键和纤维块制品。 1.2基本性能要求 耐火材料的性能表现在诸多方面,其中它的物理性能包括结构性能、热学性能、力学性能、使用性能和作业性能。结构性能包括气孔率、体积密度、吸水率、透气度、气孔孔径分布等。热学性能包括热导率、热膨胀系数、比热、热容、导温系数、热发射率等。力学性能包括耐压强度、抗拉强度、抗折强度、抗扭强度、剪切强度、冲击强度、耐磨性、蠕变性、粘结强度、弹性模量等。使用性能包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗渣性、抗酸性、抗碱性、抗水化性、抗CO侵蚀性、导电性、抗氧化性等。作业性包括稠度、塌落度、流动度、可塑性、粘结性、回弹性、凝结性、硬化性等。其中耐火度是耐火材料的最主要的性能技术指标,耐火度越高,其质量也好[2]。 耐火材料的重要性体现在:影响炉子生产率,影响产品质量,影响炉子寿命,以及影响产品成本。 2传统耐火材料的生产工艺 2.1原料的加工

生产加工工艺设计流程及加工工艺设计要求

生产工艺主讲人:吴书法 生产加工工艺流程及加工工艺要求 一,工艺流程表 制造工艺流程表

注:从原材料入库到成品入库,根据产品标准书的标准要求规定,全程记录及管理。 二,下料工艺 我们公司下料分别使用:①数控激光机下料②剪板机下料③数控转塔冲下料④普通冲床下料⑤芬宝生产线下料⑥火焰切割机下料⑦联合冲剪机下料 今天重点的讲一下:①②

1两台激光下料机。型号分别为:HLF-1530-SM、HLF-2040-SM 2 操作步骤 2.1 开机 2.1.1 打开总电源开关 2.1.2 打开空气压缩机气源阀门,开始供气 2.1.3 打开稳压电源 2.1.4 打开机床电源 2.1.5 打开冷干机电源,待指针指在绿色区间内,再打开冷干机气阀 2.1.6 打开切割辅助气体(气体压力参照氧气、氮气的消耗附图) 2.1.7 待数控系统开机完成,松开机床操作面板上的急停按钮,执行机床回零操作 2.1.8 打开激光器电源开关,(夏天等待30分钟)打开水冷机,待水温在“低温21℃,高温31℃”,再打开机床操作面板上的“激光开关”按钮,等待按钮上方LED灯由闪烁变为常亮。开机完成。 2.2 常规操作步骤 2.2.1 在【JOG】状态下,按下【REF.POINT】,再按回零键,执行回零操作 2.2.2 在2.1生效的情况下,按下“标定”键,执行割嘴清洁和标定程序。 2.2.3 根据相应的板材,调节焦距位置、选择合适大小的割嘴,然后调整割嘴中心。 2.2.4 打开导向红光,用手轮或控制面板,将切割头移动到板材上方起点位置,关闭导向红光,关闭防护门。 2.2.5 打开所用切割程序,确定无误后一次点击“AUTO”,“RESET”,“CYCLE START"。 2.2.6 切割结束将 Z 轴抬高再交换工作台,取出工件摆放整齐,做好标识。

耐火材料基本知识

第一章耐火材料基本知识 1.什么是耐火材料 耐火材料一般是指耐火度在1580℃以上的无机非金属材料。它包括天然矿石及按照一定的目的要求经过一定的工艺制成的各种产品。具有一定的高温力学性能、良好的体积稳定性,是各种高温设备必需的材料。 2.耐火材料是怎样分类的 耐火材料的分类方法有很多。但主要的有按化学成分划分:可以分为酸性、碱性和中性;按耐火度划分:可以分为普通耐火材料(1580—1770~C)、高级耐火材料(1770—2000℃)、特级耐火 材料(2000~C以上)和超级耐火材料(大于3000~C)四大类;按 加工制造工艺划分:可分为烧成制品、熔铸制品、不烧制品;按用途划分:可分为高炉用、平炉用、转炉用、连铸用、玻璃窑用、水泥窑用耐火材料等;按外观划分:可分为耐火制品、耐火泥、不定形耐火材料;按形状和尺寸划分可分为:标型、普型、异型、特型和超特型制品;按成型工艺划分:可分为天然岩石切锯、泥浆浇注、可塑成型、半干成型和振动、捣打、熔铸成型等制品;按化学一矿物组成划分:可分为硅酸铝质(粘土砖、高铝砖、半硅砖)、硅质(硅砖、熔融石英烧制品)、镁质(镁砖、镁铝砖、镁 铬砖);碳质(碳砖、石墨砖)、白云石质、锆英石质、特殊耐火 材料制品(高纯氧化物制品、难熔化合物制品和高温复合材料)。 5.经常使用的耐火材料有哪些

耐火材料一般使用在冶金、玻璃、水泥、陶瓷、机械热加工、 石油化工、动力和国防等工业部门。 经常使用的普通耐火材料有硅砖、半硅砖、粘土砖、高铝砖、 镁砖等。· 经常使用的特殊耐火材料有AZS砖、刚玉砖、直接结合镁铬 砖、碳化硅砖、氮化硅结合碳化硅砖,氮化物、硅化物、硫化物、 硼化物、碳化物等非氧化物耐火材料;氧化钙、氧化铬、氧化铝、 氧化镁、氧化铍等耐火材料。 经常使用的隔热耐火材料有硅藻土制品、石棉制品、绝热板 等。 经常使用的不定形耐火材料有补炉料、耐火捣打料、耐火浇 注料、耐火可塑料、耐火泥、耐火喷补料、耐火投射料、耐火涂 料、轻质耐火浇注料、炮泥等。 6.制造普通耐火材料的工艺是什么 制造普通耐火材料的生产工艺一般包括原料的煅烧、原料的 拣选、破粉碎,配料、混合、困料、成型、干燥、烧成等工序。但 目前的耐火材料厂往往是购进煅烧好的熟料,所以原料的煅烧已 不再是普通耐火材料生产厂考虑的问题。 7.耐火材料应该具备什么条件 耐火材料应具有高的耐火度、良好的荷重软化温度、高温体 积稳定性、热震稳定性及良好的抗渣性。此外,还要求耐火材料 具有一定的耐磨性。对于耐火制品,除上述要求外,还要求其外形规整,尺寸准确。对某些特殊领域使用的耐火材料,还要求其

材料合成与制备—韩惠敏版

1、共沉淀法 沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。 共沉淀法是指在溶液中含有两种或多种阳离子,它们以均相存在于溶液中,加入沉淀剂,经沉淀反应后,可得到各种成分的均一的沉淀,它是制备含有两种或两种以上金属元素的复合氧化物超细粉体的重要方法。 2、水热合成法 水热与溶剂热合成:在一定温度(100~1000℃)和压力(1~100MPa)条件下,利用溶液中物质化学反应所进行的合成。 水热合成:在水体系中进行。即在一定温度(100~1000℃)和压力(1~100MPa)条件下,利用水溶液中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反 应处于分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。又 由于水热反应的均相成核及非均相成核机理与固相反应的扩散机制不同, 因而可以创造出其它方法无法制备的新化合物和新材料。它的优点:所的 产物纯度高,分散性好、粒度易控制。 3、化学气相沉积(CVD) 气相沉积:利用气态或蒸气态的物质在气相或气固界面上反应生成固态沉积物的一类技术化学气相沉积:热CVD,等离子体CVD,激光CVD 一种或数种反应气体在热、激光、等离子体等作用下发生化学反应析出超微粉的方法,称作化学气相沉积法(是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程)。 4、Ostwald Ripening Ostwald ripening是一种材料生长的机理,简单点说就是材料从分子阶段开始,首先形成一定尺寸的晶核,然后所有的分子都依附于晶核生长,这个阶段不会再形成新的晶核了,只是晶核生长的越来越大。最经典的一种,就是“从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶”。 5、Oriented attachment ripening 多个取向不一致的单晶纳米颗粒,通过粒子的旋转,使得晶格取向一致,然后通过定向附着生长(oreinted attachment)使这些小单晶生长成为一个大单晶。(Banfiled又提出了一种新的晶体生长机制也能形成单晶结构,oriented ttachment, 多个取向不一致的单晶纳米颗,通过粒子的旋转,使得晶格取向一致,向后通过定向附着生长(oreinted attachment)使这些小单晶生长成为一个大单晶,当然定向附着的过程出难免会出现一些位错和缺陷,这种生长机理形成的单晶的特点同Ostwald ripening不同,OR形成的单晶大多是规则的,给材料本身晶体结构相关,而OA形成的单晶结构在形貌上则没有限制,任何形状和结构的单晶材料都能通过此机理形成) 6、介电常数 介电常数 :描述分子被电场极化的能力,也可以认为是样品阻止微波能通过能力的量度(或介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介 [导读]:高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。 高炉冶炼原理简介: 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 高炉冶炼工艺流程简图: [高炉工艺]高炉冶炼过程: 高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中, 定期从铁口、渣口放出。 高炉冶炼工艺--炉前操作

相关文档