文档库 最新最全的文档下载
当前位置:文档库 › 高中数学知识点:有理数指数幂的运算

高中数学知识点:有理数指数幂的运算

高中数学知识点:有理数指数幂的运算
高中数学知识点:有理数指数幂的运算

高中数学知识点:有理数指数幂的运算

1.有理数指数幂的运算性质

()Q b a ∈>>βα,00,,

(1);a a a αβαβ+?=

(2)();a a αβαβ=

(3)();ab a b ααα=

当a>0,p 为无理数时,a p 是一个确定的实数,上述有理数指数幂的运算性质仍适用.

要点诠释:

(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;

(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;

(3)幂指数不能随便约分.如2

142)4()4(-≠-.

2.指数幂的一般运算步骤

有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a 2-b 2=(a -b )(a +b ),(a ±b )2=a 2±2ab +b 2,(a ±b )3=a 3±3a 2b +3ab 2±b 3,a 3-b 3=(a -b )(a 2+ab +b 2),a 3+b 3=(a +b )(a 2-ab +b 2)的运用,能够简化运算.

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 22 1(0,0)x y a b a b -=>> 22 22 1(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M(0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M(0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c =26,∴c =13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 331916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e、a、b 、c四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c,直线l过点(a,0)和(0,b ),且点(1, 0)到直线l的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e的取值范围。 解:直线l 的方程为 1x y a b -=,级bx +ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高中数学双曲线抛物线知识点总结

高中数学双曲线抛物线知 识点总结 The Standardization Office was revised on the afternoon of December 13, 2020

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a<)的点的轨 迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a => (1)c e e a => 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲 线22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 5 4 ; (2) 焦距为26,且经过点M (0,12); _x _y _x _y

(3) 与双曲线22 1916 x y - =有公共渐进线,且经过点() 3,23A -。 解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==5 4 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x - =。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴222144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和 (0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥ 4 5 c 。求双曲线的离心率e 的取值范围。

高中数学复习-抛物线知识点归纳总结

高中数学复习-抛物线 抛 物 线 ) 0(22>=p px y )0(22>-=p px y ) 0(22>=p py x )0(22>-=p py x 定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。 {MF M =点M 到直线l 的距离} 范围 0,x y R ≥∈ 0,x y R ≤∈ ,0x R y ∈≥ ,0x R y ∈≤ 对称性 关于x 轴对称 关于y 轴对称 焦点 (2 p ,0) (2 p - ,0) (0, 2 p ) (0,2 p - ) 焦点在对称轴上 顶点 (0,0)O 离心率 e =1 准线 方程 2 p x - = 2 p x = 2 p y - = 2 p y = 准线与焦点位于顶点两侧且到顶点的距离相等。 顶点到准线的距离 2 p 焦点到准线的距离 p 焦半径 11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 1. 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,有两不同交点; Δ=0, 直线l 与抛物线相切,有一个切点; Δ<0,直线l 与抛物线相离,无公共点。 x y O l F x y O l F l F x y O x y O l F

(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2 12 212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1 或 212 2122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点坐标 ),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点 为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)

高中抛物线知识点归纳总结与练习题及答案

一. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 二. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0( p ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0 ?,以及2121,x x x x +,还可进一步求出

b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 1. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2 122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y = =+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存 在,且不等于零)

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

研究报告高中数学知识点大全—圆锥曲线

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线, 两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反; ②标准方程中一次项的字母与对称轴和准线方程的字母一致; ③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。 3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为 圆是椭圆在e=0时的特例。当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。

高考数学-抛物线知识点

高考数学-抛物线 抛 物 线 ) 0(22>=p px y )0(22>-=p px y ) 0(22>=p py x )0(22>-=p py x 定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。 {MF M =点M 到直线l 的距离} 范围 0,x y R ≥∈ 0,x y R ≤∈ ,0x R y ∈≥ ,0x R y ∈≤ 对称性 关于x 轴对称 关于y 轴对称 焦点 (2 p ,0) (2 p - ,0) (0, 2 p ) (0,2 p - ) 焦点在对称轴上 顶点 (0,0)O 离心率 e =1 准线 方程 2 p x - = 2 p x = 2 p y - = 2 p y = 准线与焦点位于顶点两侧且到顶点的距离相等。 顶点到准线的距离 2 p 焦点到准线的距离 p 焦半径 11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 1. 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,有两不同交点; Δ=0, 直线l 与抛物线相切,有一个切点; Δ<0,直线l 与抛物线相离,无公共点。 x y O l F x y O l F l F x y O x y O l F

(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2 12 212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1 或 212 2122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点坐标 ),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点 为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)

高中数学选修2-1抛物线知识点与典例精析

高中数学选修2-1抛物线知识点与典例精析 知识点一抛物线的概念 平面内与一个定点F和一条定直线l(l不经过点F)距离________的点的轨迹叫做抛物线.点F叫做抛物线的________,直线l叫做抛物线的________. 知识点二抛物线的标准方程与几何性质 规律与方法:解决直线与抛物线位置关系问题的常用方法 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.

(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式. (3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法. 提醒:涉及弦的中点、斜率时,一般用“点差法”求解. 例1已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与点P 到该抛物线的准线的距离之和的最小值为() A.17 2B.3C.5D. 9 2 例2(2015年10月学考)设抛物线y2=2px(p>0)的焦点为F,若F到直线y=3 x的距离为3,则p等于() A.2B.4C.23D.4 3 例3(2016年10月学考)已知抛物线y2=2px过点A(1,2),则p=________,准线方程是________________. 例4已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(4,-22),则它的标准方程为________. 例5已知动圆M与直线y=2相切,且与定圆C:x2+(y+3)2=1外切,则动圆圆心M的轨迹方程为________. 例6已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于 A、B两点,且|AB|=5 2p,求AB所在直线的方程.

高三数学第一轮复习:抛物线的定义、性质及

高三数学第一轮复习:抛物线的定义、性质及标准方程 【本讲主要内容】 抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质 【知识掌握】 【知识点精析】 1. 抛物线定义: 平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当01时为双曲线。 2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表): 其中为抛物线上任一点。 3. 对于抛物线上的点的坐标可设为,以简化运算。 4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有,,,,,, 。 说明: 1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。 2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。 3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。 【解题方法指导】 例1. 已知抛物线的顶点在坐标原点,对称轴为轴,且与圆相交的公共弦长等于,求此抛物线的方程。 解析:设所求抛物线的方程为或 设交点(y1>0) 则,∴,代入得

∴点在上,在上 ∴或,∴ 故所求抛物线方程为或。 例2. 设抛物线的焦点为,经过的直线交抛物线于两点,点在抛物线的准线上,且∥轴,证明直线 经过原点。 解析:证法一:由题意知抛物线的焦点 故可设过焦点的直线的方程为 由,消去得 设,则 ∵∥轴,且在准线上 ∴点坐标为 于是直线的方程为 要证明经过原点,只需证明,即证 注意到知上式成立,故直线经过原点。 证法二:同上得。又∵∥轴,且在准线上,∴点坐标为。于是 ,知三点共线,从而直线经过原点。 证法三:如图, 设轴与抛物线准线交于点,过作,是垂足 则∥∥,连结交于点,则

高中抛物线知识点总结

高中抛物线知识点总结 高中抛物线知识点总结 平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线。下面是关于高中抛物线知识点总结的内容,欢迎阅读! 高中数学抛物线知识点总结(一) 抛物线方程 1 设,抛物线的标准方程、类型及其几何性质: 图形 焦点 准线 范围 对称轴轴轴顶点(0,0)离心率 焦点 注:①顶点 . ②则焦点半径 ;则焦点半径为 . ③通径为2p,这是过焦点的所有弦中最短的. ④(或)的参数方程为 (或

)(为参数). 高中数学抛物线知识点总结(二) 抛物线的性质(见下表): 抛物线的焦点弦的性质: 关于抛物线的几个重要结论: (1)弦长公式同椭圆. (2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部 P(x0,y0)在抛物线外部 (3)抛物线y2=2px上的点P(x1,y1)的切线方程是 抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+ (4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是 (5)过抛物线y2=2px上两点 的两条切线交于点M(x0,y0),则 (6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F. 利用抛物线的几何性质解题的方法: 根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明. 抛物线中定点问题的解决方法: 在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与

高中数学专题_抛物线

抛物线专题复习 标准方程 图形 顶点 对称轴 焦点 准线 离心率 焦半径 焦点弦公式 () 022 >=p px y x y O F l () 0,0 x 轴 ??? ??0,2p 2 p x -= 1=e 0 2x p PF += )(21x x p AB ++= () 022>-=p px y x y O F l () 0,0 x 轴 ? ?? ??-0,2p 2 p x = 1=e 02 x p PF -= )(21x x p AB +-= () 022>=p py x () 0,0 y 轴 ??? ??2,0p 2 p y -= 1=e 02y p PF += )(21y y p AB ++= () 022>-=p py x () 0,0 y 轴 ? ?? ? ? -2,0p 2 p y = 1=e 0 2 y p PF -= )(21y y p AB +-= 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型

高中数学双曲线抛物线知识点总结

双曲线 平面到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 221(0,0)x y a b a b -=>> 22 2 21(0,0)y x a b a b -=>> 简图 围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x 轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22 2 21x y a b -=共渐近线的方程可设为2222(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 233 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

高中数学抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2124 p x x = 2 12y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

高中数学理科选修2-1知识点总结

第一章:命题与逻辑结构 知识点: 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题。其中一个命题称为原命题,另一个称为原命题的逆否命题。 若原命题为“若p ,则q ”,则它的否命题为“若q ?,则p ?”。 6、四种命题的真假性: 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假 假 假 假 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题. 对一个命题p 全盘否定,得到一个新命题,记作p ?. 若p 是真命题,则p ?必是假命题;若p 是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表示. 含有全称量词的命题称为全称命题.

重点高中数学必修2-1抛物线教学讲义(精品)

精心整理 03-抛物线 【知识点】 一、抛物线的标准方程、类型及其几何性质(): 轴轴 1.的弦,若,则 (1)+,,- (3)弦长,,即当 (4)若,则= (5)+= 2.通径:过抛物线的焦点且垂直于对称轴的弦。过焦点的所有弦中最短的弦,也被称做通径.其长度为2p. 3.的参数方程为(为参数),的参数方程为(为参数). 4、弦长公式: 三、抛物线问题的基本方法 1.直线与抛物线的位置关系

2.直线,抛物线, 3.,消y得: 4.(1)当k=0时,直线与抛物线的对称轴平行,有一个交点; 5.(2)当k≠0时, Δ>0,直线与抛物线相交,两个不同交点; Δ=0,直线与抛物线相切,一个切点; Δ<0 (3 6. 直线: ① 设交点求出 , a. 或 b.中点,, ② 设交点坐标为,,代入抛物线方程,得 a.在涉及斜率问题时, b.在涉及中点轨迹问题时,设线段的中点为,, 即,

同理,对于抛物线,若直线与抛物线相交于两点,点是弦的中 点,则有 (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 【典型例题】 考点1抛物线的定义 题型利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换 [例1]已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之 [解析]由抛物线的定义知,,点为抛 x=-1,故1.,点,在抛物线上,且 、 A. C. 由抛物线定义,即: 2.已知点F是抛物线的焦点 M A. B. C. D. [解析] ,选C 考点2抛物线的标准方程 题型:求抛物线的标准方程 [例2]求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2)(2)焦点在直线上 [解析](1)设所求的抛物线的方程为或,

高中数学双曲线抛物线知识点的总结

双曲线 平面内到两个定点, 的距离之差的绝对值是常数2a(2a< )的点的轨迹。 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为22 22(0)x y m n λλ-=≠,与双曲线 2222 1x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M (0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,A -。

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M (0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c=26,∴c=13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425 y x -=。 (3)设双曲线的方程为22 22x y a b λ -= ( 3,A -在双曲线上 ∴(2 2 3 1916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e 、a 、b 、c 四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c ,直线l 过点(a ,0)和(0,b ),且 点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e 的取值范围。 解:直线l 的方程为 1x y a b -=,级bx+ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离 1d = , 同理得到点(-1,0)到直线l 的距离 2d =

高中数学专题:抛物线之欧阳数创编

抛物线专题复习 时间:2021.03.02 创作:欧阳数 一、抛物线的知识点: 标准方程图形 顶 点 对 称 轴 焦点准线 离 心 率 焦半径焦点弦公式()0 2 2 > = p px y x y O F l ()0,0 x轴? ? ? ? ? 0, 2 p 2 p x- =1 = e 2 x p PF+ = ( 2 1 x x p AB+ + = ()0 2 2 > - = p px y x y O F l ()0,0 x轴 ? ? ? ? ? -0, 2 p 2 p x= 1 = e 2 x p PF- = ( 2 1 x x p AB+ - = ()0 2 2 > = p py x()0,0y 轴 ? ? ? ? ? 2 ,0 p 2 p y- =1 = e 2 y p PF+ = ( 2 1 y y p AB+ + = 通径:过焦点且垂直于对称轴的相交弦通径:p d2 = AB为抛物线px y2 2=的焦点弦,则=B A x x 4 2 p,= B A y y2p -, | |AB=p x x B A + + 考点1 抛物线的定义 [例1 ]已知点P在抛物线x y4 2=上,则点P到点)1,2(- Q的距离

与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-;(2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点), 则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2:4G x y =的焦点.(I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,) A x y B x y 两点,如果62 1=+x x ,那么||AB =( ) (A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,, 333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则

抛物线知识点总结

抛物线知识点总结 1、把方程y 2=2px (p >0)叫做抛物线的标准方程其中F (2P ,0),l :x=-2 P 而p 的几何意义是:焦点到准线的距离。 由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其它形式. 四种抛物线的标准方程对比 2、掌握了两类题型——由焦点、准线确定方程;由方程确定焦点、准线。 3、应用了三种思想——分类讨论、数形结合、函数与方程思想。 3、抛物线没有中心,只有一个顶点、一个焦点、一条准线、一条对称轴且离心率e =1,所以与椭圆、双曲线相比,它有许多特殊性质,可以借助几何知识来解决. 4、抛物线的标准方程、焦点坐标、准线方程三者相依并存,知道其中一个,就可求其他两个. 有关抛物线的题型总结:

1、抛物线216y x =-的顶点到准线的距离为___________ 2、抛物线22y x =的焦点坐标是 A. 108(,) B. 104(,) C. 1,08() D. 1,04 () 3、抛物线y 2= 4x 上一点P 到焦点F 的距离是10, 则P 点的坐标是 ( ) (A )(9, 6) (B )(6, 9) (C )(±6, 9) (D )(9,±6) 4、已知抛物线24y x =上的一点到焦点的距离为5,求这点的坐标为( )。 5、已知抛物线x y 42=,过焦点F ,倾斜角为4 π的直线交抛物线于A B 、两点,AB =______ 6、已知抛物线26y x =定点()2,3A ,F 为焦点,P 为抛物线上的动点,则PF PA +的最小值____________ 思考题: 7、已知抛物线y 2=6x, 过点P(4, 1)引一弦,使它恰在点P 被平分,求这条弦所在的直线l 的方程. 8、已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程

相关文档
相关文档 最新文档